337 research outputs found

    On the difference-to-sum power ratio of speech and wind noise based on the Corcos model

    Full text link
    The difference-to-sum power ratio was proposed and used to suppress wind noise under specific acoustic conditions. In this contribution, a general formulation of the difference-to-sum power ratio associated with a mixture of speech and wind noise is proposed and analyzed. In particular, it is assumed that the complex coherence of convective turbulence can be modelled by the Corcos model. In contrast to the work in which the power ratio was first presented, the employed Corcos model holds for every possible air stream direction and takes into account the lateral coherence decay rate. The obtained expression is subsequently validated with real data for a dual microphone set-up. Finally, the difference-to- sum power ratio is exploited as a spatial feature to indicate the frame-wise presence of wind noise, obtaining improved detection performance when compared to an existing multi-channel wind noise detection approach.Comment: 5 pages, 3 figures, IEEE-ICSEE Eilat-Israel conference (special session

    Implementation and evaluation of a low complexity microphone array for speaker recognition

    Get PDF
    Includes bibliographical references (leaves 83-86).This thesis discusses the application of a microphone array employing a noise canceling beamforming technique for improving the robustness of speaker recognition systems in a diffuse noise field

    Spatial, Spectral, and Perceptual Nonlinear Noise Reduction for Hands-free Microphones in a Car

    Get PDF
    Speech enhancement in an automobile is a challenging problem because interference can come from engine noise, fans, music, wind, road noise, reverberation, echo, and passengers engaging in other conversations. Hands-free microphones make the situation worse because the strength of the desired speech signal reduces with increased distance between the microphone and talker. Automobile safety is improved when the driver can use a hands-free interface to phones and other devices instead of taking his eyes off the road. The demand for high quality hands-free communication in the automobile requires the introduction of more powerful algorithms. This thesis shows that a unique combination of five algorithms can achieve superior speech enhancement for a hands-free system when compared to beamforming or spectral subtraction alone. Several different designs were analyzed and tested before converging on the configuration that achieved the best results. Beamforming, voice activity detection, spectral subtraction, perceptual nonlinear weighting, and talker isolation via pitch tracking all work together in a complementary iterative manner to create a speech enhancement system capable of significantly enhancing real world speech signals. The following conclusions are supported by the simulation results using data recorded in a car and are in strong agreement with theory. Adaptive beamforming, like the Generalized Side-lobe Canceller (GSC), can be effectively used if the filters only adapt during silent data frames because too much of the desired speech is cancelled otherwise. Spectral subtraction removes stationary noise while perceptual weighting prevents the introduction of offensive audible noise artifacts. Talker isolation via pitch tracking can perform better when used after beamforming and spectral subtraction because of the higher accuracy obtained after initial noise removal. Iterating the algorithm once increases the accuracy of the Voice Activity Detection (VAD), which improves the overall performance of the algorithm. Placing the microphone(s) on the ceiling above the head and slightly forward of the desired talker appears to be the best location in an automobile based on the experiments performed in this thesis. Objective speech quality measures show that the algorithm removes a majority of the stationary noise in a hands-free environment of an automobile with relatively minimal speech distortion

    Control of feedback for assistive listening devices

    Get PDF
    Acoustic feedback refers to the undesired acoustic coupling between the loudspeaker and microphone in hearing aids. This feedback channel poses limitations to the normal operation of hearing aids under varying acoustic scenarios. This work makes contributions to improve the performance of adaptive feedback cancellation techniques and speech quality in hearing aids. For this purpose a two microphone approach is proposed and analysed; and probe signal injection methods are also investigated and improved upon

    Towards An Intelligent Fuzzy Based Multimodal Two Stage Speech Enhancement System

    Get PDF
    This thesis presents a novel two stage multimodal speech enhancement system, making use of both visual and audio information to filter speech, and explores the extension of this system with the use of fuzzy logic to demonstrate proof of concept for an envisaged autonomous, adaptive, and context aware multimodal system. The design of the proposed cognitively inspired framework is scalable, meaning that it is possible for the techniques used in individual parts of the system to be upgraded and there is scope for the initial framework presented here to be expanded. In the proposed system, the concept of single modality two stage filtering is extended to include the visual modality. Noisy speech information received by a microphone array is first pre-processed by visually derived Wiener filtering employing the novel use of the Gaussian Mixture Regression (GMR) technique, making use of associated visual speech information, extracted using a state of the art Semi Adaptive Appearance Models (SAAM) based lip tracking approach. This pre-processed speech is then enhanced further by audio only beamforming using a state of the art Transfer Function Generalised Sidelobe Canceller (TFGSC) approach. This results in a system which is designed to function in challenging noisy speech environments (using speech sentences with different speakers from the GRID corpus and a range of noise recordings), and both objective and subjective test results (employing the widely used Perceptual Evaluation of Speech Quality (PESQ) measure, a composite objective measure, and subjective listening tests), showing that this initial system is capable of delivering very encouraging results with regard to filtering speech mixtures in difficult reverberant speech environments. Some limitations of this initial framework are identified, and the extension of this multimodal system is explored, with the development of a fuzzy logic based framework and a proof of concept demonstration implemented. Results show that this proposed autonomous,adaptive, and context aware multimodal framework is capable of delivering very positive results in difficult noisy speech environments, with cognitively inspired use of audio and visual information, depending on environmental conditions. Finally some concluding remarks are made along with proposals for future work

    An investigation of the wind noise reduction mechanism of porous microphone windscreens

    Get PDF
    Wind energy is a green way to produce electricity without carbon emissions. However, the infrasound and low frequency audible sound radiated by wind turbines may adversely affect the nearby communities. To investigate the impact of wind farm noise and to understand its noise generation mechanism and propagation, the sound level of wind farm noise must be measured under windy conditions. However, it is often a challenge to measure wind turbine noise under windy conditions in quiet rural residential areas due to wind noise, especially for infrasound and low frequency audible sound. Wind noise is the pseudo sound pressure generated on microphones due to turbulent pressure fluctuations and is indistinguishable from the acoustic signals to be measured. Various microphone windscreens have been utilized to reduce wind noise. However, the physical mechanism of wind noise reduction by windscreens has been unclear to date. The aim of this PhD research is to investigate the mechanisms of wind noise generation and the wind noise reduction mechanism of porous microphone windscreens, and then develop a new compact acoustic measurement system that is insensitive to wind noise. To achieve this objective, a critical literature review is first presented to summarise the state-of-the-art research results in the field of wind noise and its reduction. Then, the research is focused on three aspects: the mechanisms of wind noise generation, the wind noise reduction mechanism of porous microphone windscreens, and wind noise reduction with a compact spherical microphone array. In the first aspect of this thesis, the generation mechanism of wind noise is explored and two theoretical models are proposed to predict wind noise spectra. One model is for outdoor atmospheric turbulence where the Reynolds number based on the Taylor microscale varies from 4250 to 19500, and the other is for indoor fan generated turbulent flows where the Reynolds number based on the Taylor microscale is estimated to be around 432. The proposed theoretical models are validated with existing simulations and experimental results from the literature, as well as measurement results conducted as part of this thesis in a car park for outdoor wind noise and in a laboratory for wind noise from an axial fan. In the second aspect of this thesis, the mechanism of wind noise reduction by porous microphone windscreens is investigated. It is shown that the wind noise reduction of porous microphone windscreens is caused by viscous and inertial forces introduced by the porous structure. Simulation results indicate that the design of porous microphone windscreens should take into account both turbulence suppression inside and wake generation behind the windscreens to achieve optimal performance. Besides, porous windscreens are found to be the most effective in attenuating wind noise in a certain frequency range, where the windscreen diameter is approximately 2 to 4 times the turbulence wavelengths. It is also found that the wind noise reduction is related to the spatial decorrelation of the wind noise signals provided by porous microphone windscreens. The simulation findings are validated with measurement results from an axial fan in a laboratory. In the last aspect of this thesis, a method for wind noise reduction with the spherical microphone array is proposed, and the effect of wind noise on the beamforming performance of a spherical microphone array is investigated. The characteristics of the wind noise is explored and compared with the sound signals in the spherical harmonics domain, based on which a spherical harmonics domain low pass filter method is proposed to reduce wind noise without degrading the desired sound signal. Experimental results demonstrate the feasibility of the proposed method. On the other hand, the effects of wind noise on the beamforming performance of the spherical Plane Wave Decomposition (PWD), Delay and Sum (DAS) and Maximum Variance Distortionless Response (MVDR) beamformers are studied. The experimental results demonstrate that the MVDR beamformer is insensitive to wind noise and able to localise the sound source direction under windy conditions. In summary, two theoretical models are proposed in this PhD research to predict the wind noise spectra in outdoor, large Reynolds number, atmospheric turbulence and indoor, small Reynolds number, turbulent flows, respectively; the physical mechanism of wind noise reduction by porous microphone windscreens is found to be related to the spatial decorrelation effect on the wind noise signal due to the porous structure, and it is demonstrated that the design of porous windscreens should take into account both turbulence suppression inside and wake generation behind the windscreen to achieve optimal performance; the effect of wind noise on the beamforming performance of a spherical microphone array is investigated and a spherical harmonic domain low pass filtering method is proposed to attenuate wind noise without degrading the desired sound signal

    An investigation of the utility of monaural sound source separation via nonnegative matrix factorization applied to acoustic echo and reverberation mitigation for hands-free telephony

    Get PDF
    In this thesis we investigate the applicability and utility of Monaural Sound Source Separation (MSSS) via Nonnegative Matrix Factorization (NMF) for various problems related to audio for hands-free telephony. We first investigate MSSS via NMF as an alternative acoustic echo reduction approach to existing approaches such as Acoustic Echo Cancellation (AEC). To this end, we present the single-channel acoustic echo problem as an MSSS problem, in which the objective is to extract the users signal from a mixture also containing acoustic echo and noise. To perform separation, NMF is used to decompose the near-end microphone signal onto the union of two nonnegative bases in the magnitude Short Time Fourier Transform domain. One of these bases is for the spectral energy of the acoustic echo signal, and is formed from the in- coming far-end user’s speech, while the other basis is for the spectral energy of the near-end speaker, and is trained with speech data a priori. In comparison to AEC, the speaker extraction approach obviates Double-Talk Detection (DTD), and is demonstrated to attain its maximal echo mitigation performance immediately upon initiation and to maintain that performance during and after room changes for similar computational requirements. Speaker extraction is also shown to introduce distortion of the near-end speech signal during double-talk, which is quantified by means of a speech distortion measure and compared to that of AEC. Subsequently, we address Double-Talk Detection (DTD) for block-based AEC algorithms. We propose a novel block-based DTD algorithm that uses the available signals and the estimate of the echo signal that is produced by NMF-based speaker extraction to compute a suitably normalized correlation-based decision variable, which is compared to a fixed threshold to decide on doubletalk. Using a standard evaluation technique, the proposed algorithm is shown to have comparable detection performance to an existing conventional block-based DTD algorithm. It is also demonstrated to inherit the room change insensitivity of speaker extraction, with the proposed DTD algorithm generating minimal false doubletalk indications upon initiation and in response to room changes in comparison to the existing conventional DTD. We also show that this property allows its paired AEC to converge at a rate close to the optimum. Another focus of this thesis is the problem of inverting a single measurement of a non- minimum phase Room Impulse Response (RIR). We describe the process by which percep- tually detrimental all-pass phase distortion arises in reverberant speech filtered by the inverse of the minimum phase component of the RIR; in short, such distortion arises from inverting the magnitude response of the high-Q maximum phase zeros of the RIR. We then propose two novel partial inversion schemes that precisely mitigate this distortion. One of these schemes employs NMF-based MSSS to separate the all-pass phase distortion from the target speech in the magnitude STFT domain, while the other approach modifies the inverse minimum phase filter such that the magnitude response of the maximum phase zeros of the RIR is not fully compensated. Subjective listening tests reveal that the proposed schemes generally produce better quality output speech than a comparable inversion technique

    An investigation of the utility of monaural sound source separation via nonnegative matrix factorization applied to acoustic echo and reverberation mitigation for hands-free telephony

    Get PDF
    In this thesis we investigate the applicability and utility of Monaural Sound Source Separation (MSSS) via Nonnegative Matrix Factorization (NMF) for various problems related to audio for hands-free telephony. We first investigate MSSS via NMF as an alternative acoustic echo reduction approach to existing approaches such as Acoustic Echo Cancellation (AEC). To this end, we present the single-channel acoustic echo problem as an MSSS problem, in which the objective is to extract the users signal from a mixture also containing acoustic echo and noise. To perform separation, NMF is used to decompose the near-end microphone signal onto the union of two nonnegative bases in the magnitude Short Time Fourier Transform domain. One of these bases is for the spectral energy of the acoustic echo signal, and is formed from the in- coming far-end user’s speech, while the other basis is for the spectral energy of the near-end speaker, and is trained with speech data a priori. In comparison to AEC, the speaker extraction approach obviates Double-Talk Detection (DTD), and is demonstrated to attain its maximal echo mitigation performance immediately upon initiation and to maintain that performance during and after room changes for similar computational requirements. Speaker extraction is also shown to introduce distortion of the near-end speech signal during double-talk, which is quantified by means of a speech distortion measure and compared to that of AEC. Subsequently, we address Double-Talk Detection (DTD) for block-based AEC algorithms. We propose a novel block-based DTD algorithm that uses the available signals and the estimate of the echo signal that is produced by NMF-based speaker extraction to compute a suitably normalized correlation-based decision variable, which is compared to a fixed threshold to decide on doubletalk. Using a standard evaluation technique, the proposed algorithm is shown to have comparable detection performance to an existing conventional block-based DTD algorithm. It is also demonstrated to inherit the room change insensitivity of speaker extraction, with the proposed DTD algorithm generating minimal false doubletalk indications upon initiation and in response to room changes in comparison to the existing conventional DTD. We also show that this property allows its paired AEC to converge at a rate close to the optimum. Another focus of this thesis is the problem of inverting a single measurement of a non- minimum phase Room Impulse Response (RIR). We describe the process by which percep- tually detrimental all-pass phase distortion arises in reverberant speech filtered by the inverse of the minimum phase component of the RIR; in short, such distortion arises from inverting the magnitude response of the high-Q maximum phase zeros of the RIR. We then propose two novel partial inversion schemes that precisely mitigate this distortion. One of these schemes employs NMF-based MSSS to separate the all-pass phase distortion from the target speech in the magnitude STFT domain, while the other approach modifies the inverse minimum phase filter such that the magnitude response of the maximum phase zeros of the RIR is not fully compensated. Subjective listening tests reveal that the proposed schemes generally produce better quality output speech than a comparable inversion technique
    • …
    corecore