4,961 research outputs found

    Robust Stability of Quantum Systems with Nonlinear Dynamic Uncertainties

    Full text link
    This paper considers the problem of robust stability for a class of uncertain nonlinear quantum systems subject to unknown perturbations in the system Hamiltonian. The nominal system is a linear quantum system defined by a linear vector of coupling operators and a quadratic Hamiltonian. This paper extends previous results on the robust stability of nonlinear quantum systems to allow for quantum systems with dynamic uncertainties. These dynamic uncertainties are required to satisfy a certain quantum stochastic integral quadratic constraint. The robust stability condition is given in terms of a strict bounded real condition. This result is applied to the robust stability analysis of an optical parametric amplifier.Comment: A shortened version is to appear in the proceedings of the 2013 IEEE Conference on Decision and Contro

    Quantum control theory and applications: A survey

    Full text link
    This paper presents a survey on quantum control theory and applications from a control systems perspective. Some of the basic concepts and main developments (including open-loop control and closed-loop control) in quantum control theory are reviewed. In the area of open-loop quantum control, the paper surveys the notion of controllability for quantum systems and presents several control design strategies including optimal control, Lyapunov-based methodologies, variable structure control and quantum incoherent control. In the area of closed-loop quantum control, the paper reviews closed-loop learning control and several important issues related to quantum feedback control including quantum filtering, feedback stabilization, LQG control and robust quantum control.Comment: 38 pages, invited survey paper from a control systems perspective, some references are added, published versio

    Quantum Robust Stability of a Small Josephson Junction in a Resonant Cavity

    Full text link
    This paper applies recent results on the robust stability of nonlinear quantum systems to the case of a Josephson junction in a resonant cavity. The Josephson junction is characterized by a Hamiltonian operator which contains a non-quadratic term involving a cosine function. This leads to a sector bounded nonlinearity which enables the previously developed theory to be applied to this system in order to analyze its stability.Comment: A version of this paper appeared in the proceedings of the 2012 IEEE Multi-conference on Systems and Contro

    Coherent-Classical Estimation for Quantum Linear Systems

    Full text link
    This paper introduces a problem of coherent-classical estimation for a class of linear quantum systems. In this problem, the estimator is a mixed quantum-classical system which produces a classical estimate of a system variable. The coherent-classical estimator may also involve coherent feedback. An example involving optical squeezers is given to illustrate the efficacy of this idea.Comment: A version of this paper will appear in the Proceedings of the 2013 Australian Control Conferenc
    • …
    corecore