3 research outputs found

    Identification of damage and fracture modes in power electronic packaging from experimental micro-shear tests and finite element modeling

    Get PDF
    Micro-shear tests are performed in order to characterize the mechanical behavior and the fracture of the chip/metallized ceramic substrate assemblies of power electronic devices. These assemblies are elaborated using three types of junctions: AuGe solder/Au or Ag finish, transient liquid phase bonding (TLPB) AgIn/Ag finish and Ag nanoparticles/Au or Ag finish. The experiments are associated to finite element simulations of both nano-indentation and micro-shear tests. The mechanical behavior of the different assembly interfaces is represented using an in-built cohesive zone model (CZM) available in the user friendly finite element code Abaqus. It is worth noting that the fracture mechanisms observed during the test and service periods of the power electronic packaging are not only due to the debonding at the interfaces but also to the initiation and growth of voids in the joint. Therefore, in addition to the CZM model, Gurson-Tvergaard-Needlmann (GTN) damage model is used in combination with the Rice bifurcation theory to correctly describe the fracture in the joint and, therefore the overall fracture mechanism of the entire junction. The simulation results are compared with the experimental force displacement curves and the SEM observations in order to assess the implemented model

    Optimisation thermomécanique du packaging haute température d’un composant diamant pour l’électronique de puissance

    Get PDF
    L’accroissement des besoins en énergie électrique pour les systèmes embarqués et leur augmentation de puissance nécessitent de concevoir des systèmes d’électronique de puissance toujours plus performants. Une solution d’avenir concerne la mise en œuvre de composants à base de diamant qui permettent l’augmentation conséquente des tensions et courants mis en jeux, mais aussi de la température maximale de jonction admissible. Le cadre de ces travaux est celui du projet de recherche Diamonix 2, qui concerne l’étude et l’élaboration d’un composant diamant fonctionnant à haute température. L’objectif du travail doctoral présenté ici est l’étude du packaging haute température de ce type de composant diamant. Plusieurs choix de matériaux et de techniques aptes à l’élaboration d’un assemblage de puce diamant sur un substrat métallisé ont été effectués. La caractérisation microstructurale et mécanique de trois types de jonctions ont été réalisées (refusion d’un alliage AuGe, frittage de nano pâtes d’argent et diffusion en phase solide d’indium dans des couches d’argent). Des essais mécaniques de cisaillement de divers assemblages ont permis d’évaluer le comportement thermomécanique des jonctions et des interfaces. Les essais de cisaillement ont servi à l’identification inverse des paramètres interfaciaux d’un modèle de zones cohésives, pour différents types d’interfaces. Des modèles éléments finis d’assemblage, incluant le comportement viscoplastique des jonctions et des lois d’endommagent des interfaces, ont servi à simuler le comportement thermomécanique du packaging d’un composant diamant
    corecore