84,207 research outputs found

    Fault-tolerant linear optical quantum computing with small-amplitude coherent states

    Get PDF
    Quantum computing using two optical coherent states as qubit basis states has been suggested as an interesting alternative to single photon optical quantum computing with lower physical resource overheads. These proposals have been questioned as a practical way of performing quantum computing in the short term due to the requirement of generating fragile diagonal states with large coherent amplitudes. Here we show that by using a fault-tolerant error correction scheme, one need only use relatively small coherent state amplitudes (α>1.2\alpha > 1.2) to achieve universal quantum computing. We study the effects of small coherent state amplitude and photon loss on fault tolerance within the error correction scheme using a Monte Carlo simulation and show the quantity of resources used for the first level of encoding is orders of magnitude lower than the best known single photon scheme. %We study this reigem using a Monte Carlo simulation and incorporate %the effects of photon loss in this simulation

    High efficiency coherent optical memory with warm rubidium vapour

    Get PDF
    By harnessing aspects of quantum mechanics, communication and information processing could be radically transformed. Promising forms of quantum information technology include optical quantum cryptographic systems and computing using photons for quantum logic operations. As with current information processing systems, some form of memory will be required. Quantum repeaters, which are required for long distance quantum key distribution, require optical memory as do deterministic logic gates for optical quantum computing. In this paper we present results from a coherent optical memory based on warm rubidium vapour and show 87% efficient recall of light pulses, the highest efficiency measured to date for any coherent optical memory. We also show storage recall of up to 20 pulses from our system. These results show that simple warm atomic vapour systems have clear potential as a platform for quantum memory

    Effects of self-phase modulation on weak nonlinear optical quantum gates

    Full text link
    A possible two-qubit gate for optical quantum computing is the parity gate based on the weak Kerr effect. Two photonic qubits modulate the phase of a coherent state, and a quadrature measurement of the coherent state reveals the parity of the two qubits without destroying the photons. This can be used to create so-called cluster states, a universal resource for quantum computing. Here, the effect of self-phase modulation on the parity gate is studied, introducing generating functions for the Wigner function of a modulated coherent state. For materials with non-EIT-based Kerr nonlinearities, there is typically a self-phase modulation that is half the magnitude of the cross-phase modulation. Therefore, this effect cannot be ignored. It is shown that for a large class of physical implementations of the phase modulation, the quadrature measurement cannot distinguish between odd and even parity. Consequently, weak nonlinear parity gates must be implemented with physical systems where the self-phase modulation is negligable.Comment: 7 pages, 4 figure

    Control and single-shot readout of an ion embedded in a nanophotonic cavity

    Get PDF
    Distributing entanglement over long distances using optical networks is an intriguing macroscopic quantum phenomenon with applications in quantum systems for advanced computing and secure communication. Building quantum networks requires scalable quantum light–matter interfaces based on atoms, ions or other optically addressable qubits. Solid-state emitters5, such as quantum dots and defects in diamond or silicon carbide , have emerged as promising candidates for such interfaces. So far, it has not been possible to scale up these systems, motivating the development of alternative platforms. A central challenge is identifying emitters that exhibit coherent optical and spin transitions while coupled to photonic cavities that enhance the light–matter interaction and channel emission into optical fibres. Rare-earth ions in crystals are known to have highly coherent 4f–4f optical and spin transitions suited to quantum storage and transduction, but only recently have single rare-earth ions been isolated and coupled to nanocavities. The crucial next steps towards using single rare-earth ions for quantum networks are realizing long spin coherence and single-shot readout in photonic resonators. Here we demonstrate spin initialization, coherent optical and spin manipulation, and high-fidelity single-shot optical readout of the hyperfine spin state of single Âč⁷ÂčYbÂłâș ions coupled to a nanophotonic cavity fabricated in an yttrium orthovanadate host crystal. These ions have optical and spin transitions that are first-order insensitive to magnetic field fluctuations, enabling optical linewidths of less than one megahertz and spin coherence times exceeding thirty milliseconds for cavity-coupled ions, even at temperatures greater than one kelvin. The cavity-enhanced optical emission rate facilitates efficient spin initialization and single-shot readout with conditional fidelity greater than 95 per cent. These results showcase a solid-state platform based on single coherent rare-earth ions for the future quantum internet

    All-optical wavelength-tunable narrow-linewidth fiber laser

    Full text link
    Parameter regulations of narrow-linewidth fiber lasers in frequency domain has drawn considerable interests for widespread applications in the light quantum computing, precise coherent detection, and generation of micro-waves. All-optical methods provide compact, precise and fast accesses to achieving these lasers with wavelength-tunability. Here, the optical-thermal effects of graphene is utilized to precisely control operations of free-running lasers with a tuning speed of 140 MHz/ms. Assisted by the single-longitude-mode operation and linewidth suppression of stimulated Brillouin backscattering, we obtain an optical-controllable ~750 Hz fiber laser with a wavelength-tuning range of 3.7 nm

    Dual-pumped degenerate Kerr oscillator in a silicon nitride microresonator

    Full text link
    We demonstrate a degenerate parametric oscillator in a silicon-nitride microresonator. We use two frequency-detuned pump waves to perform parametric four-wave mixing and operate in the normal group-velocity dispersion regime to produce signal and idler fields that are frequency degenerate. Our theoretical modeling shows that this regime enables generation of bimodal phase states, analogous to the \c{hi}(2)-based degenerate OPO. Our system offers potential for realization of CMOS-chip-based coherent optical computing and an all-optical quantum random number generator
    • 

    corecore