1,548 research outputs found

    Mobile AME: A Handheld Application to Support Decision Making for Ammunition Personnel

    Get PDF
    Wireless technology and the emergence of handheld devices provide new ways to deliver and present information. In the military setting, availability of needed information can be crucial during the decision-making process, especially in a war zone. This paper describes the extension of a Web-based ammunition encyclopedia system developed for the U.S. Army Defense Ammunition Center (DAC) called the ammunition multimedia encyclopedia system (AME). The extension, known as Mobile AME, exploits handheld technology to provide Quality Assurance Specialist Ammunition Surveillance (QASAS) personnel with access to needed ammunition information via a personal digital assistant (PDA). The focus was on developing a highly usable system that supports QASAS decision making and training in choosing the best practices to properly handle an ammunition item including Discarded Military Munitions (DMM). This paper discusses the motivation behind Mobile AME, design and development of the system, and future directions

    Using mobile devices to support online collaborative learning

    Get PDF
    Mobile collaborative learning is considered the next step of on-line collaborative learning by incorporating mobility as a key and breakthrough requirement. Indeed, the current wide spread of mobile devices and wireless technologies brings an enormous potential to e-learning, in terms of ubiquity, pervasiveness, personalization, flexibility, and so on. For this reason, Mobile Computer-Supported Collaborative Learning has recently grown from a minor research field to significant research projects covering a fairly variety of formal and specially informal learning settings, from schools and universities to workplaces, museums, cities and rural areas. Much of this research has shown how mobile technology can offer new opportunities for groups of learners to collaborate inside and beyond the traditional instructor-oriented educational paradigm. However, mobile technologies, when specifically applied to collaborative learning activities, are still in its infancy and many challenges arise. In addition, current research in this domain points to highly specialized study cases, uses, and experiences in specific educational settings and thus the issues addressed in the literature are found dispersed and disconnected from each other. To this end, this paper attempts to bridge relevant aspects of mobile technologies in support for collaborative learning and provides a tighter view by means of a multidimensional approach.Peer ReviewedPostprint (published version

    An application service provider infrastructure for shared workspaces in Internet-based collaborative design

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Architecture; and, (S.M.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2000.Includes bibliographical references (leaves 103-107).For architectural, engineering and construction projects involving transient 'virtual organizations' composed of non-collocated team-members, the adoption of concurrent design principles is seen as vital. An important aspect of concurrent design is the need for an effective communications infrastructure between team members. Traditionally, such communication has been handled through person-to-person meetings, however the complexity of modern projects has grown and as a result, reliance on new information and communications technologies is becoming increasingly necessary. Hence, within a concurrent design setting, there is the need for an integrated information and collaboration environment that will create a persistent shared workspace to support interaction between project personnel throughout all phases of the project. This research explores computer-supported mechanisms for enhancing distributed design collaboration. The goal of this thesis is to develop a set of requirements, system architecture and an early system prototype to facilitate computer-supported collaboration among distributed teams. The prototype will consist of a persistent shared workspace system built from the integration of complementary collaborative applications. These applications are the CAIRO system, developed at the Massachusetts Institute of Technology and the VNC system developed at the Olivetti Research Laboratory.by Jaime Solari.S.M

    A Survey of the Economic Role of Software Platforms in Computer-Based Industries

    Get PDF
    Software platforms are a critical component of the computer systems underpinning leading– edge products ranging from third– generation mobile phones to video games. After describing some key economic features of computer systems and software platforms, the paper presents case studies of personal computers, video games, personal digital assistants, smart mobile phones, and digital content devices. It then compares several economic aspects of these businesses including their industry evolution, pricing structures, and degrees of integration.software platforms, hardware platforms, network effects, bundling, multi-sided markets

    The future of social is personal: the potential of the personal data store

    No full text
    This chapter argues that technical architectures that facilitate the longitudinal, decentralised and individual-centric personal collection and curation of data will be an important, but partial, response to the pressing problem of the autonomy of the data subject, and the asymmetry of power between the subject and large scale service providers/data consumers. Towards framing the scope and role of such Personal Data Stores (PDSes), the legalistic notion of personal data is examined, and it is argued that a more inclusive, intuitive notion expresses more accurately what individuals require in order to preserve their autonomy in a data-driven world of large aggregators. Six challenges towards realising the PDS vision are set out: the requirement to store data for long periods; the difficulties of managing data for individuals; the need to reconsider the regulatory basis for third-party access to data; the need to comply with international data handling standards; the need to integrate privacy-enhancing technologies; and the need to future-proof data gathering against the evolution of social norms. The open experimental PDS platform INDX is introduced and described, as a means of beginning to address at least some of these six challenges

    The Next Wave of Nomadic Computing: A Research Agenda for Information Systems Research

    Get PDF
    A nomadic information environment is a heterogeneous assemblage of interconnected technological and organizational elements, which enables physical and social mobility of computing and communication services between organizational actors both within and across organizational borders. We analyze such environments based on their prevalent features of mobility, digital convergence, and mass scale. We describe essential features of each in more detail and characterize their mutual interdependencies. We build a framework, which identifies research issues in nomadic information environments at the individual, the team, the organizational, and inter-organizational levels, comprising both service and infrastructure development. We assess the opportunities and challenges for research into each area at the level of design, use and adoption, and impacts. We conclude by discussing challenges posed by nomadic information environments for information systems field to our research skills and methods. These deal with the need to invent novel research methods and shift research focus, the necessity to question the divide between the technical and the social, and the need to better integrate developmental and behavioral (empirical) research modes

    Quality assessment technique for ubiquitous software and middleware

    Get PDF
    The new paradigm of computing or information systems is ubiquitous computing systems. The technology-oriented issues of ubiquitous computing systems have made researchers pay much attention to the feasibility study of the technologies rather than building quality assurance indices or guidelines. In this context, measuring quality is the key to developing high-quality ubiquitous computing products. For this reason, various quality models have been defined, adopted and enhanced over the years, for example, the need for one recognised standard quality model (ISO/IEC 9126) is the result of a consensus for a software quality model on three levels: characteristics, sub-characteristics, and metrics. However, it is very much unlikely that this scheme will be directly applicable to ubiquitous computing environments which are considerably different to conventional software, trailing a big concern which is being given to reformulate existing methods, and especially to elaborate new assessment techniques for ubiquitous computing environments. This paper selects appropriate quality characteristics for the ubiquitous computing environment, which can be used as the quality target for both ubiquitous computing product evaluation processes ad development processes. Further, each of the quality characteristics has been expanded with evaluation questions and metrics, in some cases with measures. In addition, this quality model has been applied to the industrial setting of the ubiquitous computing environment. These have revealed that while the approach was sound, there are some parts to be more developed in the future

    Multi-server collaboration system for disaster relief mission planning

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2001.Includes bibliographical references (p. 123-125).by Chang Kuang.S.M

    Cross-display attention switching in mobile interaction with large displays

    Get PDF
    Mobile devices equipped with features (e.g., camera, network connectivity and media player) are increasingly being used for different tasks such as web browsing, document reading and photography. While the portability of mobile devices makes them desirable for pervasive access to information, their small screen real-estate often imposes restrictions on the amount of information that can be displayed and manipulated on them. On the other hand, large displays have become commonplace in many outdoor as well as indoor environments. While they provide an efficient way of presenting and disseminating information, they provide little support for digital interactivity or physical accessibility. Researchers argue that mobile phones provide an efficient and portable way of interacting with large displays, and the latter can overcome the limitations of the small screens of mobile devices by providing a larger presentation and interaction space. However, distributing user interface (UI) elements across a mobile device and a large display can cause switching of visual attention and that may affect task performance. This thesis specifically explores how the switching of visual attention across a handheld mobile device and a vertical large display can affect a single user's task performance during mobile interaction with large displays. It introduces a taxonomy based on the factors associated with the visual arrangement of Multi Display User Interfaces (MDUIs) that can influence visual attention switching during interaction with MDUIs. It presents an empirical analysis of the effects of different distributions of input and output across mobile and large displays on the user's task performance, subjective workload and preference in the multiple-widget selection task, and in visual search tasks with maps, texts and photos. Experimental results show that the selection of multiple widgets replicated on the mobile device as well as on the large display, versus those shown only on the large display, is faster despite the cost of initial attention switching in the former. On the other hand, a hybrid UI configuration where the visual output is distributed across the mobile and large displays is the worst, or equivalent to the worst, configuration in all the visual search tasks. A mobile device-controlled large display configuration performs best in the map search task and equal to best (i.e., tied with a mobile-only configuration) in text- and photo-search tasks
    corecore