177,978 research outputs found

    Influence of Fluoride and Stress on the Electrochemical Properties of Nickel-Titanium Coils

    Get PDF
    The aim of this study was to examine the effects of fluoride and stress on the electrochemical properties of nickel-titanium coils. Forty Dentsply GAC NiTi coils were divided into four groups of ten and individually tested. Twenty coils were placed in a solution of artificial saliva, where ten of the twenty were compressed and the other ten were not stressed. The other twenty coils were placed in a 1500 ppm NaF solution, where ten were compressed and ten were not. The coils were connected to a computer driven potentiostat and three tests were conducted: open circuit potential monitoring for 2 hours, a linear polarization scan, and a cyclic polarization test. The results showed the coils to possess a more noble OCP when in artificial saliva compared to fluoride. The non-compressed, artificial saliva group possessed the greatest polarization resistance (

    DEVELOPMENT OF PILOT BATCH AND GRADE ESTIMATION OF COILS OF STEEL GRADE S355MC AT ROLLING MILL "1700", PJSC "ILYICH IRON AND STEEL WORKS"

    Get PDF
    Development of technology of hot rolling coils using thermo- mechanical controlled process for the wide-strip rolling mill and grade estimation of coils

    High voltage isolation transformer

    Get PDF
    A high voltage isolation transformer is provided with primary and secondary coils separated by discrete electrostatic shields from the surfaces of insulating spools on which the coils are wound. The electrostatic shields are formed by coatings of a compound with a low electrical conductivity which completely encase the coils and adhere to the surfaces of the insulating spools adjacent to the coils. Coatings of the compound also line axial bores of the spools, thereby forming electrostatic shields separating the spools from legs of a ferromagnetic core extending through the bores. The transformer is able to isolate a high constant potential applied to one of its coils, without the occurrence of sparking or corona, by coupling the coatings, lining the axial bores to the ferromagnetic core and by coupling one terminal of each coil to the respective coating encasing the coil

    Reciprocating linear motor

    Get PDF
    A reciprocating linear motor is formed with a pair of ring-shaped permanent magnets having opposite radial polarizations, held axially apart by a nonmagnetic yoke, which serves as an axially displaceable armature assembly. A pair of annularly wound coils having axial lengths which differ from the axial lengths of the permanent magnets are serially coupled together in mutual opposition and positioned with an outer cylindrical core in axial symmetry about the armature assembly. One embodiment includes a second pair of annularly wound coils serially coupled together in mutual opposition and an inner cylindrical core positioned in axial symmetry inside the armature radially opposite to the first pair of coils. Application of a potential difference across a serial connection of the two pairs of coils creates a current flow perpendicular to the magnetic field created by the armature magnets, thereby causing limited linear displacement of the magnets relative to the coils

    On Reliability of Underwater Magnetic Induction Communications with Tri-Axis Coils

    Full text link
    Underwater magnetic induction communications (UWMICs) provide a low-power and high-throughput solution for autonomous underwater vehicles (AUVs), which are envisioned to explore and monitor the underwater environment. UWMIC with tri-axis coils increases the reliability of the wireless channel by exploring the coil orientation diversity. However, the UWMIC channel is different from typical fading channels and the mutual inductance information (MII) is not always available. It is not clear the performance of the tri-axis coil MIMO without MII. Also, its performances with multiple users have not been investigated. In this paper, we analyze the reliability and multiplexing gain of UWMICs with tri-axis coils by using coil selection. We optimally select the transmit and receive coils to reduce the computation complexity and power consumption and explore the diversity for multiple users. We find that without using all the coils and MII, we can still achieve reliability. Also, the multiplexing gain of UWMIC without MII is 5dB smaller than typical terrestrial fading channels. The results of this paper provide a more power-efficient way to use UWMICs with tri-axis coils

    Formulas establish audio range inductance in beryllium coils

    Get PDF
    Mathematical modeling is used to determine the effects of resistance and capacitance upon the audio-inductance range of beryllium hammer coils and beryllium nylon-potted coils

    35.4 T field generated using a layer-wound superconducting coil made of (RE)Ba2Cu3O7-x (RE = Rare Earth) coated conductor

    Full text link
    To explore the limits of layer wound (RE)Ba2Cu3O7-x (REBCO, RE = Rare Earth) coils in a high magnetic field environment > 30 T, a series of small insert coils have been built and characterized in background fields. One of the coils repeatedly reached 35.4 T using a single ~100 m length of REBCO tape wet wound with epoxy and nested in a 31 T background magnet. The coil was quenched safely several times without degradation. Contributing to the success of this coil was the introduction of a thin polyester film that surrounded the conductor. This approach introduces a weak circumferential plane in the coil pack that prevents conductor delamination that has caused degradation of several epoxy impregnated coils previously made by this and other groups.Comment: 7 pages, 3 figures, 1 tabl

    Minimax Current Density Coil Design

    Full text link
    'Coil design' is an inverse problem in which arrangements of wire are designed to generate a prescribed magnetic field when energized with electric current. The design of gradient and shim coils for magnetic resonance imaging (MRI) are important examples of coil design. The magnetic fields that these coils generate are usually required to be both strong and accurate. Other electromagnetic properties of the coils, such as inductance, may be considered in the design process, which becomes an optimization problem. The maximum current density is additionally optimized in this work and the resultant coils are investigated for performance and practicality. Coils with minimax current density were found to exhibit maximally spread wires and may help disperse localized regions of Joule heating. They also produce the highest possible magnetic field strength per unit current for any given surface and wire size. Three different flavours of boundary element method that employ different basis functions (triangular elements with uniform current, cylindrical elements with sinusoidal current and conic section elements with sinusoidal-uniform current) were used with this approach to illustrate its generality.Comment: 24 pages, 6 figures, 2 tables. To appear in Journal of Physics D: Applied Physic
    corecore