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Abstract 

Wind energy is a green way to produce electricity without carbon emissions. However, 

the infrasound and low frequency audible sound radiated by wind turbines may adversely 

affect the nearby communities. To investigate the impact of wind farm noise and to 

understand its noise generation mechanism and propagation, the sound level of wind farm 

noise must be measured under windy conditions. However, it is often a challenge to measure 

wind turbine noise under windy conditions in quiet rural residential areas due to wind noise, 

especially for infrasound and low frequency audible sound. Wind noise is the pseudo sound 

pressure generated on microphones due to turbulent pressure fluctuations and is 

indistinguishable from the acoustic signals to be measured. Various microphone windscreens 

have been utilized to reduce wind noise. However, the physical mechanism of wind noise 

reduction by windscreens has been unclear to date.  

The aim of this PhD research is to investigate the mechanisms of wind noise generation 

and the wind noise reduction mechanism of porous microphone windscreens, and then 

develop a new compact acoustic measurement system that is insensitive to wind noise. To 

achieve this objective, a critical literature review is first presented to summarise the state-of-

the-art research results in the field of wind noise and its reduction. Then, the research is 

focused on three aspects: the mechanisms of wind noise generation, the wind noise reduction 

mechanism of porous microphone windscreens, and wind noise reduction with a compact 

spherical microphone array.   

In the first aspect of this thesis, the generation mechanism of wind noise is explored and 

two theoretical models are proposed to predict wind noise spectra. One model is for outdoor 

atmospheric turbulence where the Reynolds number based on the Taylor microscale varies 

from 4250 to 19500, and the other is for indoor fan generated turbulent flows where the 

Reynolds number based on the Taylor microscale is estimated to be around 432. The 
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proposed theoretical models are validated with existing simulations and experimental results 

from the literature, as well as measurement results conducted as part of this thesis in a car 

park for outdoor wind noise and in a laboratory for wind noise from an axial fan.  

In the second aspect of this thesis, the mechanism of wind noise reduction by porous 

microphone windscreens is investigated. It is shown that the wind noise reduction of porous 

microphone windscreens is caused by viscous and inertial forces introduced by the porous 

structure. Simulation results indicate that the design of porous microphone windscreens 

should take into account both turbulence suppression inside and wake generation behind the 

windscreens to achieve optimal performance. Besides, porous windscreens are found to be 

the most effective in attenuating wind noise in a certain frequency range, where the 

windscreen diameter is approximately 2 to 4 times the turbulence wavelengths. It is also 

found that the wind noise reduction is related to the spatial decorrelation of the wind noise 

signals provided by porous microphone windscreens. The simulation findings are validated 

with measurement results from an axial fan in a laboratory.  

In the last aspect of this thesis, a method for wind noise reduction with the spherical 

microphone array is proposed, and the effect of wind noise on the beamforming performance 

of a spherical microphone array is investigated. The characteristics of the wind noise is 

explored and compared with the sound signals in the spherical harmonics domain, based on 

which a spherical harmonics domain low pass filter method is proposed to reduce wind noise 

without degrading the desired sound signal. Experimental results demonstrate the feasibility 

of the proposed method. On the other hand, the effects of wind noise on the beamforming 

performance of the spherical Plane Wave Decomposition (PWD), Delay and Sum (DAS) and 

Maximum Variance Distortionless Response (MVDR) beamformers are studied. The 

experimental results demonstrate that the MVDR beamformer is insensitive to wind noise and 

able to localise the sound source direction under windy conditions.  
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In summary, two theoretical models are proposed in this PhD research to predict the wind 

noise spectra in outdoor, large Reynolds number, atmospheric turbulence and indoor, small 

Reynolds number, turbulent flows, respectively; the physical mechanism of wind noise 

reduction by porous microphone windscreens is found to be related to the spatial 

decorrelation effect on the wind noise signal due to the porous structure, and it is 

demonstrated that the design of porous windscreens should take into account both turbulence 

suppression inside and wake generation behind the windscreen to achieve optimal 

performance; the effect of wind noise on the beamforming performance of a spherical 

microphone array is investigated and a spherical harmonic domain low pass filtering method 

is proposed to attenuate wind noise without degrading the desired sound signal.  

 

Key words: wind noise, wind noise reduction, microphone windscreen, low frequency noise  
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1  Introduction 

Wind energy is a green way to produce electricity without carbon emissions and wind 

generated electric power has expanded rapidly since the beginning of the 21st century [1]. 

However, the infrasound and low frequency audible sound radiated by wind turbines may 

adversely affect the nearby communities, potentially leading to sleep disturbance and 

psychological distress [2–4]. To investigate the impact of wind farm noise and to understand 

its noise generation mechanism and propagation, the sound pressure level of wind farm noise 

under windy conditions must be measured. However, it is often challenging to measure wind 

turbine noise under windy conditions due to the interference of wind noise, especially for 

infrasound and low frequency audible sound. Wind noise is the pseudo sound pressure 

generated on microphones due to turbulent pressure fluctuations, which is indistinguishable 

from the noise from far field wind turbines.  

1.1  Motivation and objectives 

Low frequency sound measurement under windy conditions is an important problem in 

acoustics with many applications, and considerable effort has been put into the research. 

Raspet et al. [5,6] proposed that the wind noise detected by a microphone outdoors is 

composed of the stagnation pressure, the turbulence-turbulence interactions and the 

turbulence-shear interactions, and studied the wind noise spectra measured by microphones 

with and without windscreens. However, these wind noise spectra are restricted to the inertial 

range for intermediate size turbulent eddies, but are not valid for the energy-containing range 

and the dissipation range for larger and smaller size turbulent eddies.  

Various methods have been utilized to reduce wind noise without degrading the sound 

signal. These methods can be categorized as physical structures and signal processing 
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techniques. The porous microphone windscreen shown in Figure 1.1(a) is the most widely 

used physical structure for wind noise reduction due to its small size and portability. 

However, the exact wind noise reduction mechanism of porous microphone windscreens 

remains unclear yet.  

In addition, wind noise reduction of small porous windscreens is unsatisfactory in strong 

wind conditions, especially in the infrasonic and audible low frequency range. Therefore, the 

international standard IEC61400-11 recommends a secondary windscreen of at least 450 mm 

diameter to be used on a flat hard circular board, as shown in Figure 1.1(b) [7]. To reduce 

wind noise effect in the infrasound measurements, other physical structures such as large 

wind fence enclosures [8] and spatial filters [9] are also used, as shown in Figure 1.1(c) and 

(d), respectively. However, these structures are usually meters or tens of meters in size, which 

makes them inconvenient and cumbersome for ordinary outdoor noise measurements.  

Microphone arrays have also been used for outdoor noise measurements, especially for 

noise source localisation. Oerlemans et al. [10] used a planar microphone array of 270 m2 to 

measure a full scale wind turbine noise. Ramachandran et al. [11] utilized a compact planar 

microphone array of 1.5 m2 to investigate the wind turbine noise measurement with advanced 

deconvolution algorithms based on a linear programming method. However, the effect of 

wind noise on the array performance is not studied, and a simple diagonal removal of the 

cross spectrum matrix was used to eliminate the wind noise on microphones with the 

assumption that wind noise is incoherent between microphones. Unfortunately, this 

assumption is not true, because Wilson et al. [12] showed that wind noise is substantially 

correlated for microphone separations smaller than the size of turbulent eddies. 

Therefore, accurate low frequency acoustic measurement in the presence of turbulence is 

still a challenge, although it is critical in outdoor environmental noise measurements and 

other applications such as noise measurements in ventilation systems. This motivated the 
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research of this PhD thesis to investigate the generation mechanism of wind noise and the 

wind noise reduction mechanism of porous microphone windscreens, based on which a new 

compact low frequency acoustic measurement system was developed.  

 

                                            

(a)                                                                   (b) 

 

(c)                                                                (d) 

Figure 1.1 (a) A 90 mm diameter porous microphone windscreens, (b) a 750 mm diameter 

semi-spherical secondary windscreen on board [13], (c) a 5 m diameter wind fence enclosure 

[8], and (d) a 18 m diameter porous hose rossete [14].  
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The overall objective of this research was to develop a new compact low frequency 

acoustic measurement system that is small in size but effective in reducing wind noise. The 

specific aims were to:  

1) investigate the wind noise generation mechanism; 

2) study the physical mechanism of wind noise reduction by porous microphone 

windscreens; and  

3) develop a new compact acoustic measurement system that is insensitive to wind noise. 

1.2  Contributions and outcomes 

The main contributions of this thesis include: 

• proposing a theoretical model for wind noise spectra in outdoor atmospheric 

turbulence, where the Reynolds number is sufficiently large (4250 ~ 19500); 

• proposing a theoretical model for wind noise spectra in indoor fan generated turbulent 

flows, where the Reynolds number is small (~432); 

• discovering that the design of porous microphone windscreens should take into 

account both turbulence suppression inside and wake generation behind the 

windscreens to achieve optimal performance; 

• discovering that porous microphone windscreens are the most effective in attenuating 

wind noise in a certain frequency range, where the windscreen diameter is 

approximately 2 to 4 times the turbulence wavelengths, and that the wind noise 

reduction is related to the spatial decorrelation of wind noise signals provided by 

porous microphone windscreens; and 

• developing a low pass filter method in the spherical harmonics domain to extract a 

desired sound signal from the measured sound pressure which is contaminated by 

wind noise. 
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The main outcomes of the author during the PhD candidature include: 

• publications (see Appendix A for details) 

 4 articles published in The Journal of the Acoustical Society of America; 

 2 peer-reviewed conference papers presented at ACOUSTICS 2016; and 

 2 peer-reviewed conference papers presented at INTER-NOISE 2017; 

and 

• awards/accolades 

 Young Professional Grant from the International Institute of Noise Control 

Engineering (2017);  

 Higher Degree by Research (HDR) Publication Incentive Grant for quality 

research publication from the School of Engineering, RMIT University (2017 

& 2018);  

 HDR Travel Grant from the School of Engineering, RMIT University (2017); 

and 

 HDR Travel Grant from the School of Graduate, RMIT University (2016). 

1.3  Thesis outline 

The rest of the thesis is organised as follows. Chapter 2 gives an extensive and critical 

literature review in the field of wind noise generation and reduction. Chapter 3 proposes two 

theoretical models to predict wind noise spectra in outdoor atmospheric turbulence with large 

Reynolds number and indoor fan generated turbulent flows with small Reynolds number. 

Chapter 4 is devoted to the investigation of the wind noise reduction mechanism of small 

porous microphone windscreens. Chapter 5 develops a low pass filter method in the spherical 

harmonics domain to attenuate wind noise but retain the desired sound signal with a compact 
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spherical microphone array. Finally, conclusions are drawn and future work is discussed in 

Chapter 6.  
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2 Literature review 

Wind-induced noise is the noise measured by a microphone in the presence of turbulent 

flows, including the pseudo-sound pressure fluctuations produced by turbulence in incoming 

flows, self-noise due to interaction of the incoming flow with microphone, and aeroacoustic 

noise caused by wind interaction with nearby objects [1]. It has been shown that in outdoor 

acoustic measurements in large open spaces, the self-noise and aeroacoustic noise due to the 

interaction of wind with nearby objects such as buildings and vehicles are much smaller than 

the pseudo-sound pressure fluctuations on microphones [15]. The wind noise in this thesis 

targets at the pseudo-sound noise caused by turbulent pressure fluctuations.  

Wind noise affects outdoor acoustic measurement accuracy, such as wind turbine noise, 

where wind noise is inevitable because measurements cannot be made in still conditions. On 

average, approximately 90% of wind noise energy is concentrated below 15 Hz and 95% 

below 30 Hz [16], which presents challenges in the measurements of low frequency 

dominated wind farm noise [1]. Kendrick et al. [17,18] studied the effect of wind noise on the 

amplitude modulation metrics for wind turbine noise, and found that bias errors of over 4 

dBA are produced by wind noise even at a low wind speed of 2.5 m/s.  

Wind noise can also corrupt outdoor audio recordings and cause problems for users of 

hearing aids. Perceptual tests were carried out by Jackson et al. [17] to evaluate the audio 

quality of speech recordings contaminated with wind noise, where the average A-weighted 

sound pressure level of the wind noise was found to dominate the perceived degradation of 

audio quality, while gustiness was mostly unimportant. In addition, verbal communications in 

windy environments can become problematic for both the hearing aid and cochlear implant 

users, where the wind noise significantly lowers the signal-to-noise ratio at the microphone 

and consequently reduces the speech intelligibility [19–21].  
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Although wind noise is of broad interest to a wide range of applications, the mechanism 

of wind noise generation has not been understood well. This chapter presents an extensive 

literature review regarding the generation and reduction of wind noise.   

2.1 Wind noise generation 

There has been a large amount of research on pressure fluctuations in turbulent flows, 

which is the main source of wind noise. The theoretical research on pressure fluctuations in 

turbulent flows started in the first half of the 20th century. However, the wind noise research 

in the 20th century was focused on experimental studies, and little theoretical progress is 

published until the 21st century.  

2.1.1 Pressure fluctuations in turbulent flows 

The theoretical studies of turbulent pressure fluctuations were mostly based on the energy 

cascade theory proposed in 1922 by Richardon [22] and quantitatively developed in 1941 by 

Kolmogorov [23] for turbulence. According to the energy cascade theory, turbulence can be 

considered to be composed of eddies with different sizes, as shown in Figure 2.1. The kinetic 

energy enters the turbulence at the large scales of motion and then transfers to smaller and 

smaller scales until the energy is dissipated into heat by viscous effect at the smallest scales 

[23]. The anisotropic large eddies are affected by the boundary conditions of the flow, and 

bulk energy is contained in the large eddies of the size ranging from L/6 to 6L (L is the 

characteristic length scale of the mean flow), which is therefore called the energy-containing 

range [24].   

As the kinematic energy transfers to smaller eddies, the directional information of the 

turbulent eddies is lost and the statistics of motions are in a sense of universal. When the size 

of eddies is much larger than the smallest eddies, the statistics of motion is uniquely 

determined by the energy dissipation rate and independent of the kinematic viscosity and the 
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boundary conditions of the flow. This is the inertial range where eddy motions are 

determined by inertial effects and the viscous effects are negligible [24]. As the kinematic 

energy further transfers to successively smaller eddies, approaching the smallest eddy, the 

statistics of motion have a universal form that is uniquely determined by the kinematic 

viscosity and the energy dissipation rate. The size of the smallest dissipative eddies is about 

(ν 3/ε)1/4 (ε is the energy dissipation rate, ν is the kinematic viscosity [23]). This is the 

dissipation range where the eddy motions experience significant viscous effects [24].  

 

 

Figure 2.1 Illustration of the energy cascade in turbulence [25].  

 

To quantitatively investigate the pressure fluctuations in turbulent flows, most of the 

theoretical studies were based on the Poisson equation, which relates the pressure fluctuations 

in a viscous incompressible fluid flow to the velocity fluctuations, i.e., 
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where ρ is the fluid density, P is the instantaneous static pressure, and Vi is the velocity along 

the xi direction [26]. It is noteworthy that the wind noise caused by turbulent pressure 

fluctuations is not a propagating compressible acoustic wave, but a pseudo-sound [27]. In the 

scenario of acoustic measurement under windy conditions, the wind speed is usually much 

smaller than the speed of sound, hence the turbulent flow can be approximated as 

incompressible turbulence in Eq. (2.1). 

Batchelor derived the pressure correlation function from the Poisson Equation based on 

the assumption that the velocities at two spatial points are joint Gaussian [26]. He pointed out 

that the joint Gaussian assumption produced the same results as Heisenberg’s assumption that 

the Fourier components of velocities are statistically independent [26]. From the pressure 

correlation function, it can be shown that the pressure structure function varies as r4/3 (r is the 

separation distance between two spatial locations) and hence the pressure spectrum varies as 

k−7/3 (k is the wavenumber) within the inertial range [26,28]. The joint Gaussian assumption is 

consistent with the experimental results that the distribution of the velocity at one point is 

closely normal [26,29]. However, when the separation distance is very small, the assumption 

cannot be held because the effect of the non-linear inertial terms cannot be ignored [26].  

Instead of using the joint Gaussian assumption, Obukhoff and Yaglom [30] found that 

Dp(r) ~ ε4/3r4/3 based on the dimensional analysis by assuming the eddy motions are 

determined by the energy dissipation rate in the inertial range, where Dp(r) = <(p(x) – 

p(x+r))2> is the pressure structure function. More than 40 years later, Hill and Wilczak [28] 

developed a theoretical model to relate the pressure structure function to the fourth-order 

velocity structure functions and claimed that the new theory is valid for all Reynolds numbers 

and for all spatial separations and wavenumbers. Based on this, the k−7/3 pressure spectrum in 

the inertial range was also obtained [28].  

10 
 



 

In an alternative approach, George et al. [31] developed spectral models for turbulent 

pressure fluctuations by directly Fourier transforming the integral solution to the Poisson 

equation, and showed that the pressure spectrum consists of two source terms. One is the 

turbulence-turbulence interaction that possesses the well-known k−7/3 inertial range and 

dominates the high-wavenumber region. The other is the mean shear-turbulence interaction 

that is dominant in the energy-containing range and falls off as k−11/3 in the inertial range [31]. 

In summary, studies on the pressure spectrum in turbulent flows have been focused in the 

inertial range for intermediate size turbulent eddies in the existing literature. In contrast, the 

studies of the pressure spectra in the energy containing range and for large eddies and the 

dissipation range for small eddies are relatively rare. Raspet et al. [6] pointed out that the 

pressure spectra are near constant  in energy-containing range based on measurements, and 

proposed a model based on van Karman spectra to curve fit the measurement results. 

However, this model is based on experimental results and no theoretical analysis was given. 

The pressure spectra in the energy-containing range and the dissipation range need further 

theoretical study.  

2.1.2 Wind noise spectra 

Recently, Raspet et al. [5] utilized Batchelor’s theory to predict the pressure fluctuation 

spectrum in the inertial range from the measured velocity fluctuation spectrum. They studied 

three components of wind noise: the stagnation pressure due to the interaction of the 

incoming flow with the microphone, the self-noise due to the microphone windscreen, and 

the intrinsic turbulence in the incoming flow including the turbulence-turbulence interaction 

pressure and the mean shear-turbulence interaction pressure [5].  

The stagnation pressure is the maximum pressure fluctuations measured on a bluff body 

in turbulent flows, which can be calculated as [5] 
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where P(t) is the instantaneous pressure, V(t) = U + u(t) is the instantaneous turbulent 

velocity, and U and u(t) are the mean flow speed and velocity fluctuations, respectively. For 

outdoor measurements at moderate to high wind speeds, the root-mean-square fluctuation 

velocity is usually much smaller than the mean wind speed, so Raspet et al. [5] approximate 

that  

 ( ) ( )p t Uu tρ≅   (2.3) 

where p(t) is the fluctuating pressure. Raspet et al. [5] measured the velocity fluctuations u(t), 

from which the stagnation pressure p(t) is calculated and used to predict the wind noise 

measured by a bare microphone.  

The turbulence-turbulence interaction pressure and the mean shear-turbulence interaction 

pressure are due to the intrinsic turbulence in the incoming flow [31]. It is known that the 

governing equation for the static pressure field in an incompressible fluid can be written as 

the Poisson equation in Eq. (2.1) [31]. By decomposing the pressure and velocity into mean 

and fluctuating parts and integrate Eq. (2.1), one obtains [31]  
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4 4
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∫ ∫
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  (2.4) 

where p(x) is the fluctuating pressure at location x, Ui and ui are the mean and fluctuating 

velocities in the i-th direction, and <> denote the average operation. It is clear that the first 

term on the right hand side of Eq. (2.5) is due to the interaction of the turbulence (fluctuating 

velocity) with the mean shear, whereas the second term is due to the interaction of the 

turbulence with itself. Therefore, the mean shear-turbulence interaction pressure and the 

turbulence-turbulence interaction pressure are defined as the first and second term on the 

right hand side of Eq. (2.5), respectively.  
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In comparison with the measurement results, Raspet et al. [5] found that the stagnation 

pressure agreed well with the measured wind noise of a bare microphone and the turbulence-

turbulence interaction pressure was consistent with the wind noise measured in a large 

fiberglass windscreen of diameter 0.9 m. Therefore, they concluded that the stagnation 

pressure and turbulence-turbulence interaction pressure provide the upper and lower bound 

on the wind noise measured outdoors [5].  

In a further study, Raspet et al. [6] extended the predicted stagnation pressure, the 

turbulence-turbulence interaction pressure, and the mean shear-turbulence interaction 

pressure to lower frequencies in the energy-containing range. Comparison with the 

measurement results showed that the stagnation pressure predictions agreed well with the 

unscreened gridded microphone measurements and the predictions of the turbulence-

turbulence interaction pressure agreed well with the measurements made within large 

windscreens of 1.0 m diameter [6]. Therefore, they concluded that the turbulence-turbulence 

interaction pressure and the mean shear-turbulence interaction pressure are intrinsic to a 

turbulence flow and would be measured even if the wind screen design were ideal [6].  

It is noteworthy that the above predictions of the turbulence-turbulence interaction 

pressures depend on a coefficient to be determined by fitting the velocity fluctuation 

spectrum to the measurement results. In Refs. [5,6], Raspet et al. compared the measured 

wind noise spectra inside the porous microphone windscreens with the predicted turbulence-

turbulence interaction pressure derived from the velocity spectra measured outside 

windscreens. This might lead to inaccurate comparisons and even wrong interpretations 

because both the mean wind speed and turbulence intensity inside the porous microphone 

windscreen are lower than that outside the windscreens.  

Different from the abovementioned studies which did not account for the effect of ground 

surface, Yu et al. [32,33] investigated the wind noise spectra measured at the ground using 
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the mirror flow model of anisotropic turbulence, which was originally proposed by Kraichnan 

[34] for pressure fluctuations over a flat plate. Yu et al. [32,33] showed that the wind noise 

measured at the ground surface with a microphone underneath the thin layers of foam agree 

closely with the predictions, demonstrating the applicability of the mirror flow model for 

outdoor turbulence and illustrating that the mean shear-turbulence interaction pressure is the 

dominant source of wind noise at the ground surface. However, this model is limited to the 

wind noise on the ground surface. In a following paper, Yu et al. [35] extended the mirror 

flow model to predict the wind noise spectra above the ground surface by incorporating a 

realistic wind velocity profile and realistic turbulence anisotropy. The revised prediction 

model of the mean shear-turbulence interaction pressure was found to compare favourably 

with the wind noise measured inside large windscreens at low frequency. 

The theoretical models developed by Raspet et al. [5,6] and Yu et al. [32,35] were utilized 

to predict the wind noise measured in outdoor experiments. Raspet and Webster [36] 

measured the wind noise levels, turbulence spectra and wind velocity profiles in a pine forest, 

and found that the wind noise spectrum is a sum of the low frequency wind noise generated 

by the mean shear-turbulence interaction above the top of trees and the higher frequency 

wind noise generated by the turbulence-turbulence interaction near the ground within the tree 

layer. Similar wind noise spectra were measured by Webster and Raspet [37] under a 

deciduous tree canopy. The low frequency peak in the wind noise spectra due to the mean 

shear-turbulence interaction was found to have little dependence on whether the trees have 

leaves or not, while the higher frequency contribution with leaves was approximately one 

order of magnitude smaller than the contribution without leaves [37].  

In addition to the aforementioned theoretical and experimental studies of wind noise 

spectra, Kamiakito et al. [38] developed a regression function to estimate the 1/3-octave band 

wind noise level, i.e., 
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where U0 is the mean wind speed, I is the turbulence intensity, f is the centre frequency of the 

1/3-octave band, and the coefficients A, B, and C are determined from measurements of wind 

noise, which were found to be dependent on frequency and the surface roughness of 

surrounding terrain. However, in practice, it is hard to use this model because it is not 

possible to do the accurate regression analysis in the vicinity of an operating wind farm due 

to the influence of the wind-farm-generated noise [1]. 

In summary, outdoor wind noises have been measured and modelled theoretically and 

empirically by different researchers with various methods. These theoretical models were 

focused in the inertial range and deviated from the wind noise spectra measured in wind 

tunnels. This might because the Reynolds number in outdoor atmospheric turbulence is much 

larger than that in indoor turbulent flows generated by wind tunnels and fans. The existing 

models did not take into account the Reynolds number effect, and there are no theoretical 

models to describe the wind noise spectra in small Reynolds number turbulent flows to date.  

2.2 Wind noise reduction with physical structures 

Various physical structures and materials have been utilized to reduce wind noise, from 

small porous microphone windscreens with a diameter of a few centimetres to large spatial 

filters in tens or even hundreds of metres. An ideal windscreen blocks the pressure 

fluctuations caused by turbulent flows but is transparent to the propagating sound wave. This 

section summarises the existing studies on the wind noise reduction devices. However, the 

nose cone and tubular windscreens [39,40] are not included here, because it is usually used in 

wind tunnel measurements with constant wind direction and low turbulence intensity, which 

is distinctly different from the outdoor wind noise in acoustic measurements [1].  
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2.2.1 Small porous microphone windscreens  

Porous microphone windscreens have been widely used in outdoor noise and ventilation 

system acoustic measurements to minimize the effect of wind noise due to its portability, 

durability and low cost [41,42]. Although this measure for reducing wind noise is well known 

and widely used, the mechanisms of the wind noise reduction by porous microphone 

windscreens have not been fully understood. 

Strasberg [43] investigated the wind noise sensed by microphones in spherical and 

cylindrical windscreens of various diameters and found that the 1/3-octave band wind noise 

levels measured by different authors with different windscreens form a single curve when 

plotted against the Strouhal number (fD/U0), i.e.,  

 1/3 10 0 10
0

61 40log 23log fDL U
U

= + −   (2.6) 

where f is the frequency, D is the windscreen diameter, U0 is the mean wind speed. It was 

shown that the wind noise level decreases linearly with the dimensionless frequency in log-

scale for values of fD/U up to 5 [43,44].  

Morgan and Raspet [15] pointed out that Strasberg’s analysis [43] is only valid for low-

turbulence environments because the data used by Strasberg were measured in laboratories by 

moving the screened microphones through substantially quiet air. In contrast, the dominant 

source of pressure fluctuations at the microphone outdoors is the intrinsic turbulence in the 

incoming flows, hence the optimum design of windscreens for outdoor measurements may 

require consideration of factors other than the wake generation and reduction of flow through 

windscreens [15]. Raspet et al. [5,6] proposed that the minimum wind noise inside 

windscreens is the intrinsic turbulence in the incoming flow, including the turbulence-

turbulence interaction pressure and the mean shear-turbulence interaction pressure. Based on 

an analysis of the outdoor measurement results from different authors, van den Berg [45,46] 
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proposed that windscreens could be treated as a first order low pass filter for pressure 

fluctuations due to atmospheric turbulence.  

In addition to the abovementioned studies for outdoor noise measurement, the wind noise 

reduction effects of windscreens were also investigated in wind tunnels. Lin et al. [47] 

measured the wind noise reduction of different types of windscreens in the low frequency 

range from 20 Hz to 200 Hz, showing that the noise reduction performance of various types 

of windscreens is similar when the wind speed is under 1.5 m/s; however, for wind speeds 

above 2.0 m/s, the larger spherical porous windscreen (20 cm diameter) reduced more wind 

noise than the smaller windscreen (7 cm diameter) made of the same material. The 

experimental setup used by Lin et al. [47] to measure the wind noise inside the porous 

microphone windscreens are shown in Figure 2.2. 

 

 

Figure 2.2 Experimental setup to measure wind noise inside the large (20 cm diameter) and 

small (7 cm diameter) porous microphone windscreen [47].   

 

Wang et al. [48] measured the self-noise of microphone windscreens in an anechoic wind 

tunnel and found that the wind noise is generally more effectively attenuated by windscreens 

with larger diameters, but windscreens with diameters of 60 mm and 90 mm showed similar 

performance. Alamshah et al. [49] investigated the effects of turbulent flow characteristics on 
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wind noise generation in microphone windscreens, and found that the wind noise at very low 

frequencies increases with the average turbulent length scales while the overall wind noise 

inside windscreens is insensitive to the incoming flow turbulence intensity. The experimental 

setup used by Wang et al. [48] and Alamshah et al. [49] is illustrated in Figure 2.3, where the 

microphone inside windscreens are placed at the outlet of a small anechoic wind tunnel, and a 

reference microphone is placed outside the air flow.  

 

  

Figure 2.3 Experimental setup to measure wind noise inside a 90 mm diameter porous 

microphone windscreen, where Microphone A works as the reference microphone outside the 

air flow [48].   

 

Raspet et al. [50] measured the correlation length of pressure fluctuations inside a 180 

mm diameter porous microphone windscreen at various separation distances, as shown in 

Figure 2.4, where metal tubes placed inside the porous windscreens are connected to the 

microphones at the other end. It was found that the wind noise reduction mechanism by 

microphone windscreens is attributed to the spatial decorrelation of the pressure fluctuations 

[50].  
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(a)                                                                       (b) 

Figure 2.4 Experimental setup to measure wind noise inside a 180 mm diameter porous 

microphone windscreen at various separation distances [50].   

 

 Although many different windscreens were used in both indoor and outdoor 

measurements, the noise reduction mechanism of windscreens still lacks theoretical analysis. 

A primarily intuitive explanation is that the windscreens can reduce the wind speed at the 

microphone, hence reduce the measured wind noise [51]. Phelps [51] modeled the 

windscreen as a rigid sphere and calculated the pressure inside the sphere by averaging the 

pressure distribution on the spherical surface, with the assumption that the air flow is 

inviscid, incompressible and irrotational. Zheng and Tan [52] modeled the microphone 

windscreen as a rigid impermeable sphere to investigate the effects of Reynolds number on 

the wind noise reduction performance. The analytical solutions for the inviscid and Stokes 

flows were pursued as the two extreme cases for infinite and low Reynolds number flows, 

respectively, and the intermediate and high Reynolds number flows were studied with a 

numerical scheme [52]. These models are simplified because the windscreens are treated as a 

rigid impermeable sphere, and the air around windscreens is assumed to be steady-state 

laminar flows, both of which are different from practical situations. 
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To narrow the gap between the rigid sphere model and realistic windscreens, Xu et al. 

[27,53,54] modeled the windscreens as porous material and used an upstream rigid cylinder 

to generate turbulence on the downstream porous microphone windscreens in their numerical 

simulations. The effects of windscreen shape and the porous material properties (i.e., flow 

resistivity) were investigated, and it was found that the circular and horizontal ellipse 

windscreens have similar overall wind noise reduction performance, while the horizontal 

ellipse windscreen with medium flow resistivity provides larger wind noise reduction [27].  

Nonporous windscreens were also used to reduce wind noise, especially in the infrasonic 

range [41,55–57]. Shams et al. [41] developed compact nonporous microphone windscreens 

for infrasonic acoustic measurements based on the assumption that the infrasound can 

penetrate any barrier of practical thickness while the wind fluctuations are blocked by the 

solid nonporous walls. The experimental results showed that a windscreen composed of 

closed-cell polyurethane foam with an internal diameter and height of 3×9 inch2, and a wall 

thickness of 0.5 inch achieved the best performance, as shown in Figure 2.5(a). Dauchez et al. 

[56] studied the performance of a windscreen constructed from a squared plate coupled with a 

nonporous cavity as illustrated in Figure 2.5(b), and showed the mechanism of wind noise 

reduction to be the spatial averaging of the pressure fluctuations over the plate.  
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(a)                                                                      (b) 

Figure 2.5 Compact nonporous microphone windscreens developed by (a) Shams et al. [41] 

and (b) Dauchez et al. [56].   

 

In summary, although the wind noise reduction performance of porous microphone 

windscreens has been measured in various studies, the wind noise reduction mechanism is 

still unclear yet. In addition, the existing theoretical models for porous microphone 

windscreens are too simplified and much different from the practical situations. 

2.2.2 Semi-spherical shell windscreens 

Small porous microphone windscreens for outdoor noise measurements are mostly 

restricted to wind speeds below 5 m/s [1,13].  For wind turbine noise measurement 

applications, it is often necessary to measure the turbine noise under typical operating 
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conditions with wind speeds up to 12 m/s [13]. This introduces extra noise on microphones, 

especially at low and infrasonic frequency range, and normal small spherical porous 

microphone windscreens are not adequate to attenuate wind noise [13]. Therefore, the 

international standard IEC61400-11 recommends a secondary windscreen of at least 450 mm 

in diameter to be used on a flat hard circular board on the ground [58].  

Bleazey [59] studied the wind noise reduction by multi-layer windscreens and showed 

that the best performance is achieved by the largest windscreen and that fine mesh silk 

provides optimal wind noise attenuation. Besides, the wind noise reduction is only slightly 

improved by increasing the number of layers and no further performance enhancement is 

achieved by more than three layers [59]. The wind velocity fluctuations inside a multi-layer 

windscreen was measured by Iamizumi and Takahashi [60] using a hot-wire anemometer in 

an outdoor large field, where a significant reduction in both mean wind speed and velocity 

fluctuations was noticed compared to what was measured with no windscreen. Lin et al. [47] 

measured the wind noise reduction of a single layer (with and without fabric convering) and 

double layer semi-spherical shell windscreens in the low frequency range from 20 Hz to 200 

Hz in an indoor wind tunnel, as shown in Figure 2.6. It was found that the noise reduction of 

40 cm diameter single layer windscreen with fabric covering is larger than that of the double 

layer (30 cm and 40 cm diameters) frame windscreen without coverings [47].  
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(a)                                             (b) 

 

(c) 

Figure 2.6 Experimental setup to measure the wind noise reduction of semi-spherical shell 

windscreen by Lin et al. [47] for (a) a 40 cm diameter single layer windscreen with fabric 

covering, (b) a 40 cm diameter single layer windscreen with fur covering, and (c) double 

layer windscreen (30 cm and 40 cm diameters).   

 

Novak et al. [13] compared the wind noise reduction performance of three different 

secondary windscreens, i.e., a 750 mm diameter semi-spherical wireframe windscreen 

covered by an acoustically transparent material, a foam cylindrical windscreen of 
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approximately 10 mm thick and 300 mm tall, and a spherical windscreen of diameter 400 mm, 

as depicted in Figure 2.7. It was found that using the secondary windscreens together with a 

primary 90 mm diameter spherical porous windscreen attenuated much more wind noise 

compared to using the primary windscreen only, especially in the infrasonic range from 1 Hz 

to 20 Hz, where around 10 dB additional wind noise reduction is achieved [13].    

 

 

Figure 2.7 Experimental setup of Novak et al. [13] to compare the performance of 3 different 

secondary windscreens.   

 

Similarly, Hansen et al. [61] measured both the wind noise reduction and the insertion 

loss of three different secondary windscreens, i.e., a semi-spherical shell windscreen of 

diameter 450 mm covered by a layer of 16 mm thick SoundMaster acoustic fur, a 450 mm 

diameter spherical windscreen covered by the same material, and an underground 120 mm × 

120 mm × 280 mm plywood box with a foam lid of 50 mm thick. The experimental setup is 

illustrated in Figure 2.8 and the measurement results showed a good agreement at low 

frequencies for the three windscreen configurations, and each secondary windscreen can 

successfully measure wind turbine noise in windy conditions [61].   
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Figure 2.8 Experimental setup of Hansen et al. [61] to measure the wind farm noise with 3 

different secondary windscreens, (a) the Davis weather stations at 1.5 m and 10 m, (b) the 

hemispherical windshield, (c) the box windshield and (d) the spherical windshield.   

 

Recently, both porous and nonporous fabric domes with a diameter of 2 m have been 

used to reduce the infrasonic wind noise, as shown in Figure 2.9 [14,62–64]. Noble et al. [14] 

showed that the nonporous dome introduces too much distortion into the sound signals while 

the 7 percentage open porous dome made of acrylic and PVC blend fabric was found to have 

the best overall performance by maximising the wind noise reduction but losing only a small 

amount of sound signal. Collier et al. [63] and Abbott et al. [64] analysed the main wind 

noise source inside fabric domes by dividing the air flow into three regions, i.e., interior of 

the dome, surface of the dome, and undisturbed area outside the dome. Calculation of the 

turbulence-turbulence interaction, mean shear-turbulence interaction and turbulence-sensor 

interaction showed that the principle noise source is the pressure fluctuations on the surface 

of the domes and the turbulence interactions for undisturbed region contribute only at lowest 

frequencies [63,64].    
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Figure 2.9 Illustration of 3 different fabric domes for infrasonic wind noise reduction [14].   

 

The mechanism of enhanced wind noise reduction by secondary semi-spherical shell 

windscreens was believed to be that the layer of air gap behind the shell layer provides a 

region for viscous dissipation to reduce the turbulence inside the windscreens [1,15,61]. 

However, no direct evidence supports this hypothesis at present, and further study and 

measurements of both velocity and pressure fluctuations inside and outside the shell layer are 

needed for a deeper understanding.  

2.2.3 Large spatial filters and wind fence enclosures 

Another structure for reducing wind noise at a microphone is the wind fence enclosures 

or large spatial filters, which are particularly useful for wind noise reduction at infrasonic 

frequencies [1,65,66]. In the 1950s, Daniels [67,68] proposed a spatial filter consisting of a 

series of different tapered pipes with sensing inlets distributed uniformly along its length and 

a microphone connected to one end, based on the assumption that the sound signal is 

correlated while the wind noise is uncorrelated in each inlet. For infrasound measurements, 

the filter must be very large and pipe diameters and inlet impedance have to be carefully 

selected to inhibit internal resonance. A prototype filter of around 600 m long with 100 

equally spaced openings achieved noise reduction of about 20 dB in high wind speeds up to 

12 m/s [65,68]. The Daniels filter is effectively a line microphone, and the response is a 
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function of the angle between the sound direction and the pipe for shorter wavelengths, 

although it is omnidirectional for wavelengths much larger than the filter size [65]. 

A rosette filter is an extension of the Daniels filter and the inlets are arranged in a 

geometrically regular pattern around a circle to provide an omnidirectional infrasound 

response, as shown in Figure 2.10 [9,69]. The rosette filter is the standard wind-noise filter 

used at the International Monitoring System (IMS) [70]. Experiment results showed that a 

rosette filter with a diameter of 18 m reduced wind noise by 20 dB above 0.2 Hz and a 70 m 

diameter rosette filter reduced wind noise by a similar amount between 0.02 and 0.7 Hz 

[9,71]. Similar to the pipe filters, Howard et al. [72] utilized 1.6 cm diameter microporous 

hoses to collected infrasound data. However, both the rosette filters and microporous hoses 

are expensive to build and deploy, and occupy a considerable amount of space, which make it 

inconvenient for ordinary outdoor noise measurements [65].  

 

  

Figure 2.10 Diagram of a rosette filter with a diameter of 70 m [9,69].   

 

Different from the mechanical rosette filters and microporous hoses, the optical fiber 

infrasound sensor (OFIS) directly measured the integrated pressure change along a path with 

a laser beam, which does not rely on the propagation of sound signals through a narrow tube 

[73–77]. A prototype OFIS sensor of 89 m was found to reduce the wind noise as much as 
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similar size mechanical arrays, but the phase delays of the sound signals are negligible in 

OFIS because the OFIS integrates pressure variations at light-speed rather than the speed of 

sound [73]. Dewolf et al. [78] found that the measured wind noise reduction is a logarithmic 

function of the OFIS length and depends on the orientation of the OFIS with respect to wind 

direction. The linear OFISs ranging in length from 30 m to 270 m provided a wind noise 

reduction of up to 30 dB in wind up to 5 m/s, and the parallel orientation to the wind direction 

achieved around 4 dB greater wind noise reduction than the perpendicular orientation.  

Instead of averaging over a number of sensing surfaces, wind fence enclosures are used to 

isolate the sensor from the advected turbulence to reduce the turbulence-sensor interaction 

pressure [8,9,79,80]. Hedlin and Raspet [9] measured the wind noise reduction of a 

cylindrical barrier of 2 m height in a diameter of 5.5 m depicted in Figure 2.11(a), and 

compared it to that of the rosette filters with diameters of 18 m and 70 m in atmosphere. It 

was found that the rosette filters only produce reductions if the turbulence scale is smaller 

than the diameter of the rosette, and the cylindrical barrier has large reductions only when the 

scale size of the turbulence is smaller than the height of the barrier [9].  

 

  

(a)                                             (b) 

Figure 2.11 Illustration of the wind fence enclosures studied by (a) Hedlin and Raspet [9] and 

(b) Abbott et al. [8] for infrasonic wind noise reduction.   

28 
 



 

 

Abbott et al. [8] optimized the wind noise reduction of a porous wind fence enclosure 

which is 2.9 m high and has a diameter of 5.0 m shown in Figure 2.11(b), and found that the 

most important parameters in achieving significant noise reduction were the size and porosity 

of the wind fence enclosure. The best reduction was achieved with a surface porosity between 

40% and 55%, supplemented by a secondary dome windscreen of 0.6 m high with a 1.06 m 

interior diameter, 1.22 m exterior diameter, 0.08 m thick walls and pore count of 40 pores per 

inch [8]. In a following paper, Abbott and Raspet [79] proposed a calculation model to 

predict the wind noise measured at the center of large porous wind fence enclosures, which 

was found to provide a good prediction of the measured wind noise, with an agreement 

within ±5 dB. The mean shear-interaction pressure outside the enclosure was found to 

dominate the wind noise at low frequency, while at higher frequencies the measured wind 

noise was due to the combination of the turbulence-turbulence and mean shear-turbulence 

interactions inside the enclosure and the turbulence interaction on the surface of the 

enclosure[79]. 

The spatial filters and wind fence enclosures are not often used for wind turbine 

measurements because they are relatively large structures and are difficult to transport and 

erect, which make them not a realistic option for compliance measurements at a number of 

different locations [1].  

In summary, various physical structures have been utilized to reduce wind noise in 

outdoor environment, including small porous microphone windscreens, nonporous 

windscreens, semi-spherical shell windscreens and large wind fence enclosures. The existing 

studies in literature are summarized in Table 2.1, where the size, frequency range and 

material/design of the physical structures are briefly introduced.  
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Table 2.1 Summary of the physical structures for wind noise reduction in literature 

Type References Size (D) Frequency 
Range (f) Material/Design 

Small  
porous  

microphone  
windscreens 

Strasberg, 1988 
[43] 

fD/U < 5 (U is the mean 
wind speed) Spherical /cylindrical porous 

Morgan and 
Raspet, 1992 

[15] 

90 mm 
150 mm 
180 mm 

1.6 Hz < f < 
1250 Hz 

Porous sphere with porosity  
10 ppi, 20 ppi and 40 ppi 

Raspet et al., 
2006 [5] 

180 mm 
900 mm 

0.1 m-1 < U/f < 
200 m-1 

30 ppi Foam sphere; 
fibreglass ball 

Raspet et al., 
2008 [6] 

600 mm 
1000 mm 

0.001 m-1 < U/f 
< 100 m-1 

Fibreglass ball; 
loose fiberglass ball 

Van den Berg, 
2006 [45,46] 

25 mm ~ 
100 mm 

1 Hz < f < 
1000 Hz Foam sphere 

Lin et al., 2014 
[47] 

70 mm 
200 mm 

20 Hz < f < 
200 Hz Foam sphere 

Wang et al., 
2012 [48] 

45 mm ~ 
180 mm 

1 Hz < f < 
1000 Hz Foam sphere 

Alamshah et al., 
2015 [49] 

60 mm 
90 mm 

1 Hz < f < 
1000 Hz Foam sphere 

Nonporous 
windscreens 

Shams et al., 
2005 [41] 

25 mm ~ 
100 mm 

0.7 Hz < f < 
20 Hz 

Woods, closed-cell 
polyurethane foam and 

Space Shuttle tile material 
cylinders 

Dauchez et al., 
2016 [56] 

295 mm × 
295 mm 

0.02 Hz < f < 
4 Hz 

Rigid box with an elastic 
plate 

Semi-
spherical 

shell 
windscreen 

Lin et al., 2014 
[47] 

300 mm 
400 mm 

20 Hz < f < 
200 Hz 

Mesh w/o fabric and fur 
coverings 

Novak et al., 
2014 [13] 450 mm 0.02 Hz < f < 

20 kHz 
Wire frame with Reinhardt 

cloth 

Hansen et al., 
2014 [61] 450 mm 0.5 Hz < f < 

200 Hz 

Wire frame with a 16 mm 
layer of acoustic foam and a 

layer of SoundMaster 
acoustic fur. 

Noble et al., 
2014 [14] 

Collier et al., 
2014 [63] 

2 m 0.5 Hz < f < 
100 Hz 

Denier Nylon with 
polyurethane; 

Acrylic and PVC blend 
fabric; 

Wind 
fences 

Hedlin and 
Raspet, 2003 [9] 

Height 2 m 
Width 5.5 

m 

0.01 Hz < f < 
10 Hz 

50% porous sides coated 
with a fine wire mesh 

Abbott et al. [8] 
Height 2.9 

m 
Width 5 m 

0.1 m-1 < U/f < 
100 m-1 

Chain link fence panels with 
vinyl slats 
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2.3 Wind noise reduction with signal processing 

In addition to using physical structures to mitigate wind noise, signal processing 

techniques have also been explored for wind noise reduction. Chung [81] proposed a 

coherence function method for flow noise rejection using three pressure transducers based on 

the assumption that the flow noise is mutually uncorrelated at each transducer. Jackson et al. 

[17] estimated the wind noise level and signal to noise ratio based on machine learning 

algorithms to infer the perceived degradation of audio quality caused by wind noise. Wilson 

and White [82] analyzed the spatial and temporal characteristics of the wind noise with a 

planar microphone array, and discriminated the sound signal from wind noise with a 

Gaussian-mixture-model classifier.   

Oerlemans et al.  [10,83] measured the wind turbine noise with a planar microphone array 

of 270 m2 consisting of 148 microphones and extracted the location of the wind turbine noise 

sources. Ramachandran et al. [11,84,85] used a compact planar microphone array of 1.5 m2 to 

measure the wind turbine noise and showed that a compact microphone array is sufficient to 

study wind turbine noise if an advanced deconvolution method such as the linear 

programming algorithm is applied. However, the above studies did not investigate the effect 

of wind noise on the beamforming performance, and a simple diagonal removal of the cross 

spectrum matrix is used to eliminate the wind noise on microphones with the assumption that 

the wind noise is uncorrelated between microphones [84].  

Unfortunately, this assumption is not valid in the lower frequency range which 

corresponds to the large scale turbulent eddies. Shields [86] employed a three-axis orthogonal 

microphone array with 10 sensors in each arm to measure outdoor wind noise and showed 

that the time domain correlation as a function of sensor separation varies as e-3.2Xcos(2πX) in 

the downwind direction and decays as e-7Y in the crosswind direction, where X and Y are the 

separation in wavelengths in the downwind and crosswind directions, respectively. Wilson et 
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al. [12] measured the outdoor wind noise with a 7×7 planar horizontal microphone array and 

found that the wind noise is substantially correlated for microphone separations smaller than 

the size of the turbulent eddies. Bass et al. [87,88] showed that the cross correlation between 

pairs of microphones in a three element array could be used to determine wind speed and 

direction.  

In an alternative approach, McGuinn et al. [89] proposed to reduce the flow induced noise 

in ducts by use of the adaptive Least Mean Square (LMS) algorithm to filter out the flow 

velocity fluctuations measured by a hot wire anemometer before subtraction from the 

pressure fluctuations measured by a microphone. This was based on the assumption that the 

flow velocity fluctuations are highly correlated with the flow induced noise [90]. Similarly, 

Shust and Rogers [91] studied the performance of wind noise removal from outdoor 

microphones using velocity measurements from a four channel anemometer and a simple 

model to transform the wind velocity fluctuations into wind noise estimates based on the 

Bernoulli equation. Unfortunately, the Bernoulli equation is only valid for fluid flows without 

turbulence and the coherence between the hot wire anemometer signal and the microphone 

signal is lower in outdoor environments, thus the performance was unsatisfactory [92].  

Besides the abovementioned applications of signal processing techniques on wind noise 

attenuation in acoustic measurements under windy conditions, there have been much research 

devoted into speech enhancement algorithms on wind noise reduction in the last decade [93–

97]. Kuroiwa et al. [98] proposed a wind noise reduction method for speech recording using 

multiple noise templates and observed spectrum fine structure. Nemer and Leblanc [99] 

presented a time domain adaptive post-filtering algorithm for detecting and attenuating wind 

noise in speech signals originating from mobile terminals. Hofmann et al. [100] developed a 

morphological approach for wind noise suppression by exploiting the neighborhood relations 

in the time-frequency spectrogram image. Thune et al. [101] applied the maximum likelihood 
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approach to adaptive multichannel Wiener post-filtering for wind noise reduction. Lee et al. 

[102] exploited the recurrent neural network algorithm to reduce wind noise and improve 

speech quality.  

To further improve the wind noise reduction performance, dual channel systems have also 

been explored to enhance the speech signals in windy environments. Franz and Bitzer [103] 

proposed a multi-channel algorithm for wind noise reduction and signal compensation in 

binaural hearing aids. Nelke and Vary [104] utilized the phase variance of the complex 

coherence function in a dual microphone system to detect the wind noise and exploited the 

magnitude of the complex cross power spectral density to enhance the distorted speech 

signals. Sakai et al. [105] compared three types of coherence analysis on wind speed 

estimation and wind noise reduction using a two-channel small microphone array. Park et al. 

[106] proposed a two-step method, which exploits the coherence of input signals and uses a 

Wiener filter to wind noise regions, to reduce wind noise with a dual microphone system.  

Although the speech enhancement algorithms have been reported to be able to reduce the 

wind noise and improve speech intelligibility, it is unclear if these methods can be applied to 

increase the signal to noise ratio in the low frequency acoustic measurements under windy 

conditions. The coherence structure of wind noise in the low frequency range makes it 

challenging to extract the desired sound signal from the wind noise, and further work is 

needed to develop a robust and compact acoustic measurement system for outdoor low 

frequency noise.  

In summary, most of the existing wind noise reduction studies with microphone arrays 

were based on the assumption that wind noise is uncorrelated at each microphone. However, 

recent measurement results found that this assumption is not true, especially in the low 

frequency range, where the turbulence wavelength is larger than the separation distance 

between microphones. To mitigate the low frequency wind noise, microphone arrays must be 
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very large in size, which makes it inconvenient. Therefore, novel signal processing 

techniques are desirable to distinguish sound signal from wind noise.   

2.4 Summary 

This chapter presents an extensive literature survey on the generation and reduction of 

wind noise. In Section 2.1, the background of the energy cascade theory in turbulence is 

introduced first, and then the seminal research on the turbulent pressure fluctuations was 

summarized in Section 2.1.1, which provides the fundamental theories for the following 

investigations of wind noise spectra in Section 2.1.2. Based on the knowledge in this section, 

two theoretical models are presented in Chapter 3 to describe the wind noise spectra in large 

and small Reynolds number turbulent flows, respectively.  

In Section 2.2, the major physical structures which are widely used in outdoor acoustic 

measurements for wind noise reduction are surveyed, including the small spherical porous 

microphone windscreens in Section 2.2.1, the semi-spherical shell windscreens in Section 

2.2.2, and the large spatial filters and wind fence enclosures in Section 2.2.3. The spatial 

filters and wind fence enclosures are large in size and difficult to transport and install, 

although they showed better wind noise reduction in the infrasonic range. While the small 

spherical porous microphone windscreens have been widely studied both experimentally and 

numerically, the wind noise reduction mechanism is still unclear yet. This section provides 

the background knowledge for the work in Chapter 4, which is devoted to the investigation of 

the wind noise reduction mechanism of porous microphone windscreens.  

Finally, the signal processing methods that have been used for wind noise reduction are 

summarized in Section 2.3. The coherence structure of the wind noise in the low frequency 

range makes it challenging to extract the desired sound signal from wind noise with the 

conventional planar microphone array. This motivates the work in Chapter 5, where a rigid 
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spherical microphone array is utilized to reduce wind noise in the spherical harmonics 

domain.  

To develop a new compact acoustic measurement system that is insensitive to wind noise, 

the following research questions are identified: 

• What is the generation mechanism of wind noise? 

• What is the wind noise reduction mechanism of porous microphone windscreens? 

• What are the key factors determining the wind noise reduction of existing 

windscreens? 

• What are the main difference between wind noise signals and how to distinguish them 

with signal processing techniques? 
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3 Wind noise spectra 

The work presented in this chapter has been published in two papers in The Journal of the 

Acoustical Society of America, i.e., Zhao et al. (2016), J. Acoust. Soc. Am. 140, 4178-4182, 

and Zhao et al. (2017), J. Acoust. Soc. Am. 142, 3227-3233. Please see Appendix A for 

details.  

3.1 Introduction 

Wind noise is the pressure fluctuations caused by turbulence around microphones, which 

has been widely studied, as summarized in Section 2.1 with a detailed literature review. 

Pressure fluctuations in turbulent flows are usually denoted by the pressure structure function 

in the spatial domain, which describes the spatial relationship between pressures at two 

locations by [28]  

 
( ) ( ) ( )( )2

–pD r p x p x r= +     (3.1) 

where p(x) is the pressure at position x, r is the separation distance between two spatial 

locations, and <⋅> denotes the ensemble average. The pressure structure function can be 

related to the pressure correlation function by [30] 

 
( ) ( ) ( )2 0 2p p pD r R R r= −     (3.2) 

where Rp(r) = <p(x)p(x+r)> is the pressure correlation function. The structure function was 

shown to be computed at higher accuracy than the correlation function but with less data, 

hence was widely used in the research of turbulence [107].  

The pressure spectrum can be calculated from the pressure structure function by [108]  

 
( ) ( ) ( )

0

1 sin
2 pP k D r kr krdr
π

∞
= − ∫     (3.3) 

where k is the wavenumber. Therefore, once the pressure structure function is known, the 

pressure spectrum can be readily obtained with the integral in Eq. (3.3). According to the 
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energy cascade theory mentioned in Section 2.1.1, the turbulence can be considered to be 

composed of three ranges with turbulent eddies of different sizes, i.e., the energy-containing 

range, the inertial range, and the dissipation range. Hill and Wilczak [28] proposed a 

theoretical model to relate the pressure structure function to the fourth-order velocity 

structure function based on the Poisson equation in Eq. (2.1), and derived the asymptotic 

form of the pressure structure function in the energy-containing range, the inertial range and 

the dissipation range, respectively.  

In the inertial range, where the separation distance r is much smaller than the size of the 

largest eddy but much larger than the size of the smallest eddy, the eddy motions are solely 

determined by the energy dissipation rate. The pressure structure function in this range 

increases with the separation distance according to an exponent of 4/3, which can be written 

in a universal form as [28], 

 
( ) 4/3 4/3

p pD r C rε≈     (3.4) 

where Cp is a constant and ε is the energy dissipation rate. In the existing research that 

focused on the inertial range, Eq. (3.4) was substituted into Eq. (3.3) to calculate the pressure 

spectrum in the inertial range, i.e., [28] 

 
( ) 4/3 7/30.328 pP k C kε −≈     (3.5) 

 This inertial range pressure spectrum with a −7/3 power law is consistent with 

Kolmogorov’s dimensional analysis and previous theoretical models [26,31], and has been 

validated by many simulations and experimental results when the Reynolds number is 

sufficiently large [109,110]. Unfortunately, the pressure spectrum in the energy-containing 

range and the dissipation range cannot be obtained directly from the integral Eq. (3.3). This 

chapter presents two theoretical models to extend the pressure spectrum to higher frequencies 

in the dissipation range and lower frequencies in the energy-containing range.  
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3.2 Wind noise spectra in large Reynolds number turbulent flows 

The existing theories focus on the inertial range and assume that the pressure spectrum 

with the −7/3 power law is also valid for the higher frequency region in the dissipation range. 

However, recent numerical simulations and experimental results showed that the pressure 

spectrum falls off much faster than the −7/3 power law at higher frequencies, but no theory 

exists for predicting the pressure spectrum in the dissipation range [109,110]. To describe the 

pressure spectrum in the higher frequency region, a pressure structure function model that 

incorporates both the inertial and the dissipation ranges is proposed, from which the pressure 

spectrum extending to the dissipation range can be obtained. Existing simulation and 

measurement data from the literature and wind noise spectra measured outdoors are used to 

validate the proposed pressure structure function model and the obtained pressure spectrum.   

3.2.1 Theoretical model 

In the dissipation range, the pressure structure function for small separation distance r can 

be approximated as [28,30] 

 
( ) 21

3pD r Ar≈     (3.6) 

where ( )3
11110

A y D y dy
∞ −= ∫  is independent of r [111], D1111 = <(u(x) – u(x+r))4> is the fourth 

order longitudinal velocity structure function, u is the longitudinal velocity and the subscript 

number 1 denotes the longitudinal direction. Eq. (3.6) shows that in the dissipation range, the 

square of the pressure difference at two spatial locations increases with the squared 

separation distance and increases at a faster rate than that in the inertial range shown in Eq. 

(3.4).  

Unfortunately, the pressure spectrum in the dissipation range cannot be obtained by 

directly substituting Eq. (3.6) into Eq. (3.3), because the integral does not converge [112]. To 
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predict the pressure spectrum in a wider range, a pressure structure function model that 

incorporates both the inertial range (Eq. (3.4)) and the dissipation range (Eq. (3.6)) is 

proposed as 

 
( )

( )

2

1/32
d

1
3 1

p
ArD r
r r

≈
 + 

    (3.7) 

where rd = (3Cpε4/3/A)3/2 denotes the transition distance from the inertial range to the 

dissipation range in the pressure structure function, and can be obtained by equating Eq. (3.4) 

to Eq. (3.6). Previous results from experiments showed that the transition between the inertial 

range and dissipation range occurs at about 8.74η < rd < 11.25η, where η is the Kolmogorov 

scale of the smallest eddies [113]. For r >> rd, Eq. (3.7) approaches Eq. (3.4) in the inertial 

range while for r << rd, Eq. (3.7) approaches Eq. (3.6) in the dissipation range.  

By substituting Eq. (3.7) into Eq. (3.3), the pressure spectrum can be obtained [113], 
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    (3.8) 

where Γ() is the gamma function, and Kn() is the second kind modified Bessel function of 

order n, which can be expanded in asymptotic forms as [114] 
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Applying Eq. (3.9) to Eq. (3.8), the asymptotic form of the pressure spectrum can be 

obtained 
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    (3.10) 

Eq. (3.10) shows that the transition between the inertial range and the dissipation range 

occurs at k = 1/rd in the pressure spectrum, and the inertial range and the dissipation range in 

the wavenumber space can be denoted as k << 1/rd and k >> 1/rd, respectively. In the inertial 

range (krd << 1), the pressure spectrum obtained from the proposed model shows the −7/3 

power law, which is consistent with previous studies. In the dissipation range (krd >> 1), the 

pressure spectrum follows the exponential decay, falling off much faster than the −7/3 power 

law, consistent with the simulation and experiment results in the literature [109,110].  

In the next section, the proposed pressure structure function model and the obtained 

pressure spectrum will be validated with data from existing literature and wind noise spectra 

measured outdoors in a car park.  

3.2.2 Verifications 

Figure 3.1 compares the proposed pressure structure function model in Eq. (3.7) with 

existing experimental results from Ref. [115]. Because the values of η and rd were not given 

in the reference with the experimental results, the proposed pressure structure function model 

was fitted to the experimental results in Figure 3.1 with rd = 10η. The experimental results in 

Figure 3.1 are from the turbulent water flows between a pair of counter-rotating disks, which 

can be described by the incompressible viscous Navier-Stokes equations [115]. The proposed 

model is based on the structure functions derived from the Poisson equation, which is also 

deduced from the incompressible viscous Navier-Stokes equations. Therefore, the 

experimental results can be used to validate the proposed model. Different from previous 

40 
 



 

theories that assume that the inertial range (Dp(r) ~ r4/3) extends to an infinitely small 

separation distance, the proposed model in Eq. (3.7) shows better agreement in Figure 3.1 for 

small separation distances, where eddies in the dissipation range dominate the pressure 

structure function.  

 

 

Figure 3.1 Comparison of the proposed pressure structure function model in Eq. (3.7) with 

the experimental results from Ref. [115]. The abscissa is normalized with the Kolmogorov 

scale η.  

 

The pressure spectrum obtained from the proposed model in Eq. (3.8) is compared with 

the existing Direct Numerical Simulation (DNS) and experimental results in Figure 3.2 

[109,110]. The experimental results in Figure 3.2(b) were measured on the centre line in the 

free jet from a small wind tunnel with a 40×40 mm2 nozzle and a large wind tunnel with a 

400×700 mm2 nozzle. The Taylor microscale Reynolds number is in the range of 200 ≤ Rλ ≤ 

1200. The pressure fluctuations were measured with a standard 1/4'' condenser microphone 

for Rλ < 350, and with a small piezoresistive transducer for Rλ > 350 [110]. The values of η 

and rd were not given in the literature with the simulation and experimental results, therefore 
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the obtained pressure spectrum in Eq. (3.8) was fitted to the experimental results in Figure 3.2 

with rd = 10η.  

Figure 3.2 shows that the simulated and measured pressure spectra decay following the 

−7/3 power law in the inertial range at about kη < 0.2, but they begin to fall off rapidly at 

about kη > 0.2, which deviates from the conventional k−7/3 model. The pressure spectrum 

obtained from the proposed model in Eq. (3.8) is consistent with the simulation and 

experimental results in this rapid decay region in the dissipation range as well as the −7/3 

power law in the inertial range, which cannot be predicted with the traditional asymptotic 

form pressure spectrum.  

 

   

(a)                                                                (b) 

Figure 3.2 Comparison of the pressure spectrum obtained from the proposed model in Eq. 

(3.8) with existing results, (a) DNS simulations from Ref. [109], and (b) wind tunnel 

experimental results from Ref. [110]. The abscissa is normalized with the Kolmogorov scale 

η. 

 

To validate the pressure spectrum obtained from the proposed model, outdoor wind noise 

spectra were measured at different wind speeds. The experiments were carried out at dawn on 
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8th October 2015, at a car park in Taiwan, where there were no obstacles or reflective 

surfaces nearby, as shown in Figure 3.3. The wind speed was measured with a WindSonic 

Ultrasonic Wind Sensor anemometer, and wind noise spectra were measured with an 

unscreened RION NL32 Type UC-53A 1/2'' microphone. The anemometer and the 

microphone were mounted at the same height, about 1.2 m above the ground, with a 

horizontal distance of around 0.5 m. The anemometer and the microphone were both 

connected to a RION DA-20 multi-channel processor.  

The measurement lasted 30 minutes and both the wind speed and the one-third octave 

band sound pressure level up to 16 kHz were logged every second. The measurement results 

were originally in one-third octave bands, thus the narrow band spectrum of the conventional 

k−7/3 model and the pressure spectrum obtained from the proposed model in Eq. (3.8) were 

converted to one-third octave band spectra to compare with the measured wind noise spectra. 

The narrow band wavenumber pressure spectrum in Eq. (3.8) was first converted to the 

narrowband frequency pressure spectrum by P(f) = (U/2p)P(k), where U is the mean wind 

speed [5]. Then the narrow band frequency pressure spectrum was the converted to the one-

third octave band pressure spectrum by ( ) ( )
2

1

n

n

f

n
f

P f P f= ∑  where fn is the centre frequency, and 

fn1 and fn2 are the lower and upper limits of the n-th one-third octave band, respectively. In the 

calculation of the summation, a 1 Hz frequency resolution of the narrow band pressure 

spectrum was used. 
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Figure 3.3 The experimental setup of the outdoor wind noise measurements at a car park in 

Taiwan.  

 

The one-third octave band sound pressure spectrum obtained from the proposed model in 

Eq. (3.8) was fitted to the measurement results from the unscreened microphone in Figure 3.4 

with rd = 6.8 mm and rd = 5.6 mm for the mean wind speeds of U = 4.5 m/s and U = 5.5 m/s, 

respectively. The corresponding transition frequency between the inertial range and the 

dissipation range can be calculated with the Taylor’s frozen turbulence hypothesis, i.e., fd = 

U/2πrd, as illustrated by the black arrows in Figure 3.4. That is, fd = 105 Hz and 156 Hz 

correspond to the mean wind speeds of U = 4.5 m/s and 5.5 m/s, respectively. The measured 

wind noise spectra in Figure 3.4 were averaged around U ± 0.5 m/s for the mean wind speed 

U and the vertical bars indicate the standard deviation. 
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(a)                                                                    (b) 

Figure 3.4 Comparison of the pressure spectrum obtained from the proposed model in Eq. 

(3.8) with the outdoor experimental results at the mean wind speeds of (a) U = 4.5 m/s and 

(b) U = 5.5 m/s. The black arrows denote the transition from the inertial range to the 

dissipation range.  

 

Figure 3.4 shows that in the inertial range to the left side of the black arrow, the outdoor 

wind noise spectra are consistent with the conventional k−7/3 model; however, in the 

dissipation range to the right side of the black arrow the measured outdoor wind induced 

noise spectra fall off much more rapidly and deviate from the conventional k−7/3 model. In 

contrast, the pressure spectra obtained from the proposed pressure structure function model in 

Eq. (3.8) agree well with the measured outdoor wind noise spectra across the measured 

frequency range from 10 Hz to 1000 Hz.  

The outdoor wind noise spectra in Figure 3.4 were measured with an unscreened 1/2'' 

microphone, which might generate wake behind and hence alter the wind-induced noise [43]. 

However, it was shown that the dominant source of pressure fluctuations at the microphone 

outdoors is the intrinsic turbulence in the flow, rather than the fluctuating wake [15]. 
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Therefore the effect of the microphone on the outdoor wind noise is not taken into account in 

Figure 3.4.    

3.2.3 Discussions 

This section proposes a pressure structure function model that incorporates both the 

inertial range and the dissipation range to extend the pressure spectrum to the dissipation 

range in turbulent flows. Comparisons with the literature data and wind noise spectra 

measured outdoors in a car park were found to match well with the proposed pressure 

structure function and the obtained pressure spectrum in both the inertial and the dissipation 

ranges.  

The limitation of the current work is that the proposed pressure structure function model 

is only valid for sufficiently large Reynolds number because the inertial range with Dp(r) ~ 

r4/3 (or equivalently P(k) ~ k−7/3) always exists in Eq. (3.7). This might be not true for the 

small Reynolds number turbulent flows. Recent numerical simulation and experimental 

results showed that the inertial range with the −7/3 power law cannot be observed when the 

Reynolds number is small [109,110].  

The numerical simulations by Gotoh and Fukayama [109] show that the −7/3 power law 

can be observed when the Taylor microscale Reynolds number is larger than 284, while the 

experimental results in wind tunnels by Tsuji and Ishihara [110] confirm the −7/3 power law 

when the Taylor microscale Reynolds number is larger than 600. Meldi and Sagaut [116] 

argued that a Taylor microscale Reynolds number larger than 104 is necessary to observe the 

−7/3 power law in the pressure spectrum. It is still not known whether there exists a cutoff 

value of the Reynolds number such that the −7/3 power law can be observed above this value.  

It has been shown that the Reynolds number in atmospheric turbulence is usually large 

enough for the inertial range to be observed [117]. Therefore, the pressure spectrum obtained 
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from the proposed pressure structure function model could be used for predicting the noise 

spectra induced from outdoor wind.  

In the comparison of the proposed pressure structure function and the obtained pressure 

spectrum with the simulations and experimental results, the proposed model was fitted to the 

measured data because the amplitude coefficient A and transition distance rd in Eqs. (3.7) and 

(3.8) are not available. In theory, both A and rd can be calculated from velocity fluctuations, 

which can be measured by a hot wire anemometer system. Because we did not have access to 

such systems while the research was conducted, the velocity fluctuations were not measured 

in this thesis. This will be pursued in the future work.  

3.3 Wind noise spectra in small Reynolds number turbulent flows 

Besides the above outdoor investigations, wind noises are often measured in indoor 

environments such as wind tunnels. Recent measurements of wind noise in a small anechoic 

wind tunnel showed that the noise spectrum does not change significantly in the lower 

frequency region but decays much faster than the −7/3 power law in the higher frequency 

region, which is inconsistent with wind noise measured outdoors [48,49]. This may be due to 

the smaller Reynolds number of the wind tunnel flows than those found in atmospheric flows. 

As mentioned above, simulations and experimental results found no inertial range with the 

−7/3 power law in the pressure spectra when the Reynolds number is small [109,110].  

The Reynolds number based on the Taylor microscale in the atmosphere varies from 4250 

to 19500, which is more than 10 times larger than that in the wind from a fan at low wind 

speeds [118]. Although wind noise spectra measured in outdoor atmospheric turbulence with 

a sufficiently large Reynolds number can be described by Eq. (3.8) in the inertial and 

dissipation ranges in Section 3.2, no theory exists to predict the pressure spectrum in small 

Reynolds number turbulent flows where the inertial range is absent.  
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To better understand the wind noise measured in indoor environments, such as that under 

fans or air conditioner outlets, this section proposes a pressure structure function model that 

incorporates the energy-containing and dissipation ranges to predict the pressure spectrum for 

small Reynolds number turbulent flows. Existing literature data and measurement results 

from indoor fan tests are used to validate the proposed pressure structure function model and 

the obtained pressure spectrum.  

3.3.1 Theoretical model 

Based on the asymptotic model derived from the Poisson equation by Hill and Wilczak 

[28], the pressure structure function is twice the pressure variance for the homogeneous and 

isotropic turbulence in the energy-containing range with sufficiently large separation 

distance, as given by  

 
( )

2
2

22 2p P

P
D r σ

ρ
≈ =     (3.11) 

where the pressure variance σP
2 is a constant for a certain turbulent flow.  

It was proposed in Section 3.2 to combine the pressure structure function in the inertial 

range in Eq. (3.4) and the dissipation range in Eq. (3.6) so that the pressure spectrum can be 

extended to the dissipation range. However, this model is only valid for turbulent flows with 

sufficiently large Reynolds numbers such that the inertial range always exists. For turbulent 

flows with small Reynolds numbers, there is no inertial range [109,110]. To accurately 

describe the pressure spectrum in such flows, this section proposes an alternative pressure 

structure function model that incorporates the energy-containing range in Eq. (3.11) and the 

dissipation range in Eq. (3.6), namely 
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where rL = (6σP
2/A)1/2 denotes the transition from the dissipation range to the energy-

containing range, and can be obtained by equating Eq. (3.11) to Eq. (3.6). For r >> rL, Eq. 

(3.12) approaches Eq. (3.11) in the energy-containing range while for r << rL, Eq. (3.12) 

approaches Eq. (3.6) in the dissipation range. 

Substitute Eq. (3.12) into Eq. (3.3), the pressure spectrum can be obtained as 

 
( ) L

3
L

6
krArP k e

π
−=      (3.13) 

The transition between the energy-containing range and the dissipation range occurs at 

1/rL in the wavenumber space. In the energy-containing range (krL << 1), the exponential 

term approaches to 1 so the proposed pressure spectrum model approaches a constant and 

does not vary with the wavenumber (or equivalently frequency), which is consistent with the 

measurement results of the wind noise spectra in a small anechoic wind tunnel [48,49].  

In the dissipation range (krL >> 1), the pressure spectrum falls off rapidly as the 

exponential decay, which is consistent with the dissipation range spectrum in Eq. (3.9) in 

Section 3.2. The value of rL depends on the constant A and the pressure variance σP
2 by rL = 

(6σP
2/A)1/2. The pressure variance can be calculated from the measured pressure fluctuations. 

The constant A is determined by the fourth order longitudinal velocity structure function. 

Therefore, the calculation of the exact value of the constant A needs accurate measurement of 

the longitudinal velocity at two spatial locations with various separation distances.  

The physical meaning of the obtained turbulent pressure spectrum for small Reynolds 

number turbulent flows can be explained based on the energy cascade theory [24]. In 

turbulent flows, the largest eddies contain most of the kinetic energy whereas the smallest 

eddies convert the kinetic energy to thermal energy via the viscous dissipation. The 

intermediate size eddies in between are responsible for the kinetic energy transfer from the 

largest eddies to the smallest eddies, which is called the inertial range. The width of the 

inertial range depends on the difference between the size of the largest and smallest eddies.  
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For turbulent flows with very large Reynolds number, such as the atmospheric 

turbulence, the largest eddies in the energy-containing range can be in hundreds of meters 

while the smallest eddies in the dissipation range is the order of millimeters, therefore a wide 

inertial range can be observed in the pressure spectrum [119]. However, for the turbulent 

flows with small Reynolds number, such as the wind from fans used in this section, the 

largest eddies is the order of centimeters (determined by the fan blade length ~ 10 cm), which 

is much smaller than the atmospheric turbulence. In this case, the kinetic energy transfer to 

the smallest eddies and is dissipated into heat quickly, so there is no inertial range with the 

k−7/3 law in the pressure spectrum.  

The proposed pressure structure function model in Eq. (3.12) and the obtained pressure 

spectrum in Eq. (3.13) will be validated with both the existing numerical and experimental 

data from literature as well as the measured wind noise from an axial fan in next section. 

3.3.2 Validations 

The proposed pressure structure function model for small Reynolds number turbulent 

flows in Eq. (3.11) is compared with the experimental results in Ref [111] in Figure 3.5. The 

values of η and rL were not given in the literature with the experiment results, so the 

proposed pressure structure function model in Eq. (3.12) was fitted to the experimental 

results in Figure 3.5 with rL = 30η. It can be observed that for small Reynolds number 

turbulent flows, existing theories that assume Dp(r) ~ r4/3 cannot describe the pressure 

structure function, whereas the proposed pressure structure function model in Eq. (3.12) 

shows good agreement in both the dissipation range with Dp(r) ~ r2 for small separations and 

in the energy-containing range where Dp(r) tends to constant for large separations. It is 

noteworthy that there is no inertial range with Dp(r) ~ r4/3 in the experiment results because 

the Reynolds number is small.  
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Figure 3.5 Comparison of the proposed pressure structure function model in Eq. (3.11) with 

the experimental results from Ref. [111]. The abscissa is normalized with the Kolmogorov 

scale η. 

 

The pressure spectrum obtained from the proposed pressure structure function model in 

Eq. (3.13) is compared with the existing Direct Numerical Simulation (DNS) results in Figure 

3.6 [109,120,121]. The pressure spectrum refers to the power spectrum of the pressure 

fluctuation and has a unit of Pa2/Hz. The pressure spectrum normalized by the energy 

dissipation rate ε and the air viscosity ν, i.e., P(k)/ε4/3ν−7/3, is read from the figures in the 

source literature, as shown in Figure 3.6. The values of the energy dissipation rate ε, the 

Kolmogorov scale η and the transition constant rL were not given in the literature with the 

simulation results, so the pressure spectrum model in Eq. (3.13) was fitted to the simulation 

results in Figure 3.6 with rL = 10η.  
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(a)                                                                   (b) 

Figure 3.6 Comparison of the pressure spectrum obtained from the proposed model in Eq. 

(3.13) with the existing DNS simulation results from (a) Ref [109], and (b) Refs. [120,121]. 

The abscissa is normalized with the Kolmogorov scale η. 

 

Figure 3.6 shows that the simulated pressure spectrum tends to be constant in the lower 

frequency region while it decays rapidly in the higher frequency region. The pressure 

spectrum obtained from the proposed pressure structure function model in Eq. (3.13) agrees 

well with the simulation results, where the lower frequency region corresponds to the energy-

containing range and the higher frequency region corresponds to the dissipation range. There 

is no inertial range in the simulation results due to the small Reynolds number, so the 

traditional k−7/3 model is not valid in this case. The pressure spectra in the turbulent flows 

with small Reynolds numbers are predicted by the pressure spectrum obtained from the 

proposed pressure structure function model in Eq. (3.12), which cannot be obtained with the 

traditional asymptotic form pressure structure function.   

To further validate the pressure spectrum obtained from the proposed pressure structure 

function model, the wind noise spectra from a fan were measured in the SIAL sound pod at 

RMIT University. The SIAL sound pod is a small room where the walls and floor are 
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finished with sound absorptive material. The fan and the microphone were about 0.8 m above 

the floor, with a separation distance of 0.5 m. The diagram and the photo of the experimental 

setup are shown in Figure 3.7.  

 

door

Microphone

2.6 m

1.4 m

Fan

0.5 m

  

(a)                                                             (b) 

Figure 3.7 (a) The diagram and (b) the photo of the experimental setup for indoor wind noise 

measurement with an axial fan.   

 

The wind noise was measured with a B&K Type 4189 prepolarized free field 1/2'' 

microphone whose frequency response is 2.8 Hz ~ 20 kHz, and a G.R.A.S Type 40BF 1/4'' 

free field microphone, whose frequency response is 10 Hz ~ 40 kHz, respectively. The 1/2'' 

microphone was connected to the B&K Type 2270 Analyser via a B&K Type ZC 0032 

Preamplifier. The system was calibrated with a B&K Type 4231 calibrator. The 1/4'' 

microphone was connected to a ZOOM H6 recorder via a G.R.A.S. Type 26AC preamplifier 
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and a G.R.A.S. Type 12AA power module. The system was calibrated with a G.R.A.S. Type 

42AA Pistonphone. The mean wind speed was measured with a DIGITECH QM1646 Hand-

held Anemometer by placing the anemometer at the position of the microphone, facing the 

axis fan.  

To confirm the measured noise spectra is caused by wind from the fan when the 

microphone is placed inside the air flow, the 1/2'' microphone was placed in front of the fan 

(inside the flow) and behind the fan (outside the flow) to measure the wind and mechanical 

noise of the fan, respectively. In the experiment, the fan ran at its highest speed and the mean 

wind speed around the microphone was about 4.2 m/s. The Reynolds number based on the 

dimension of the fan can be estimated as Re = UD/ν = 2.8×104 (U is the mean wind speed, D 

= 0.1 m is the length of the fan blade and ν is the air kinematic viscosity). The Taylor 

Reynolds number Reλ is proportional to the square root of the Reynolds number, i.e., Reλ ≈ 

(20Re/3)1/2 = 432 [24]. The wind noise spectra were measured for 30 seconds with the 1/2'' 

and 1/4'' microphones, respectively. The pressure spectra were estimated by the Welch 

method with the MATLAB function pwelch. The 30 s recording was divided into 8 segments 

with a 50% overlap. Each segment was windowed with a Hamming window, and the 

modified periodograms were averaged the obtained the power spectral density estimate. 
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Figure 3.8 Comparison of the measurement results with the 1/2'' microphone perpendicular 

and parallel to the air flow direction, where the black dash-dot line denotes the mechanical 

noise of the fan with the microphone placed outside the air flow.  

 

The measurement results in Figure 3.8 indicate that the overall noise level is much lower 

when the 1/2'' microphone is outside the flow, hence the measurement results with the 

microphone placed inside the air flow were primarily due to the turbulence in wind from the 

fan. The vertical axis in Figure 3.8 is the Sound Pressure Level (SPL) in dB scale with a 

reference pressure of 20 µPa. Figure 3.8 also shows the wind noise spectra measured with the 

1/2'' microphone parallel with the air flow direction, which is almost the same as that 

measured with the microphone perpendicular to the air flow direction. The following results 

were all measured with the microphone perpendicular to the air flow.  

The measurement results with the 1/2'' and 1/4'' microphones placed inside and 

perpendicular to the air flow are compared with the obtained pressure spectrum in Eq. (3.13) 

and the conventional k−7/3 model in Figure 3.9. The wind noise spectra are measured at wind 

speeds U = 1.0 m/s and U = 3.8 m/s, which correspond to the Taylor microscale Reynolds 

number of 210 and 410, respectively. The frequency response of the 1/4'' microphone is 10 
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Hz ~ 40 kHz so the measurement results below 10 Hz are not accurate and not shown in 

Figure 3.9. The frequency response of the 1/2'' microphone is 2.8 Hz ~ 20 kHz, therefore the 

measurement results with the 1/2'' microphone are assumed to be accurate from 2.8 Hz to 10 

Hz. In the frequency range above 10 Hz, the pressure spectrum measured with the 1/2'' 

microphone deviates from that measured with the 1/4'' microphone due to the interaction of 

the microphone with the air flow. The presence of the microphone has two effects on the 

measured pressure spectrum of the turbulent flow. The first is the wake generated behind the 

microphone [43] and the second is the averaging effect due to the finite size of the 

microphone diaphragm [122].  

The wake generated by the microphone is usually much smaller than the intrinsic 

turbulence in the incoming flow, hence it can be neglected according to [15]. To confirm this 

claim, the wind noise was measured with the 1/2'' microphone parallel to the air flow 

direction so that the wake was far from the diaphragm and had little influence on the 

measured wind noise spectrum. The measurement results with the 1/2'' microphone parallel to 

and perpendicular with the airflow direction are compared in Figure 3.8, which shows that the 

measurement results were almost the same, hence we can conclude that the wake is negligible 

compared with turbulence in the incoming flow. In contrast, the averaging effect of the finite 

size of the microphone diaphragm can introduce undesirable errors in the measurements, 

especially in the higher frequency range with small eddies [122]. Therefore, the measurement 

results with the 1/4'' microphone are considered to be more accurate than those from the 1/2'' 

microphone in the higher frequency range above 10 Hz.  
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(a)                                                                    (b) 

Figure 3.9 Comparison of the obtained pressure spectrum in Eq. (3.12) with the indoor fan 

test results with a 1/2'' microphone and a 1/4'' microphone at (a) U = 1.0 m/s (Reλ ≈ 210) and 

(b) U = 3.8 m/s (Reλ ≈ 410).  

 

It can be observed from Figure 3.9 that the pressure spectrum obtained from the proposed 

pressure structure function model agrees with the wind noise spectra measured with the 1/2'' 

microphone below 10 Hz and that measured with the 1/4'' microphone above 10 Hz, which is 

reasonable according to the above discussions. In contrast, the conventional k-7/3 model fails 

to predict the wind noise spectra, especially in the lower frequency range. It is noteworthy 

that the calculation of the exact values of the constants rL and A in Eq. (3.12) needs accurate 

measurements of the longitudinal velocity at two spatial locations with various separation 

distances, which requires two channel hot wire anemometers. However, no such hot wire 

equipment was available while the experiment was conducted, so the longitudinal velocity 

could not be obtained. In Figure 3.9 the proposed model is fitted to the measured wind noise 

spectra with rL = 1.67×10-2 and A = 4.0×105.  

It is worth noting that the wind noise spectrum measured with the 1/4'' microphone in 

Figure 3.9 shows an inertial range with the k−7/3 law: 30 Hz ~ 100 Hz in Figure 3.9(a) and 50 

Hz ~ 300 Hz in Figure 3.9(b). This is because the frequency range of the inertial range with 
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the k-7/3 law depends on the Reynolds number. When the Reynolds number is very small, the 

inertial range is very small and even vanishes so that it cannot be observed in the pressure 

spectrum, such as the pressure spectrum in Figure 3.6 where the Taylor microscale Reynolds 

number Rel is less than 77. This is the ideal case that can match the proposed pressure 

spectrum model.  

As the Reynolds number increases, the inertial range extends to a larger range which is 

observable in the pressure spectrum, the frequency range of the k−7/3 law increases with the 

Reynolds number, such as the wind noise spectrum in Figure 3.9 where the Taylor microscale 

Reynolds number is about 210 or 410, respectively. When the Reynolds number is as large as 

that in the atmospheric turbulence where the Taylor microscale Reynolds number is over 

4250, the inertial range is so large that the pressure spectrum becomes dominant by the k−7/3 

law [5].  

3.3.3 Discussions 

The main contribution of this section is the proposed pressure structure function model in 

Eq. (3.12) and the derivation of the pressure spectrum in Eq. (3.13), which can be used to 

predict the pressure spectra in turbulent flows with small Reynolds numbers, such as the wind 

noise spectra caused by wind from fans and those measured in small anechoic wind tunnels. 

This is different from the previous models for outdoor wind noise spectra that focus on the 

inertial range [5], which assume that the Reynolds number is so large that the inertial range 

always exists.  

The limitation of the proposed model is that it is only valid for turbulent flows with small 

Reynolds numbers where the inertial range is absent, and the effect of the Reynolds number 

is not explicitly expressed in the model. A good wind noise spectrum model should include 

all three turbulence ranges, the energy-containing range, the inertial range, and the dissipation 

range, in the pressure spectrum. Unfortunately, the mathematical derivation becomes too 
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complicated to obtain an explicit expression of the pressure spectrum if the pressure structure 

functions of all three ranges are combined into a single function and substituted in the 

integral equation in Eq. (3.3). Because of this difficulty and for the sake of simplicity, the 

inertial range is omitted in the proposed pressure structure function model in Eq. (3.12), so 

that an analytical form of the pressure spectrum could be obtained as Eq. (3.13).  

Although the effect of finite Reynolds number is not accounted for in this model, it 

provides an explanation that the pressure spectrum in small Reynolds number turbulent flows 

approaches a constant in the lower frequency range and decays rapidly in the higher 

frequency range, which cannot be deduced from the conventional k−7/3 model. The 

quantitative relationship between the finite Reynolds number and the frequency range with 

the k−7/3 law in the pressure spectrum needs numerical integration of Eq. (3.3) and detailed 

measurements of wind noise spectra in turbulent flows with controlled Reynolds numbers, 

which will be investigated in the future. 

3.4  Conclusions 

This chapter proposed two theoretical models to predict the wind noise spectra for 

outdoor atmospheric turbulence with large Reynolds number and indoor fan generated 

turbulent flows with small Reynolds number, respectively. 

Section 3.2 presents a pressure structure function model that incorporates both the inertial 

range and the dissipation range to extend the pressure spectrum to the dissipation range in 

turbulent flows. The proposed pressure structure function model and the obtained pressure 

spectrum were found to be consistent with existing experimental and numerical simulation 

results. For further validation of the proposed model, outdoor wind-induced noise was 

measured and comparisons with the pressure spectrum obtained from the proposed pressure 

structure function model were found to match well in both the inertial range and the 
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dissipation range. This model can be used to describe the wind noise spectra measured 

outdoors in atmospheric turbulence.  

Section 3.3 proposes a pressure structure function model that combines the energy-

containing and dissipation ranges, based on which the pressure spectra can be obtained for 

small Reynolds number turbulent flows where the inertial range is absent. The results show 

that the pressure spectra approach a constant in the lower frequency range in the energy-

containing range but decay rapidly in the higher frequency range for the dissipation range. 

The proposed pressure structure function model and the obtained pressure spectra have been 

validated with both existing numerical and experimental results in the literature as well as 

indoor fan test measurement results. The pressure spectra obtained from the proposed 

pressure structure function model can be utilized to predict wind noise measured in indoor 

environments such as that from fans and wind tunnels.  

Future work includes 

• conducting detailed measurements of velocity fluctuations to calculate accurate values 

of the constant A and transition distances rd and rL in the proposed models;  

• investigating the effect of finite Reynolds number on the wind noise spectra;  

• studying the finite size effect of a microphone diaphragm on the measured pressure 

spectra; and  

•  investigating generation mechanism of turbulence which is the main source of wind 

noise. 
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4 Wind noise reduction mechanism of porous 

microphone windscreens 

The work presented in this chapter has been published in two papers in The Journal of the 

Acoustical Society of America, i.e., Zhao et al. (2017), J. Acoust. Soc. Am. 142, 2454-2463, 

and Zhao et al. (2018), J. Acoust. Soc. Am. 143, 330-339, and presented at INTER-NOISE 

2017 in Hong Kong. Please see Appendix A for details.  

4.1  Introduction 

While porous microphone windscreens are widely used in both indoor and outdoor 

acoustic measurements, the noise reduction mechanism still lacks theoretical analyses. The 

impermeable rigid sphere model by Phelps [51] and Zheng and Tan [52] were too simplified 

and much different from practical situations. The numerical simulations by Xu et al. [27] 

modeled the porous microphone windscreens with a parameter flow resistivity to investigate 

the effect of the windscreen shape and viscous resistance on wind noise reduction.  

In an alternative approach, this chapter investigates the wind noise reduction mechanism 

of porous microphone windscreens by accounting for both the viscous and inertial forces 

from the porous windscreens. In the simulations, the air flow outside the porous microphone 

windscreen is described by the Navier-Stokes equations for viscous incompressible flow  [27], 

 
0∇ ⋅ =u      (4.1) 

 
( ) 21 p
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ρ
∂

+ ⋅∇ = − ∇ + ∇
∂
u u u u      (4.2) 

where u is the velocity, p is the pressure, ρ is the fluid density and ν is the air viscosity. It is 

noteworthy that the turbulent flow is approximated as incompressible turbulence in Eqs. (4.1) 

and (4.2). The wind noise is actually the turbulent pressure fluctuations (pseudo-sound) 
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generated by the incoming flow on a microphone, while the sound waves measured at a 

microphone are compressible pressure disturbances.  

The air flow inside porous microphone windscreen is governed by the continuity equation 

and the momentum conservation equation proposed by Nithiarasu et al. [123],  

 
0∇ ⋅ =u     (4.3) 

 
( ) 2

2

1 1 1 p C
t K

ν ν
φ φ ρ φ

∂
+ ⋅∇ = − ∇ + ∇ − −

∂
u u u u u u u      (4.4) 

where φ is the porosity of the porous medium, u and p are the superficial (volume-averaged) 

velocity and pressure, respectively, K is the permeability of the porous medium, and C is the 

inertial coefficient. The derivation of Eq. (4.4) is based on the volume averaging technique. 

All quantities including the velocity, pressure, viscous and inertial coefficients in Eq. (4.4) 

are averaged over a representative elementary volume, which is much larger than any 

individual pore but is much smaller than the whole porous material (the porous windscreen in 

our case) [123]. The advantage of this generalized momentum conservation equation is that it 

can be reduced to the conventional Navier-Stokes equation when there is no porous media 

(both the viscous and inertial coefficients are 0 and the porosity is 1), so the Navier-Stokes 

solver can also be used for such equations.  

The porous windscreen introduces two extra terms in the momentum conservation 

equation in Eq. (4.4) compared to the Navier-Stokes equation for the air flow without a 

porous medium. The third term on the right hand side of Eq. (4.4) is the Darcy term which 

represents the viscous forces resulting from the fluid-solid interaction along the surface of the 

pores in the porous medium. The fourth term on the right hand side of Eq. (4.4) is the 

Forchheimer term, which represents the inertial forces imposed on the fluid flow by the solid 

structure of the porous medium [124].  

The physical mechanism of wind noise reduction by porous microphone windscreens was 

found to be  the resistance forces caused by the porous windscreen on air flows to reduce the 
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fluctuation amplitude of the turbulent velocity and pressure [124]. The resistance forces 

consist of the viscous forces resulting from the viscous stresses along the fluid-solid interface 

of the pores and the inertial forces imposed on the fluid by the solid permeable medium. The 

viscous forces depend on the fluid viscosity and the permeability of the porous media K, 

while the inertial forces can be characterized by the inertial resistance coefficient C, which 

has the dimensions of length and is a function of the geometry of the media, the cell size, and 

the nature of the flow [125].  

In this chapter, the effects of both viscous and inertial forces on the wind noise reduction 

of porous microphone windscreens are studied first by measuring the pressure fluctuations in 

the middle of the windscreens with a single microphone. Then two microphones are used to 

investigate the spatial structure of wind noise and the effect of porous windscreens on the 

wind noise structure. Experiments with a commercial axial fan are carried out to support the 

simulation results.  

4.2  Viscous and inertial resistance to air flow due to porous 

windscreens 

To study the effects of viscous and inertial forces on the wind noise reduction of porous 

microphone windscreens, the pressure fluctuations inside porous windscreens with various 

viscous and inertial coefficients are simulated, and the simulation results are analyzed and 

explained. The wind noise reduction by 5 different porous microphone windscreens is 

measured with a fan to verify the simulations results.  

4.2.1 Simulation model 

The diagram of the simulation model is shown in Figure 4.1(a), where the uniform air 

flow with a mean speed U enters the computation domain from the left boundary. The 

computation domain is 34D in the downwind direction and 10D in the crosswind direction. 
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An array of solid cylinders with diameter D is placed upstream to generate turbulence. The 

solid cylinder array is 4D from the flow inlet boundary and the interval between the solid 

cylinders is also D. The grey cylinder, 10D from the upstream solid cylinder array in the 

middle, denotes the microphone windscreen of diameter D0, which is modelled as a porous 

medium. In the middle of the windscreen, a 1/2'' microphone is modelled as a rigid cylinder, 

and the pressure averaged over the rigid cylinder is monitored to mimic the pressure 

fluctuations detected by the microphone.  

 

10D

34D

U Windscreen

D
D0

Microphone

 

Figure 4.1 The diagram of the simulation model for porous windscreens with various viscous 

and inertial coefficients.  

 

The models were built, and meshed in ANSYS Workbench 16.0. The air flow outside the 

porous microphone windscreen is described by Eqs. (4.1) and (4.2), and the air flow inside 

the porous microphone is determined by Eqs. (4.3) and (4.4), which were solved in FLUENT 

16.0 by modeling the microphone windscreen as a “porous media zone” with the boundary 

condition of velocity and stress continuity at the windscreen surface. The boundary condition 

of the flow inlet was set to “velocity inlet”, the outlet boundary condition was set to “pressure 

outlet”, and the upper and lower boundaries were set as “wall”.  

In the simulations, the wind speed at the inlet is U = 4 m/s, and the diameter of the 

upstream cylinder and the porous windscreen are D = 50 mm and D0 = 90 mm, respectively. 
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The Reynolds number for the flow in the simulations can be estimated as Re = UD/ν = 

1.3×104 (where U = 4 m/ is the mean flow speed, D = 0.05 m is the diameter of the upstream 

cylinders and ν = 1.511×10−5 is the air kinematic viscosity at the temperature of 20 oC). The 

Reynolds number based on the Taylor microscale for the turbulent flow in the simulations is 

about Reλ ≈ (20Re/3)1/2 = 294.  

To quantitatively examine the wind noise reduction performance of the windscreens, the 

Wind Velocity Reduction (WVR) and Wind Noise Reduction (WNR) as a function of 

frequency are defined in Eqs. (4.5) and (4.6), respectively.  
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where u0(f) and p0(f) are the incompressible turbulent velocity and pressure fluctuation 

without the windscreen at frequency f, and uws(f) and pws(f) are the corresponding 

incompressible turbulent velocity and pressure within the windscreen. The power spectral 

density is defined as the power per unit frequency, which can be calculated by [126] 

 
( ) ( ) ( )*1E lim

T
P f X f X f

T→∞

 =     
   (4.7) 

where E[·] denotes the expectation operator, the superscript * indicates the complex conjugate 

and X(f) is the Fourier transform of the time domain signal x(t) truncated within the time 

window T. In this thesis, the MATLAB function pwelch is used to estimate the power 

spectral density with the Welch method for both velocity and pressure fluctuations. 

The overall WNR in a frequency range between f1 and fN is defined as 
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The effect of the viscous and inertial resistance on wind noise reduction performance is 

simulated in the next section and the results are explained. It is noteworthy that throughout 

the text in this section, wind velocity and wind noise refer to the incompressible turbulent 

velocity and pressure fluctuations rather than the compressible acoustic particle velocity and 

pressure disturbances.   

4.2.2 Simulation results 

In the two dimensional simulations performed in this thesis, the pressure fluctuations 

were calculated from the Poisson equation in Eq. (2.1). The high Reynolds number means the 

flow is turbulent rather than laminar, therefore the Large Eddy Simulation (LES) with the 

Smagorinsky turbulence model was used. The simulation was run for 1 second. The meshsize 

was chosen based on the Courant–Friedrichs–Lewy (CFL) condition, i.e., U∆t/∆x ≤ 1, where 

U is the flow velocity, ∆t is the time step and ∆x is the meshsize. The highest scale in the 

turbulence cascade should be much smaller than ∆x. In the simulations, ∆t is 0.1 ms 

(sampling rate 10 kHz), and U varies from 2 m/s to 14 m/s. Figure 4.2 shows the Power 

Spectral Density (PSD) of the pressure fluctuations as a function of the turbulent 

wavenumber (2π/ξ, where ξ = U/f is the turbulent wave length) for various wind speeds. The 

“plateaus” at high wavenumber (corresponding to high frequency) above 1000 m-1 is due to 

the numerical noise, therefore the highest scale in the turbulence cascade is around 1000 m-1 

in the simulations.  
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Figure 4.2 The Power Spectral Density (PSD) of the pressure fluctuations as a function of the 

turbulent wavenumber for various wind speeds.  

 

Because the resistance on the air flow due to the porous windscreen consists of the 

viscous and inertial forces, the effect of the viscous and inertial forces on the wind noise 

reduction performance is investigated separately in two sets of simulations below. 

A. The viscous effect 

In the first set of simulations, a zero inertial coefficient is assumed so that no inertial 

force is applied on the air flow from the porous windscreen. In this case, the physical wind 

noise reduction mechanism of windscreens results only from the viscous forces on the air 

flow by the porous windscreen. This is actually the same scenario as the computational study 

in Ref. [27], where the flow resistivity is used to characterize the material viscous property. 

The flow resistivity σ is related to the viscous coefficient 1/K (K is the permeability) by σ = 

µ/K, where µ is the air viscosity [27].  

The simulation results of the wind velocity spectra and the wind noise spectra for various 

viscous coefficients are shown in Figure 4.3. The wind velocity and pressure level generally 

increase with wind speeds, and the wind speed U = 4 m/s is used in the simulations for 

consistency with the experimental conditions. It can be observed from Figure 4.3(a) that the 
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wind velocity inside the porous windscreen decreases with growing viscous coefficients 1/K. 

This is reasonable because for small viscous coefficients, the porous windscreen is highly 

permeable and has little effect on the incoming air flow, whereas the porous windscreen with 

a large viscous coefficient produces large viscous force on the air flow so the flow speed is 

damped heavily.  

 

   

(a)                                                                 (b) 

Figure 4.3 (a) The wind velocity spectra and (b) the wind noise spectra for different viscous 

coefficients at the wind speed U = 4 m/s.  

 

In contrast, Figure 4.3(b) shows that the wind noise level first decreases then slightly 

increases with the growing viscous coefficients. These results are consistent with the 

computational simulation in Ref. [27], where the windscreens with medium flow resistivity 

were found to have the most effective wind noise reduction performance. This can be more 

clearly observed from Figure 4.4(a), which shows the overall wind noise reduction (WNR) in 

a broad frequency range from 1 Hz to 1000 Hz. The WNR reaches its maximum when the 

viscous coefficient is around 108 m-2, and decreases slightly afterward. This is also illustrated 

by Figure 4.4(b) for the WNR at different frequencies. The viscous coefficient is a quantity 
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for characterizing the viscous forces due to the fluid-solid interaction along the surface of the 

pores in the porous medium, which is related to the roughness of the pore surface.  

 

  

(a)                                                             (b) 

Figure 4.4 (a) The overall Wind Noise Reduction (WNR) and (b) the WNR at different 

frequencies for 90 mm windscreens with different viscous coefficients at the wind speed U = 

4 m/s.  

 

The existence of the optimal viscous coefficient for porous windscreens on wind noise 

reduction can be explained physically. When there is no windscreen, the wind noise is 

primarily due to the turbulence in the incoming flow from the upstream solid cylinder array, 

as shown in Figure 4.5(a). When the windscreen is present, the wind noise is reduced because 

the windscreen suppresses the turbulence inside the porous material. For the viscous 

coefficient below 108 m-2, the larger the viscous resistance, the greater the wind noise 

reduction, as shown in Figure 4.5(b) and (c). However, for a viscous coefficient larger than 

108 m-2, the windscreen tends to be a solid cylinder and a strong wake is generated behind the 

windscreen, which deteriorates the wind noise reduction performance, as shown in Figure 

4.5(d).  
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(a)                                                                 (b) 

  

(c)                                                                 (d) 

Figure 4.5 The vorticity contour for different viscous coefficients, (a) 1/K = 0 (no 

windscreen), (b) 1/K = 106 m-2, (c) 1/K = 108 m-2, and (d) 1/K = 1010 m-2. The red marker 

circle in the middle denotes the location of the microphone windscreen.  

 

B. The inertial effect 

In the second set of simulations, a zero viscous coefficient was assumed so that no 

viscous force was applied on the air flow from the porous windscreen. In this case, the 

physical wind noise reduction mechanism of the windscreens results from the inertial forces 

on the air flow by the solid frame of the porous windscreen. 

The simulated wind velocity spectra and wind noise spectra are shown in Figure 4.6 for 

various inertial coefficients, which demonstrate that the wind velocity inside the porous 

windscreen decreases with growing inertial coefficients while the wind noise level first 

decreases then increases with inertial coefficients. Similar to the viscous effect, the WNR 

reaches its maximum near the inertial coefficient of 50 m-1 and decreases slightly afterward. 
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This is illustrated in Figure 4.7 with the overall WNR in the frequency band from 1 Hz to 

1000 Hz. This phenomenon can again be explained by the trade-off between the turbulence 

suppression inside and the wake generation behind the windscreens, as shown in Figure 4.8. 

When the inertial coefficient is smaller than 50 m-1, the turbulence inside the windscreen is 

suppressed while there is no wake generated behind due to the permeability of the 

windscreen. When the inertial coefficient is larger than 50 m-1, the windscreen is less 

permeable and wake is formulated. The inertial coefficient is a characterization of the inertial 

force on the air flow to change the flow direction, which is dependent on the tortuosity of the 

porous medium.  

 

   

(a)                                                                    (b) 

Figure 4.6 (a) The wind velocity spectra and (b) the wind noise spectra for different inertial 

coefficients at the wind speed U = 4 m/s.  
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(a)                                                               (b) 

Figure 4.7 (a) The overall Wind Noise Reduction (WNR) and (b) the WNR at different 

frequencies for 90 mm windscreens with different inertial coefficients at the wind speed U = 

4 m/s.  

 

   

(a)                                                      (b) 

   

(c)                                                      (d) 

Figure 4.8 The vorticity contour for different inertial coefficients, (a) C = 0 (no windscreen), 

(b) C = 10 m-1, (c) C = 50 m-1, and (d) C = 100 m-1m-2. The red marker circle at the middle 

denotes the location of the microphone windscreen.  
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By comparing the wind velocity spectra and wind noise spectra in Figure 4.3 and Figure 

4.6, it can be observed that the wind velocity level decreases continuously with the viscous or 

inertial coefficients in the broad band from 1 Hz to 1000 Hz, whereas the wind noise is only 

reduced in the frequency band below 500 Hz and has the lowest level at a certain value of 

viscous or inertial coefficients. The inconsistency between the wind velocity and wind noise 

inside the windscreens shows that the wind noise level is not proportional to the wind 

velocity inside the porous windscreens, as stated in the intuitive explanation [51].  

C. The combination effect 

The above simulation results show separately the individual effect of the viscous force or 

inertial force on the wind noise reduction performance by the porous windscreens. To 

understand the wind noise reduction performance of real windscreens with both viscous and 

inertial forces on the air flow, various combinations of the viscous and inertial coefficients 

are investigated. The simulation results are shown in Figure 4.9, where the horizontal and 

vertical axes are the viscous and inertial coefficients, respectively, and different colours are 

used to represent different levels of WNR.  

It can be observed that the viscous forces are the main source of wind noise reduction 

mechanism for the porous windscreens when the inertial coefficient is below 50 m-1, while 

for  the inertial coefficient larger than 100 m-1, the viscous forces have little effect. Figure 4.9 

indicates that the wind noise reduction performance of the windscreen is not the supposition 

of the viscous and inertial effect; in contrast, it is dominated by the larger effect. The WNR is 

the largest when the viscous and inertial coefficients are approximately 108 m-2 and 50 m-1, 

respectively, which is denoted by a red cross in Figure 4.9. The porous windscreens with 

larger or smaller viscous and inertial coefficients have inferior performance.  
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In summary, the above simulation results show that the choice of the porous material for 

microphone windscreens should take into account both the turbulence suppression inside and 

the wake generation behind the windscreen, and there exists optimal viscous and inertial 

coefficients to reach the maximum performance. It is noteworthy that the optimal viscous and 

inertial coefficients should depend on the diameter of the porous windscreens and the wind 

speed of the incoming flow, and the values presented in Figure 4.9 are only applicable for a 

90 mm spherical porous windscreen at the wind speed U = 4 m/s. 

 

 

Figure 4.9 The overall Wind Noise Reduction (WNR) for various viscous and inertial 

coefficients for a 90 mm spherical porous windscreen at the wind speed U = 4 m/s.  

 

4.2.3 Experimental results 

To verify the reliability of the simulations, experiments were performed with a fan in the 

SIAL sound pod at RMIT University, as shown in Figure 4.10. The SIAL sound pod is a 

small room where the walls and floor are treated with sound absorptive material. The fan and 
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the microphone were approximately 0.8 m above the floor, with a separation distance of 0.5 

m. The wind noise was measured with a B&K Type 4189 prepolarized free field 1/2'' 

microphone and a G.R.A.S Type 40BF 1/4'' free field microphone, respectively. The 1/2'' 

microphone was connected to the B&K Type 2270 Analyzer via a B&K Type ZC 0032 

Preamplifier. The system was calibrated with a B&K Type 4231 calibrator. The wind noise 

reduction by 5 spherical porous microphone windscreens with a diameter of 90 mm were 

measured in the experiments. The porosity of the porous microphone windscreens varied 

from 20 PPI (Pores Per Inch) to 60 PPI with a step of 10 PPI, as shown in Figure 4.10(c).  

In the experiments, the fan ran at its highest speed and the mean wind speed around the 

microphone was about 4.2 m/s. The Reynolds number of the flow in the fan tests can be 

estimated as Re = UD/ν = 2.8×104 (where U = 4.2 m/s is the mean wind speed, D = 0.1 m is 

the fan blade length and ν = 1.511×10−5 is the air kinematic viscosity at the temperature of 20 

oC). The Reynolds number based on the Taylor microscale is proportional to the square root 

of the Reynolds number, i.e., Reλ ≈ (20Re/3)1/2 = 432 [24]. In contrast, the Reynolds number 

based on the Taylor microscale in outdoor atmospheric turbulence Reλ varies from 4250 to 

19500, which is much larger than that in the fan test [118]. The length scale of the 

atmospheric turbulence is much larger than that in the fan test, which might have a significant 

effect on the wind noise reduction performance of the porous microphone windscreens. This 

effect is not considered here and will be studied in the future work.  

The wind noise was first measured by using the bare microphone inside the air flow and 

the background noise was measured by placing the microphone out of the flow but at the 

same distance from the fan. The wind noise and the background noise spectra of the 

environment with the fan running are compared in Figure 4.11(a), which shows that the wind 

noise level is much higher than the background noise; hence the measurement results with the 

microphone placed inside the air flow were primarily due to the wind turbulence from the 
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fan. The peak at 62.5 Hz and its harmonics in the background noise are the mechanical noise 

due to the fan blade.  

 

  

(a)                                                      (b) 

 

(c) 

Figure 4.10 The experimental setup (a) without and (b) with a 90 mm diameter porous 

windscreen installed on a 1/2'' microphone, and (c) the 90 mm spherical porous microphone 

windscreens of different porosities from 20 PPI to 60 PPI. 
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The wind noise inside the porous microphone windscreens was measured in the same way 

as that for the bare microphone and the measured wind noise spectra are also shown in Figure 

4.11(a). The wind noise spectra measured inside 30 PPI and 50 PPI windscreens are not 

shown for the sake of brevity. It is clear in Figure 4.11(a) that the wind noise level inside the 

porous windscreens is still above the background noise, thus the measurement results are 

valid.  

 

 

(a)                                                                    (b) 

Figure 4.11 The measurement results of (a) the wind noise spectra and (b) the overall Wind 

Noise Reduction (WNR) as a function of porosity.  

 

The wind noise spectra measured inside windscreens of varying porosity are almost 

indistinguishable above 50 Hz due to the harmonic mechanical noise from the fan blade. 

However, it can be seen from the spectra below 50 Hz in Figure 4.11(a) that the wind noise 

inside the 40 PPI windscreen is lower than that inside both the 20 PPI and 60 PPI 

windscreens, which demonstrates that the existence of an optimal porosity for the porous 

windscreen to achieve the best performance. This can be more clearly observed from Figure 

4.11(b), which shows the overall WNR in the broad frequency band from 1 Hz to 1000 Hz as 
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a function of the PPI values. The overall WNR first increases with the porosity but then 

decreases after reaching the maximum performance at 40 PPI.  

As shown in Figure 4.10(c), with the increase of the PPI value from 20 to 60, the number 

of pores is increased while the pore size is reduced, so the contact surface area between the 

air flow and the porous frame is increased which leads to the increase of the viscous forces on 

the air flow [124]. Since the viscous coefficient 1/K is a lumped measure of the total viscous 

forces, it increases correspondingly with the increased PPI value [124]. Similarly, the inertial 

coefficient C also increases with the PPI value because the inertial forces from the porous 

frame on the air flow increases [124]. Both the viscous and inertial coefficients can be 

measured with hydraulic equipment [127]. However, the viscous and inertial coefficients of 

the porous windscreens used here were not measured because no such hydraulic equipment is 

available to us at present.  

In summary, both the viscous and inertial coefficients of the porous windscreens increase 

with the PPI value although the specific values for the porous microphone windscreens used 

in our experiments are not known. Therefore the measurement results in Figure 4.11 verified 

the simulation results that there exists an optimal value of viscous and inertial coefficients for 

porous microphone windscreens to reach the best performance, and the design of porous 

microphone windscreens should take into account both turbulence suppression inside and the 

wake generation behind the microphone windscreens.  

The simulations and experimental results in this paper indicate that the wind noise 

reduction performance can be further improved if the turbulence inside the windscreens can 

be suppressed and in the meantime no wake is generated behind the windscreen, which might 

be achieved with porous microphone windscreens with variable porosity. On the other hand, 

metamaterials can be explored to manipulate the fluid flow around three-dimensional bodies, 

e.g., Urzhumov and Smith [128,129] investigated fluid flow cloak which preserves the flow 

78 
 



 

that would have existed in the absence of the object so that the downstream wake is 

eliminated. However, their study is based on numerical simulations for the non-turbulent 

flows. Much more work is needed for developing prototype metamaterial microphone 

windscreen in the future.  

4.2.4 Conclusions 

This section investigates the wind noise reduction mechanism of porous microphone 

windscreens. The pressure fluctuations inside porous windscreens with various viscous and 

inertial coefficients are investigated with numerical simulations. The viscous and inertial 

coefficients represent the viscous forces resulting from the fluid-solid interaction along the 

surface of the pores and the inertial forces imposed on the fluid flow by the solid structure of 

the porous medium, respectively. Simulation results indicate that the wind noise reduction 

first increases and then decreases with both viscous and inertial coefficients after reaching a 

maximum. Experimental results conducted on 5 porous microphone windscreens with 

porosity from 20 PPI (Pores Per Inch) to 60 PPI show that the 40 PPI windscreen has the 

highest wind noise reduction performance, and this supports the simulation results. The 

existence of the optimal values for the viscous and inertial coefficients is explained 

qualitatively and it is shown that the design of porous microphone windscreens should take 

into account both turbulence suppression inside and wake generation behind the windscreen 

to achieve the optimal performance.  

4.3  Spatial decorrelation of wind noise by porous microphone 

windscreens 

Most of the studies in the literature focused on the wind noise inside windscreens 

measured with a single microphone, without considering the spatial structure of wind noise. 

This section investigates the wind noise reduction mechanism of porous microphone 
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windscreens by examining the effect of porous windscreens on the spatial structure of wind 

noise (signal). The spatial structure of wind noise is studied by using the magnitude squared 

coherence of the pressure measured with two microphones at various separation distances 

first, and then the wind noise reduction by porous microphone windscreens is investigated. 

Finally, the spatial coherence between the wind noise outside and inside the porous 

windscreens are calculated to investigate the wind noise reduction mechanism.  

4.3.1 Simulation model 

Figure 4.12 shows the diagram of the two dimensional model used in the simulations, 

where a uniform air flow with a mean speed U enters the computation domain from the left 

boundary. The computation domain is 34D in the downwind direction and 10D in the 

crosswind direction. Five solid cylinders are placed upstream to generate turbulence. The 

diameter and the interval between cylinders are both D and the solid cylinder array is 4D 

from the flow inlet boundary. Two 1/2'' microphones are modeled as the rigid cylinders in 

Figure 4.12 and the pressure averaged over the rigid cylinder is monitored to mimic the 

pressure fluctuations detected by the microphone. 
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(b) 

Figure 4.12 The diagram of the two dimensional simulation model (a) without and (b) with a 

microphone windscreen, where the 1/2'' microphones are modeled as rigid cylinders. 

 

Two sets of simulations were performed. In the first set of simulations in Figure 4.12(a), 

there was no microphone windscreen and the pressure fluctuations at two microphone 

locations M1 and M2 are monitored at various separation distances to study the spatial 

structure of wind noise. The fluid flow is described by the Navier-Stokes equations for 

viscous incompressible flow in Eqs. (4.1) and (4.2). In the second set of simulations in Figure 

4.12(b), a microphone windscreen of diameter D0 (gray circle in Figure 4.12) was placed 10D 

from the upstream solid cylinder array. The pressure fluctuations outside (at position M1) and 

inside (at position M2) the microphone windscreen were recorded and compared with that 

without the windscreen to investigate the effect of the microphone windscreen on the spatial 

structure of wind noise. The microphone windscreen was modeled as a porous medium, 
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inside which the fluid flow is governed by the continuity equation and the momentum 

conservation equation proposed in Eqs. (4.3) and (4.4). The pressure is calculated from the 

velocity field based on the Poisson equation in Eq. (2.1).  

Equations (4.1) to (4.4) were solved in FLUENT 16.0 with the boundary conditions of 

velocity and stress continuity at the windscreen surface. The volume-averaged velocity inside 

the porous medium is used in the continuity of velocity in the boundary conditions. The 

models were built, and meshed in ANSYS Workbench 16.0, and simulated in ANSYS 

FLUENT 16.0. In the simulations, the boundary condition of the flow inlet was set to 

“velocity inlet”, the output boundary condition was set to “pressure outlet”, the upper and 

lower boundaries were set as “wall”, and the microphone windscreen is modeled as “porous 

media zone”. The computational domain was carefully meshed by dividing the domain into 

several subdomains, within which the structure mesh was deployed and checked. The mesh 

was changed from coarser to finer until the simulation results converge and are independent 

of mesh. 

In the simulations, the diameter of the upstream cylinders was D = 50 mm. The 

permeability and inertial coefficients were set as K = 10-7 m2 and C = 50 m-1, respectively. 

For each simulation, the time history of velocity and pressure fluctuations at the monitoring 

location was recorded for 5 s with a sampling rate of 10 kHz. It is noteworthy that the 

numerical simulations here are two dimensional only and the pressure spectrum can be 

different to that for the three dimensional turbulence. Therefore, the simulation results are 

used to gain insights into the mechanism and performance of the porous microphone 

windscreens, and they are not intended to be compared with the experimental results 

quantitatively.  

To investigate the spatial structure of the wind noise, the magnitude squared coherence 

between the pressure fluctuations recorded at M1 and M2 was calculated [130], 
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where ϕ12(f) is the cross spectral density, ϕ11(f) and ϕ22(f)  are the auto spectral density at 

frequency f.  

4.3.2 Simulation results 

A. Spatial structure of wind noise 

In the first set of simulations in Figure 4.12(a) without microphone windscreen, the 

microphone location M1 is fixed and M2 is moved to change the separation distance along 

the wind direction d from 30 mm to 90 mm with a step of 15 mm. Both the velocity and 

pressure fluctuations at the microphone locations are monitored and the power spectral 

density of velocity and pressure are calculated based on the Welch method. The obtained 

velocity spectra at location M1 are shown in Figure 4.13(a) at various wind speeds from 2 

m/s to 14 m/s, and the magnitude squared coherence between the velocity fluctuations at M1 

and M2 are calculated and illustrated in Figure 4.13(b) as a function of the separation 

distance to the turbulence wavelength ratio (d/ξ), where the separation distance d is fixed at 

30 mm. The turbulence wavelength is a parameter that is used to characterize the length scale 

of the turbulent eddies, and it can be calculated with ξ = U/f where U is the mean wind speed 

and f is frequency. A larger turbulence wavelength corresponds to turbulent eddies of a larger 

size. It is also inversely proportional to frequency, and a large turbulence wavelength 

corresponds to low frequency. 
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                              (a)                                                                      (b) 

Figure 4.13 (a) The velocity spectra as a function of turbulence wave number and (b) the 

magnitude squared coherence of the velocity fluctuations as a function of the ratio of the 

separation distance (fixed to 30 mm) to turbulence wavelength (the turbulence wavelength ξ 

is the variable for the horizontal axis) for wind noise at different wind speeds. 

 

It can be observed from Figure 4.13 that the velocity spectra are nearly constant at the 

lower frequency range while decay rapidly in the higher frequency range, and the velocity 

fluctuations are coherent when the separation distance is smaller than the turbulence 

wavelength (i.e., d/ξ < 1). Similarly, Figure 4.14 presents the pressure spectra and the 

magnitude squared coherence of the pressure fluctuations. Figure 4.14(a) shows that the wind 

noise is almost flat in the low frequency range while decaying rapidly in the higher frequency 

range when the wave number is above 100 m-1. In addition, the wind noise increases with the 

mean wind speed but the rate of noise level change decreases with growing velocity. These 

two observations are consistent with the wind noise spectra measured in a small anechoic 

wind tunnel by Alamshah et al. [49].  
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                               (a)                                                                      (b) 

Figure 4.14 (a) The pressure spectra as a function of turbulence wave number and (b) the 

magnitude squared coherence of the pressure fluctuations as a function of the ratio of the 

separation distance (fixed to 30 mm) to turbulence wavelength (the turbulence wavelength ξ 

is the variable for the horizontal axis) for the wind noise at different wind speeds  

 

Figure 4.14 (b) shows that when the separation distance is smaller than the turbulence 

wavelength (i.e., d/ξ < 1), the wind noise at location M1 and M2 are coherent, whereas when 

the separation distance is larger than the turbulence wavelength (i.e. d/ξ > 1), the wind noise 

becomes incoherent. This is reasonable because when the turbulent eddy size is smaller than 

the separation distance, the instantaneous pressure recorded at location M1 and M2 originate 

from different eddies, hence the pressure signals are incoherent. In contrast, when the 

turbulent eddy size is larger than the separation distance, the instantaneous pressure at 

location M1 and M2 are caused by the same eddy, therefore the pressure signals are coherent. 

It can also be observed from Figure 4.14(b) that the magnitude squared coherence at different 

wind speeds are similar when the turbulence wavelength is larger than the separation distance 

(i.e., d/ξ < 1).  

10 1 10 2 10 3

Wave number 2  /  (m
-1

)

40

50

60

70

80

90

100

110

120
P

re
ss

ue
r s

pe
ct

ra
 (d

B
)

U = 2 m/s

U = 4 m/s

U = 6 m/s

U = 8 m/s

U = 10 m/s

U = 12 m/s

U = 14 m/s

10 -2 10 -1 10 0

d  / 

0

0.2

0.4

0.6

0.8

1

M
S

C

U = 2 m/s

U = 4 m/s

U = 6 m/s

U = 8 m/s

U = 10 m/s

U = 12 m/s

U = 14 m/s

85 
 



 

The magnitude squared coherence of the pressure fluctuations as a function of the 

separation distance to wavelength ratio for various separation distances are compared in 

Figure 4.15 for wind speeds U = 4 m/s and U = 10 m/s, where the variable along the 

horizontal axis is the turbulence wavelength ξ. Figure 4.15 shows that the pressures at M1 

and M2 are incoherent when the separation distance is larger than the turbulence wavelength 

(i.e., d/λ > 1) regardless of the separation distance between microphones. When the 

turbulence wavelength is larger than the separation distance, the pressures at M1 and M2 are 

coherent; however, the coherence decreases with increasing separation distance, which 

indicates that large eddies decay with spatial distance as they are advected downstream by the 

mean flow. The decrease of spatial correlation with increasing separation distance is 

consistent with the outdoor measurements of wind noise correlation in microphone arrays in 

Ref. [86]. 

 

  

                              (a)                                                                      (b) 

Figure 4.15 The magnitude squared coherence of the pressure fluctuations as a function of the 

separation distance to turbulence wavelength (the turbulence wavelength ξ is the variable for 

the horizontal axis) ratio at various separation distances for the wind noise at wind speed (a) 

U = 4 m/s and (b) U = 10 m/s.  
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B. Wind noise reduction by porous microphone windscreens 

To investigate the wind noise reduction performance of the porous microphone 

windscreens, the pressure inside the porous windscreens with varying diameters (M2 in 

Figure 4.12(b)) is simulated and compared with that when the windscreen is absent (M2 in 

Figure 4.12(a)). The wind noise reduction as a function of the windscreen diameter to 

turbulence wavelength ratio (D0/ξ) is shown in Figure 4.16(a) for various wind speeds, where 

the wind noise reduction tends to form a single curve.  

 

  

                               (a)                                                                      (b) 

Figure 4.16 The wind noise reduction as a function of the windscreen diameter to turbulence 

wavelength ratio (the turbulence wavelength ξ is the variable for the horizontal axis) for (a) a 

90 mm diameter windscreen at various wind speeds and (b) windscreens of varying diameters 

at the wind speed U = 4 m/s.  

 

It can be observed that the wind noise reduction performance of the porous windscreen 

becomes most effective in a certain frequency range, where the windscreen diameter is 
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approximately 2 to 4 times of the turbulence wavelengths (2 < D0/ξ < 4), regardless of the 

wind speed. Figure 4.16(b) presents the wind noise reduction for different windscreen 

diameters at the wind speed U = 4 m/s, which also shows that the porous windscreen 

attenuates the wind noise more effectively when the windscreen diameter is approximately 2 

to 4 times of the turbulence wavelengths (2 < D0/ξ < 4), regardless of the windscreen 

diameters. Figure 4.16(b) also shows that the larger windscreen is more effective in reducing 

the wind noise, which is consistent with the measurement results in the reference [47], where 

the 20 cm diameter windscreen attenuates more wind noise than the 7 cm diameter 

windscreen.  

The simulation results in Figure 4.16 indicate that when the turbulence wavelength is 

much larger than the windscreen diameter (D0/ξ < 0.1), the porous windscreen has almost no 

effect on the wind noise reduction. With the turbulence wavelength increasing, the wind 

noise reduction first increases and then decreases after reaching the maximum. When the 

turbulence wavelength is much smaller than the windscreen diameter (D0/ξ > 10), the wind 

noise reduction approaches zero again. The above results imply that a large windscreen is 

needed to reduce the low frequency wind noise that corresponds to a large turbulence wave 

length for a certain wind speed.  

To understand the mechanism of the wind noise reduction by the porous microphone 

windscreen and the existence of this effective frequency range, the magnitude squared 

coherence of the pressure outside and inside the 90 mm diameter porous microphone 

windscreen (M1 and M2 in Figure 4.12(b)) is calculated and compared with that when the 

windscreen is absent (M1 and M2 in Figure 4.12(a)). The pressure spectra and magnitude 

squared coherence in Figure 4.17 show that the pressure spectra is reduced significantly in 

the frequency range from 200 Hz to 600 Hz. This can be more clearly observed in Figure 

4.17(c) and (d), where the wind noise reduction and magnitude squared coherence difference 
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as a function of the windscreen diameter to turbulence wavelength ratio (D0/ξ) are shown, 

respectively. Figure 4.17(d) shows that compared to the magnitude squared coherence 

without the porous windscreen, the magnitude squared coherence with the windscreen is 

reduced significantly when the windscreen diameter is approximately 2 to 4 times the 

turbulence wavelength (2 < D0/ξ < 4), which corresponds to the most effective wind noise 

reduction frequency range in Figure 4.17(c). It is noteworthy that the frequency range of the 

MSC reduction in Figure 4.17(d) is narrower than the wind noise reduction in Figure 4.17(c). 

The exact reason is unclear yet and will be investigated in the future with a detailed modeling 

of the pore structure of the porous microphone windscreens.  

This observation indicates that the mechanism of the wind noise reduction by porous 

microphone windscreens is related to the spatial decorrelation provided by the porous 

material and/or structure. When the turbulence wavelength is much larger than the 

windscreen, the wind noise is coherent regardless of whether the windscreen is present or not, 

there is barely any reduction in wind noise. When the diameter of the windscreen is between 

2 to 4 times the turbulence wavelength (2 < D0/ξ < 4), the spatial structure of wind noise is 

decorrelated by the windscreen, and the windscreen is most effective in wind noise reduction 

in this frequency range. When the turbulence wavelength is much smaller than the 

windscreen, the wind noise itself is incoherent and the windscreen is ineffective.  

The simulation results show that the wind noise level increases with the wind speed, and 

the wind noise is spatially coherent at a low frequency range where the turbulence 

wavelength is larger than the separation distance, but the coherence decreases with the 

separation distance. The porous microphone windscreens are more effective in reducing wind 

noise in the frequency range where the windscreen diameter is approximately 2 to 4 times the 

turbulence wavelength.  
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                             (a)                                                                     (b) 

   

                               (c)                                                                      (d) 

Figure 4.17 (a) The pressure spectra and (b) the magnitude squared coherence of the pressure 

fluctuations as a function of frequency, (c) the wind noise reduction,  and (d) the magnitude 

squared coherence difference (∆MSC) as a function of the ratio of the windscreen diameter 

(90 mm) to the turbulence wavelength (the turbulence wavelength ξ is the variable for the 

horizontal axis) for the wind noise at the wind speed U = 10 m/s.  

 

It is noteworthy that the correlation length is used in some literature to characterize the 

spatial decorrelation of wind noise by the porous windscreen and the wind fence enclosure 
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[50,79], where an exponential function is fitted to the measured coherence function at 

different separation distances and the fitted correlation length is used to calculate the wind 

noise inside the windscreens. Different from these studies, in this work the coherence 

between the pressures outside and inside the porous windscreen was measured directly and 

compared with that when the windscreen is absent. This can help show intuitively that the 

decorrelation is related to the wind noise reduction and provides an insight to the mechanism 

of wind noise reduction by porous windscreens.  

Although the above results show that the wind noise reduction by the porous microphone 

windscreen may be related to the decorrelation of the spatial structure of wind noise, there is 

no evidence demonstrating that the spatial decorrelation causes the wind noise reduction. The 

spatial decorrelation can be explained qualitatively based on the surface averaging 

assumption [52]. In the low frequency region where the eddy size is much larger than the 

windscreen, the windscreen has little effect on the eddy motion and the pressure around the 

windscreen surface is similar, so the surface averaging has little effect on the pressure 

fluctuations. In contrast, in the higher frequency region where the eddy size is smaller than 

the windscreen, the pressure fluctuations around the surface are uncorrelated due to the effect 

of the windscreen so the surface averaging reduces the spatial correlation with the pressure 

fluctuations outside the windscreen.  

The above discussions are based on the phenomenological understanding that the wind 

noise reduction by the porous windscreen is due to the pressure averaging along the 

windscreen surface. It is still not clear how this surface averaging happens and how it is 

related to the viscous and inertial effects of the porous windscreen. It is suggested that both 

the spatial decorrelation and wind noise reduction are due to the viscous and inertial forces 

introduced by the porous microphone windscreen, which are shown as the third and fourth 

terms on the right side of Eq. (4.4). How the wind noise is reduced by the windscreens, how 
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the spatial decorrelation happens and what its relationship is to the viscous and inertial forces 

are still not clear, which need to be investigated in the future.  

4.3.3 Experimental results 

To verify the reliability of the simulations, experiments were performed with a 

commercial fan in a quiet small meeting room, as shown in Figure 4.18(a). The fan and the 

microphone were approximately 0.8 m above the floor, with a separation distance of 0.5 m. 

The wind noise was measured with two B&K Type 4189 prepolarized free field 1/2'' 

microphones, both equipped with a B&K ZC0032 preamplifier, which were connected to a 

two channel B&K Type 2270 Hand-held Analyzer. The system was calibrated with a B&K 

Type 4231 calibrator. The wind noise reduction by spherical porous microphone windscreens 

of varying diameters was measured in the experiments. The arrangements of the microphones 

without and with a 90 mm diameter porous microphone windscreen are shown in Figure 

4.18(b) and (c), respectively. It is noteworthy that the turbulence scale in the experiment may 

be different from that in the simulations, both of which are much smaller than the 

atmospheric turbulence scale. Therefore these experiment results are not compared with the 

simulation results quantitatively.  

In the experiments, the fan ran at its highest speed and the mean wind speed around the 

microphone was about 3.8 m/s. The wind noise was first measured by a bare microphone at 

M1 inside the air flow and the background noise was measured by placing the microphone 

out of the flow but at the same distance from the fan. The wind noise and the background 

noise spectra of the environment with the fan running are given in Figure 4.19(a), which 

indicates that the wind noise level is much higher than the background noise, hence the 

measurement results with the microphone placed inside the air flow were primarily due to the 

wind from the fan. The peak at 62.5 Hz and its harmonics in the background noise are the 

mechanical noise due to the fan blades.  
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Figure 4.18 (a) The experimental setup and the microphone locations (b) without and (c) with 

a 90 mm windscreen of porosity 40 PPI.  

 

The spatial structure of the wind noise was first measured without the microphone porous 

windscreen as shown in Figure 4.18(b). The pressure at the two microphones with different 

separation distances was measured and the magnitude squared coherence is compared in 

Figure 4.19(b). It can be seen that when the separation distance is larger than the turbulence 

wavelength (i.e., d/ξ > 1), the wind noise at the two microphones are incoherent, while when 

the separation distance is smaller than the turbulence wavelength, the wind noise is coherent 

but the coherence decreases with increasing separation distance due to the decay of the 

turbulent eddies.  
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                            (a)                                                                         (b) 

Figure 4.19 (a) The pressure spectra as a function of frequency and (b) the magnitude squared 

coherence of the pressure fluctuations as a function of the separation distance to turbulence 

wavelength ratio (the turbulence wavelength ξ is the variable for the horizontal axis) 

measured for the wind noise at the wind speed U = 3.8 m/s.  

 

It is noteworthy that the wind noise in the simulations is caused by the turbulent wake 

generated by the upstream solid cylinders, while the wind noise in the experiments is due to 

the turbulence produced by the fan blades. Therefore, the experimental results cannot be 

quantitatively compared with the simulation results. However, the trend consistency between 

the measurement results in Figure 4.19 and the simulation results in Figure 4.15 provides 

evidence of the reliability of the simulations.  

The wind noise reduction by 4 porous microphone windscreens of varying diameters was 

measured and compared in Figure 4.20 as a function of the windscreen diameter to turbulence 

wavelength ratio (D0/ξ), where the wind speed is U = 3.8. The 45 mm and 90 mm diameter 

B&K microphone windscreens are UA-1236 and UA-0237, respectively, of which the 

porosity is unknown. The 60 mm and the other 90 mm diameter windscreens were 
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customized with 40 PPI (Pores Per Inch) polyurethane foam. It is clear from Figure 4.20 that 

the porous windscreens are most effective in attenuating wind noise in a certain frequency 

range, where the windscreen diameter is approximately 2 to 4 times the turbulence 

wavelength (2 < D0/ξ < 4). These experimental findings are consistent with the simulation 

results in Figure 4.16 and show that the larger windscreen attenuates more wind noise in the 

lower frequency region.  

 

 

Figure 4.20 The wind noise reduction as a function of  the windscreen diameter to turbulence 

wavelength ratio for windscreens of varying diameters measured for the wind noise at the 

wind speed U = 3.8 m/s. 
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                            (a)                                                                      (b) 

    

                                (c)                                                                     (d) 

Figure 4.21 (a) The pressure spectra, (b) the magnitude squared coherence of the pressure 

flucutations as a function of frequency, (c) the wind noise reduction, and (d) the magnitude 

squared coherence difference (∆MSC) measured without and with the 90 mm diameter 40 

PPI porous microphone windscreens measured for the wind noise at the wind speed U = 3.8 

m/s. 

 

The pressure spectra inside the 90 mm diameter porous microphone windscreen (40 PPI) 

is compared with that without the windscreen and the background noise in Figure 4.21(a), 

where the wind noise levels are higher than the background noise, so the measured noise is 
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primarily due to the wind from the fan. The magnitude squared coherence between the 

pressures measured at the two microphones are shown in Figure 4.21(b), where the 

magnitude squared coherence reduces significantly above 100 Hz. The wind noise reduction 

and the magnitude squared coherence difference as a function of the windscreen diameter to 

turbulence wavelength ratio (D0/ξ) are shown in Figure 4.21(c) and (d), respectively. It is 

clear that the magnitude squared coherence with the windscreen is reduced most significantly 

when the windscreen diameter is approximately 2 to 4 times the turbulence wavelengths (2 < 

D0/ξ < 4), corresponding to the most effective wind noise reduction frequency range in 

Figure 4.21(c). This is also consistent with the simulations in Figure 4.17.  

 

4.3.4 Conclusions 

In summary, this section investigates the spatial structure of wind noise and the physical 

mechanism of the wind noise reduction with porous microphone windscreens. Simulation and 

experimental results show that the wind noise is spatially correlated within a certain distance 

of the turbulence wavelength. The coherence in the lower frequency range decreases with the 

separation distance due to the spatial decay of large eddies. The porous microphone 

windscreens are more effective in reducing the wind noise in a certain frequency range, 

where the windscreen diameter is approximately 2 to 4 times the turbulence wavelength, and 

the mechanism of the wind noise reduction is related to the decorrelation effect of the spatial 

structure of wind noise due to the porous structure of microphone windscreens. Future work 

will investigate the physical mechanism of the wind noise reduction by the porous 

microphone windscreens, and the quantitative relationship between the spatial decorrelation 

of the wind noise structure and the viscous and inertial forces introduced by porous 

microphone windscreens.   
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4.4  Wind noise reduction of semi-spherical shell windscreens 

In this section, indoor experiments with an axial fan are performed to investigate the wind 

noise reduction of semi-spherical windscreens made of metal mesh. Five windscreens of 

different diameters are measured and compared to study the effect of windscreen size on the 

wind noise reduction performance at different mean wind speeds. Then, the performance of 

the multi-layer windscreens is investigated.  The effect of fabric coverings on the wind noise 

reduction of the semi-spherical metal mesh windscreens is also studied. Finally, the insertion 

loss of all the above windscreens is measured.  

4.4.1 Experimental setup 

The experimental setup is illustrated in Figure 4.22, where a commercial axial fan was 

used to generate the wind noise on the microphone. The microphone was 1.4 m from the fan 

and flush mounted on a flat plywood board, with the semi-spherical windscreen placed on the 

board. The wind noise was measured with a B&K type 4189 prepolarised free field 1/2'' 

microphone equipped with a B&K ZC0032 preamplifier connected to a B&K type 2270 

Hand-held Analyser. The system was calibrated with a B&K type 4231 calibrator.  

In the experiments, 5 semi-spherical metal mesh windscreens of different diameters were 

measured, as shown in Figure 4.23(a). The diameter of the windscreens varies from 7 cm to 

35 cm and is summarized in Table 4.1. The wind noise reduction of each windscreen is 

measured first to study the effect of the windscreen size on the performance. The wind noise 

reduction (WNR) defined in Eq. (4.6) is used to quantitatively examine the noise reduction 

performance of the windscreens.  
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                      (a)                                                (b)                                             (c) 

Figure 4.22 The experimental setup for (a) without windscreen, (b) with a semi-spherical 

metal mesh windscreen, (c) with a semi-spherical metal mesh windscreen covered with a 

cloth. 

 

            

(a)                                                             (b) 

Figure 4.23 (a) The five semi-spherical metal mesh windscreens and (b) the two covering 

cloths used in the experiments. 

 

Table 4.1 The diameters of the semi-spherical metal mesh windscreens in Figure 4.23(a) 

Windscreens Windscreen 1 Windscreen 2 Windscreen 3 Windscreen 4 Windscreen 5 

Diameter (cm) 7 14 20 27 35 
 

Then two or more windscreens are combined to form the multi-layer windscreens to 

investigate the effect of the secondary windscreen on the wind noise reduction performance. 
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In addition, the effect of the fabric coverings on the wind noise reduction is also investigated. 

Two types of cloths are used as the covering in the experiments: a thin table cloth and thick 

curtain, as shown in Figure 4.23(b).  

In addition to the above wind noise reduction measurements, the insertion loss of the 

sound signal due to the windscreens is also measured. The insertion loss is defined as the 

sound pressure level difference when the windscreen is absent and present, respectively, 

namely,  

 ,wo ,wsp pIL L L= − ,   (4.10) 

where Lp,ws and Lp,wo are the sound pressure levels measured with and without the 

windscreens, respectively. In the experiments, a B&K type 4295 omnidirectional sound 

source is used to generate the white noise signal. The measurement results for both the wind 

noise reduction and the insertion loss are illustrated and discussed in the next section.  

4.4.2 Results and discussions 

A. Size effect 

To investigate the effect of the windscreen size on the wind noise reduction performance 

of the semi-spherical metal mesh windscreens, the wind noise is measured when the 

windscreen is absent and present, respectively. The measured wind noise levels are compared 

in Figure 4.24 for different mean wind speeds. It can be seen that the wind noise inside the 

semi-spherical metal mesh windscreen with a diameter of 20 cm (black dotted lines in Figure 

4.24) is the lowest for all the three wind speeds. This can be more clearly observed from 

Table 4.2 for the overall wind noise reduction in the frequency range from 10 Hz to 1000 Hz. 

The maximum overall wind noise reduction is 13.4 dB, which is achieved by the 20 cm 

windscreen. The windscreens larger than 20 cm have smaller wind noise reduction. This is 
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consistent with the simulation results by Zhao et al. [131] that the larger windscreens may 

generate more wake turbulence that deteriorate the performance.  

It is noteworthy that Table 4.2 shows that the overall wind noise reduction also varies 

with the mean wind speed for the same windscreens, and the wind noise reduction is the 

lowest at the moderate wind speed (U = 3.0 m/s). This is different from the measurement 

results by Lin et al. [47] that the wind noise reduction is found to increase with the mean 

wind speed above 2.0 m/s . The reason might be that the air flow in their experiments is non-

turbulent while the air flow here is turbulent. For turbulent incoming flows, the pressure 

fluctuations depend on both the mean wind speed and the turbulence intensity, which is 

defined as the ratio of the root mean square velocity to the mean wind speed.  

 

Table 4.2 The overall Wind Noise Reduction (dB) in the frequency range from 10 Hz to 1000 

Hz for the single-layer windscreens 

WNR (dB) Windscreen 1 
(D = 7 cm) 

Windscreen 2 
(D = 14 cm) 

Windscreen 3 
(D = 20 cm) 

Windscreen 4 
(D = 27 cm) 

Windscreen 5 
(D = 35 cm) 

U = 2.1 m/s 9.8 12.7 13.4 13.2 10.9 

U = 3.0 m/s 6.6 7.5 10.8 7.2 5.0 

U = 4.2 m/s 4.4 8.8 13.4 10.2 8.7 
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(a)                                                                   (b) 

 

(c) 

Figure 4.24 The wind noise level (dB) measured by the microphone with and without 

windscreens at the wind speed of (a) U = 2.1 m/s, (b) U = 3.0 m/s and (c) U = 4.2 m/s. 

 

B. Multi-layer windscreens 

To investigate the effect of secondary windscreens on the wind noise reduction 

performance, the semi-spherical metal mesh windscreens are combined to form multi-layer 

windscreens. The wind noise reduction of the multi-layer windscreens is measured and 

compared to that of the single-layer windscreen in Figure 4.25, where “Windscreen 1+2” 

denotes the two-layer windscreen with a combination of Windscreen 1 (D = 7 cm) and 

Windscreen 2 (D = 14) in Table 4.1, and the same for the others. It can be seen that the extra 

windscreen introduces dramatic additional wind noise reduction, especially in the frequency 
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range below 100 Hz. The wind noise reduction increases with the number of layers, as 

illustrated in Table 4.3 for the overall wind noise reduction in the frequency range from 10 

Hz to 1000 Hz. The five-layer windscreen can attenuate the wind noise by 18.2 dB, which is 

4.8 dB higher than the maximum wind noise reduction achieved by the single-layer 

windscreen (13.4 dB) in Table 4.2.   

 

Table 4.3 The overall wind noise reduction (dB) in the frequency range from 10 Hz to 1000 

Hz for the multi-layer windscreens 

Windscreens Single-layer Two-layer Three-layer Four-layer Five-layer 

Wind Noise Reduction (dB) 6.7 14.2 15.0 17.0 18.2 
 

 

Figure 4.25 Comparison of the wind noise reduction (dB) of the multi-layer windscreens with 

the single-layer windscreen. 

 

C. Covering effect 

The wind noise reduction of the single-layer windscreens covered with the fabric cloth is 

compared with that of the original semi-spherical metal mesh windscreens in Figure 4.26 for 

the windscreens of diameter D = 7 cm (Windscreen 1) and D = 35 cm (Windscreen 2), 
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respectively. It can be seen that covering the windscreens with fabric cloth can increase the 

wind noise reduction and the thick cloth (covering 2) attenuates more wind noise than the 

thin cloth (covering 1). This can be clearly observed from Table 4.4, where the overall 

additional wind noise reduction due to the covering is summarised. The thin cloth (covering 

1) and thick cloth (covering 2) can introduce additional 1.0 ~ 3.5 dB and 3.0 ~ 7.0 dB wind 

noise reduction, respectively, compared to the original semi-spherical metal mesh 

windscreens.  

 

 

   (a)                                                                  (b) 

Figure 4.26 Comparison of the wind noise reduction (dB) of the windscreens with covering 

and that of the original semi-spherical metal mesh windscreens of diameter (a) D = 7 cm and 

(b) D = 35 cm. 

 

Table 4.4 The additional wind noise reduction (dB) in the frequency range from 10 Hz to 

1000 Hz for the windscreens with coverings. 

Additional WNR 
(dB) 

Windscreen 
1 

Windscreen 
2 

Windscreen 
3 

Windscreen 
4 

Windscreen 
5 

Covering 1 2.1 3.2 1.5 1.0 3.5 

Covering 2 3.0 6.8 3.1 5.1 7.0 
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D. Insertion loss 

A perfect microphone windscreen should be transparent to the desired sound signal while 

attenuating the wind noise. Therefore, the insertion loss of the windscreens to the sound 

signal should be as small as possible. The insertion loss of the single-layer windscreens with 

and without coverings is compared in Figure 4.27, which shows that the insertion loss of the 

original semi-spherical metal mesh windscreen varies from 0.1 dB to 0.4 dB. However, 

covering the windscreens with the fabric cloths introduces more insertion loss while reducing 

more wind noise. The insertion loss of the windscreens covered with the thin cloth (covering 

1) and thick cloth (covering 2) are 1.1 ~ 1.8 dB and 1.7 ~ 2.2 dB, respectively.  

 

 

Figure 4.27 Comparison of the insertion loss (dB) of the windscreens with covering and that 

of the original semi-spherical metal mesh windscreens. 
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Table 4.5 The overall insertion loss (dB) in the frequency range from 10 Hz to 1000 Hz for 

the windscreens with and without coverings. 

Insertion 
Loss (dB) 

Windscreen 
1 

Windscreen 
2 

Windscreen 
3 

Windscreen 
4 

Windscreen 
5 

Five-layer 
windscreen 

Without 
Covering 0.1 0.2 0.4 0.3 0.3 0.6 

With 
Covering 

1 
1.4 1.5 1.8 1.1 1.6 -- 

With 
Covering 

2 
1.7 2.0 1.9 1.7 2.2 -- 

 

The insertion loss of the five-layer windscreens without coverings is 0.6 dB, as shown in the 

last column in Table 4.5. This shows that the five-layer windscreen is superior to the 

windscreens with coverings because it shows larger wind noise reduction but smaller 

insertion loss. In addition, by comparing Figure 4.25 and Figure 4.26, it can be seen that the 

multi-layer windscreens can attenuate more wind noise in the low frequency range below 30 

Hz, which is desired for outdoor wind turbine noise measurements.  

In summary, the wind noise reduction and the insertion loss of the semi-spherical metal 

mesh microphone windscreens were measured for the single-layer windscreens with and 

without coverings, and the multi-layer windscreens. For the single-layer windscreens without 

coverings, the insertion loss is below 0.4 dB and the maximum wind noise reduction is 

achieved by the middle size windscreens (D = 20 cm). Covering the single-layer windscreens 

with the fabric cloths can introduce additional 1.0 ~ 7.0 dB wind noise reduction, but also 

lead to higher insertion loss (1.1 ~ 2.2 dB). The five-layer windscreen is recommended 

because it shows high wind noise reduction (18.2 dB) and low insertion loss (0.6 dB).  

4.4.3 Conclusions 

This section investigates both the wind noise reduction and the insertion loss of the semi-

spherical metal mesh windscreens by indoor experiments. Five single-layer windscreens were 
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measured to study the effect of the windscreen size on the noise reduction performance, and 

the mid-sized windscreen with a diameter of 20 cm was found to provide the maximum wind 

noise reduction. Covering the single-layer windscreens with a thin and thick cloth introduced 

an additional 1.0 ~ 3.5 dB and 3.0 ~ 7.0 dB wind noise reduction, but also increased the 

insertion loss to 1.1 ~ 2.2 dB. The multi-layer windscreens were found to improve the wind 

noise reduction while keeping the insertion loss small, which is superior to the fabric 

coverings. The best performance was achieved by the five-layer windscreen, with an 18.2 dB 

wind noise reduction and a 0.6 dB insertion loss. Future work includes conducting outdoor 

measurements and performing detailed measurements of the turbulence intensity of the 

incoming flow to analyse the effect of wind velocity on the wind noise reduction.  

4.5  Summary 

In summary, this chapter investigates the wind noise reduction mechanism of porous 

microphone windscreens and the wind noise reduction of the semi-spherical shell 

windscreens. The following conclusions are drawn from the simulations and experimental 

results.  

Firstly, the effects of the viscous and inertial forces on the wind noise reduction 

performance of porous microphone windscreens were studied with a single microphone 

inside the windscreens in Section 4.2. The wind noise reduction was found to first increase 

and then slightly decrease with both the viscous and inertial coefficients after reaching a 

maximum. Experimental results show that the 40 PPI windscreen has the highest wind noise 

reduction performance among five porous windscreens with porosity from 20 to 60 PPI, 

which supports the simulation results. Therefore, the design of porous microphone 

windscreens should balance the turbulence suppression inside and the wake generation 

behind the porous windscreens to achieve the optimal performance.  
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Secondly, two microphones were used to study the spatial structure of wind noise and the 

effect on porous microphone windscreens on wind noise structure in Section 4.3. The 

magnitude squared coherence of the pressure measured with two microphones was found to 

decrease with the separation distance and the wind noise is spatially correlated only within a 

certain distance less than the turbulence wavelength. The porous windscreen was found to be 

the most effective in attenuating wind noise in a certain frequency range, where the 

windscreen diameter is approximately 2 to 4 times the turbulence wavelengths (2 < D0/ξ < 4), 

regardless of the wind speed and windscreen diameter. The spatial coherence between the 

wind noise outside and inside a porous microphone windscreen was compared with that 

without the windscreen, and the coherence was found to decrease significantly when the 

windscreen diameter is approximately 2 to 4 times the turbulence wavelengths, corresponding 

to the most effective wind noise reduction frequency range of the windscreen. Experimental 

results with a fan are presented to support the simulations. 

Finally, both wind noise reduction and insertion loss of the semi-spherical shell 

microphone windscreens were measured in Section 4.4. It was found that the semi-spherical 

metal mesh windscreen with a fabric covering improves the wind noise reduction 

performance, but also increases the insertion loss to more than 1 dB, leading to inaccurate 

sound level measurements. In contrast, the multi-layer windscreens can dramatically raise the 

wind noise reduction, especially in the low frequency range below 100 Hz, while keeping the 

insertion loss within 0.6 dB. Therefore, the multi-layer windscreen is superior to the 

windscreens with fabric coverings.  

Future work includes 

• conducting outdoor measurements of the wind noise reduction of porous microphone 

windscreens and semi-spherical shell windscreens; 
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• performing detailed measurements of the velocity fluctuations and turbulence 

intensity inside and outside porous microphone windscreens; and  

• building porous microphone windscreens with variable porosity to further reduce 

wind noise. 
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5 Wind noise reduction with a spherical 

microphone array 

The work presented in this chapter has been submitted to The Journal of the Acoustical 

Society of America and Applied Acoustics, both of which are now under review. Please see 

Appendix A for details.  

5.1  Introduction 

Spherical microphone arrays, in which the microphones are mounted around the surface 

of a sphere, have been widely studied in the past decade and become attractive tools for 

sound source localisation. Spherical microphone arrays offer several advantages over 

classical linear, planar and circular arrays, e.g., the spherical array beamforming can be 

designed to enhance or attenuate sources in any direction due to the rotational symmetry; 

efficient algorithms can be developed in the spherical harmonics domain; beamforming can 

be implemented by decoupling beam pattern design from beam pattern steering, which 

provides simplicity and flexibility in array realization [132].  

Spherical microphone arrays have been used in room acoustics such as the geometry 

inference [133], acoustic absorption analysis [134], binaural reproduction [135], and arrival 

direction estimation [136,137] etc. They are also promising for outdoor wind turbine noise 

measurements due to its small size and portability, as well as noise source localization 

capability. However, the effect of wind noise caused by turbulent pressure fluctuations on the 

performance of spherical microphone arrays remains unknown. This chapter explores the 

potential applications of spherical microphone arrays on wind noise reduction and 

investigates the effect of wind noise on the spherical beamforming performance.  
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The signal processing of a spherical microphone array is usually realized in the spherical 

harmonics domain, based on spherical harmonic decomposition, i.e., a function p(θ, φ) can be 

represented using a  weighted sum of spherical harmonics, as [132] 
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where (θ, φ) is angular position on the sphere, pnm is the spherical harmonics coefficients, and 

Yn
m(θ, φ) is the spherical harmonics function of order n (n = 0, 1, …, N) and degree m (m = 

−n, −n+1, …, 0, 1, …, n), which is defined as 
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where Pn
m(·) is the associated Legendre functions, i is the imaginary unit, and (·)! is the 

factorial operator. The spherical harmonics coefficients can be obtained from the spherical 

Fourier transform, i.e., 
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where the superscript * denotes the complex conjugate.   

In practice, the number of microphones in the spherical array is limited, and the 

estimation of the sound pressure on the measurement sphere depends on the sampling scheme. 

In this case, the spherical Fourier transform in Eq. (5.3) needs to be discretised using a 

summation rather than integration, which can be written in matrix form as,  

 
†

nm =p Y p            (5.4) 

where the superscript † denotes the pseudo inverse operation, p = [p(θ1, φ1), …, p(θq, φq), …, 

p(θQ, φQ)]T, p(θq, φq) is the pressure signal at the q-th microphone and Q is the total number 

of microphones in the spherical microphone array. pnm = [p00, p1(-1), p10, p11, …, pNN]T are the 

spherical harmonics coefficients, N is the highest order of the decomposition, and the matrix 

Y of dimensions Q×(N+1)2 is given by 
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In this chapter, a spherical microphone array with 64 microphones mounted on a rigid 

sphere of diameter 20 cm is used to reduce wind noise without degrading the desired sound 

signal first, and then the effect of wind noise on the beamforming performance is investigated. 

5.2  Wind noise characterisation and reduction with a spherical 

microphone array 

This section utilizes a rigid spherical microphone array to characterize and reduce wind 

noise. The sound signal and wind noise are first measured with the spherical microphone 

array separately and analysed in the spherical harmonics domain. Then, a low pass filter 

method in the spherical harmonics domain is proposed to be used to reduce the wind noise 

but retain the desired sound signal. Experimental results demonstrate the feasibility of the 

proposed method in situations where the wind noise spectrum masks the sound signal.  

5.2.1 Proposed method 

A low pass filter method in the spherical harmonics domain (illustrated in Figure 5.1), is 

proposed to reduce wind noise captured by a spherical microphone array. The recorded 

signals are first transformed to the spherical harmonics domain via the discrete spherical 

Fourier transform in Eq. (5.4). Different modes of the spherical harmonics function represent 

different patterns. For example, the first mode Y0
0(θ, φ) represents a monopole pattern, the 

spherical harmonics of the order n = 1 are dipole patterns, and higher modes have more 

complex patterns [132]. For a low frequency sound signal with long wavelength, the 

spherical microphone array has little effect on the sound propagation and most of the sound 
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energy is dominated at the first few modes of the spherical harmonics. However, for the wind 

noise, the distribution of the noise energy along the sphere shows more complex patterns. 

This will be illustrated by the experimental results in the following sections.  

In consideration of the abovementioned difference between the characterization of the 

sound signal and wind noise in the spherical harmonics domain, this thesis proposes to filter 

out the wind noise by applying a low pass filter to the spherical harmonics coefficients, i.e., 

  'nm nm nm= ⋅p w p           (5.6) 

where p'nm are the filtered spherical harmonics coefficients, wnm = [w00, w1(-1), w10, w11, …, 

wNN]T are the low pass filter coefficients in the spherical harmonics domain. For brevity 

without loss of generality, a simple rectangular low pass filter is used here, i.e., 

 

1, ,
0, .nm

l M
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l M
≤

=  >  
      (5.7) 

where l = n(n+1)+m+1 is the mode number, and M is the threshold mode number above 

which the spherical harmonics are filtered out.  

After low pass filtering in the spherical harmonics domain, the spatial domain signals can 

be derived from the low pass filtered harmonics coefficients with the discrete inverse 

spherical Fourier transform 

 ' 'nm=p Yp                   (5.8) 

where p' is the obtained sound signal after wind noise reduction.  
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Spherical Fourier 
Transform
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Inverse Spherical Fourier 
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Figure 5.1 The diagram of the proposed spherical harmonic domain low pass filter method 

for wind noise reduction with a spherical microphone array.  

 

The advantage of the proposed method is that the desired sound signal can be extracted 

from wind noise even when the sound signal is much lower in amplitude than the wind noise. 

In addition, contrasting with existing wind noise reduction structures, e.g., large spatial filters 

[78] and wind fence enclosures [8], the proposed method uses only a portable spherical 

microphone array, which is convenient for outdoor noise measurements. Finally, the 

proposed method is flexible and can be extended to spherical beamforming for future sound 

source localization. The feasibility of the proposed method will be verified by experiments 

and discussed in the next section.  

5.2.2 Experimental results 

A. Experiment setup  
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The experiments were performed in an anechoic chamber with the experimental setup 

illustrated in Figure 5.2. A commercial axial fan was used to generate the wind noise and a 

B&K Type 4295 omnidirectional loudspeaker was employed to produce the sound signal. A 

Visisonics spherical microphone array with 64 microphones on a 20 cm diameter rigid sphere 

was utilized to measure the pressure fluctuations due to the sound signal and wind noise 

[138]. The spherical microphone array was placed in the middle of the anechoic chamber, and 

the fan and the loudspeaker were both 1.4 m away from the spherical microphone array. The 

fan was located at a direction of (90°, 0°) relative to the spherical microphone array, where 

(θ, φ) denotes the elevation angle and azimuth angle. The loudspeaker was placed at a variety 

of positions, but only results for the same direction as the fan (90°, 0°) are presented here for 

brevity because the results for other directions are similar.  

 

 

Figure 5.2 The experimental setup for wind noise measurement with a spherical microphone 

array in an anechoic chamber.  
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In the experiments, the sound signal was recorded first when the loudspeaker was active 

without the fan running, and then the wind noise was recorded when the fan was running 

alone. Finally, the sound signal, contaminated with wind noise, was recorded with both the 

loudspeaker and fan active. The time length for each recording is 30 s, which was divided 

into segments of 1 s for Fast Fourier Transform (FFT) calculation and spherical harmonic 

decomposition. The characteristics of the sound signal and wind noise were analysed in the 

spherical harmonics domain first, and then the difference between them utilized to filter out 

the wind noise in the spherical harmonics domain. The recording is  

Figure 5.3 compares the recorded time domain signals at the front of the sphere near the 

stagnation point (100°, 0°) and at the rear of the sphere (100°, 180°). It can be observed from 

Figure 5.3(a) that the low frequency sound signal at 150 Hz is similar at both the front and 

rear of the sphere, indicating that the sound signal is uniform around the sphere. In contrast, 

Figure 5.3(b) shows that the wind noise at the front of the sphere is much higher than that at 

the rear of the sphere, implying a complex distribution pattern of wind noise around the 

sphere. Figure 5.3(c) and (d) present the wind noise contaminated sound signal when the 

sound signal is 10 dB higher and 3 dB lower in amplitude than the wind noise at the signal 

frequency, respectively, and clearly show that the sound signal is significantly distorted by 

wind noise in the time domain. While the spectral and spatial characteristics of the wind noise 

and sound signals are quite distinct, separation is difficult in the time domain. Hence, on the 

basis of the spherical microphone signals, the analysis was performed in the spherical 

harmonics domain in the next section. 
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                              (a)                                                                     (b) 

  

                              (c)                                                                      (d) 

Figure 5.3 Comparison of the time domain signals measured at the front (100°, 0°) and the 

rear (100°, 180°) of the rigid spherical microphone array: (a) the 150 Hz tonal sound signal, 

(b) the wind noise, and the wind noise contaminated sound signal when the sound signal is 

(c) 10 dB higher and (d) 3 dB lower in amplitude than the wind noise. The mean wind speed 

at the spherical microphone array is U = 4.2 m/s.  

 

B. The sound signal in the spherical harmonics domain  

The measured sound pressure signals are substituted into Eq. (5.4) to calculate the 

spherical harmonics coefficients pnm, and the results for the sound signal without the fan 

running are shown in Figure 5.4 for frequencies 150 Hz and 500 Hz, respectively. In the 

calculation, the highest order N = 6, so there are L = (N+1)2 = 49 modes in the spherical 
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harmonic decomposition. The abscissa mode number in Figure 5.4 is l = n(n+1)+m+1, where 

l = 1 represents the first mode Y0
0(θ, φ) and the l = 49 indicates the highest mode YN

N(θ, φ).  

 

 

                              (a)                                                                      (b) 

Figure 5.4 The spherical harmonics coefficients for the tonal sound signal at the frequency of 

(a) 150 Hz and (b) 500 Hz.  

  

Figure 5.4(a) shows that when the sound signal is at 150 Hz, the spherical harmonic 

coefficient for the first mode is much larger than that for higher modes, indicating that the 

sound energy is predominantly in the first mode. To quantify the percentage of sound energy 

contained in the first L0 modes, the cumulative energy ratio is calculated as 
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where Cl denotes the l-th spherical harmonic coefficient, L is the total number of spherical 

harmonic modes. The accumulative energy ratio for the sound signal at 150 Hz and 500 Hz 

corresponding to Figure 5.4 is summarized in Table 5.1. For the sound signal at 150 Hz, it is 

clear that 93.0% of the sound energy is contained in the first mode.  
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Table 5.1. The cumulative energy ratio (%) for the sound signal 

Modes (L0) 1 2 3 4 5 10 

150 Hz 0.930 0.961 0.962 0.992 0.992 0.995 

500 Hz 0.288 0.632 0.649 0.928 0.959 0.993 
 

In acoustic measurements, the error in the Sound Pressure Level (SPL) is within 0.5 dB if 

90% of the sound energy is captured.  This implies that the measurement accuracy can be 

restricted to 0.5 dB by neglecting the higher modes but only retaining the first mode. To 

further verify this result, the low pass filter in the spherical harmonics domain with M = 1 is 

used in Eq. (5.6) to calculate the filtered spherical harmonics coefficients, which are 

substituted in Eq. (5.8) to obtain the filtered signal. Comparison of the filtered signal with the 

original signal in Figure 5.5(a) shows that the original SPL at 150 Hz is clearly extracted 

from the first mode with an error of 0.4 dB.  

 

  

                             (a)                                                                        (b) 

Figure 5.5 Comparison of the original signal with the spherical harmonics domain filtered 

signal for the tonal sound at the frequency of (a) 150 Hz and (b) 500 Hz.  

 

Similarly, Figure 5.4(b) shows that at 500 Hz, the spherical harmonic coefficients in the 

first few modes are much larger than those in higher modes, and Table 5.1 shows that 92.8% 
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of the sound energy is focused in the first 4 modes. A low pass filter in the spherical 

harmonics domain with M = 5 and M = 1 is applied and the filtered signal compared with the 

original signal in Figure 5.5(b). It can be seen that the desired SPL at 500 Hz can be extracted 

from the first 5 modes with an error of 0.3 dB. However, if only the first mode is utilized, the 

restored SPL is 5.5 dB lower than the original signal, which indicates that some of the sound 

energy is lost in the process.  

The above results demonstrate that over 90% of the sound energy is contained in the first 

spherical harmonic mode at 150 Hz and in the first 4 modes at 500 Hz. Hence, a low pass 

filter in the spherical harmonics domain can restore the original SPL with an error less than 

0.5 dB, and the threshold mode number M needs to be tuned for different frequency sound 

signals. For higher frequency sound signals, higher modes are needed to restore the SPL, as 

shown in Table 5.1. However, in the application scenario of wind noise reduction, the 

frequency range below 500 Hz is of greater interest because previous measurement results 

have shown that wind noise above 500 Hz is below 40 dB in both indoor and outdoor 

environments [119,139].  

C. Wind noise in the spherical harmonics domain 

The wind noise was measured first when the fan was running alone. In the experiment, 

the fan ran at three different speeds, and the mean wind speeds around the spherical 

microphone array were about 2.4 m/s, 3.3 m/s and 4.2 m/s, respectively. The spherical 

harmonics coefficients at frequencies 150 Hz and 500 Hz are shown in Figure 5.6 for 4.2 m/s. 

It can be observed that the spherical harmonics coefficients for the wind noise seem randomly 

distributed along the mode number in the spherical harmonics domain, which is different 

from that for the sound signals shown in Figure 5.4. To quantify the difference, Table 5.2 

summarizes the cumulative energy ratio for the wind noise at different wind speeds.  
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                              (a)                                                                      (b) 

Figure 5.6 The spherical harmonics coefficients for the wind noise at the frequency of (a) 150 

Hz and (b) 500 Hz.  

 

Table 5.2. The cumulative energy ratio (%) for the wind noise at different speeds 

Modes (L0) 1 2 3 4 5 10 

U = 2.4 m/s 
150 Hz 0.004 0.007 0.008 0.025 0.026 0.131 

500 Hz 0.012 0.021 0.023 0.033 0.063 0.162 

U = 3.3 m/s 
150 Hz 0.007 0.010 0.030 0.046 0.059 0.117 

500 Hz 0.001 0.016 0.036 0.051 0.092 0.138 

U = 4.2 m/s 
150 Hz 0.004 0.074 0.081 0.092 0.129 0.148 

500 Hz 0.006 0.010 0.015 0.031 0.034 0.104 
 

It can be seen that less than 1% of the wind noise energy is contained in the first mode at 

150 Hz, while less than 10% of the wind noise energy is contained in the first 4 modes at 500 

Hz. This is dramatically different from the sound signals in Table 5.1, where over 90% of the 

sound energy is contained in the first mode at 150 Hz, and in first 4 modes at 500 Hz. In the 

acoustic measurements, if less than 1% and 10% wind noise energy are retained, the wind 

noise reductions are over 20 dB and 10 dB, respectively. Therefore, in comparison with Table 
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5.1 and Table 5.2, more than 20 dB and 10 dB wind noise reduction are expected at 150 Hz 

and 500 Hz, respectively, with a measurement accuracy of the desired SPL within 0.5 dB.  

Figure 5.7(a) presents the magnitude of the spherical harmonics coefficients of the wind 

noise at different modes and frequencies below 1000 Hz. This shows that the wind noise is 

distributed randomly in the spherical harmonics domain at each frequency from 10 Hz to 

1000 Hz. This implies that if the sound signal dominates in the lower order modes, then the 

wind noise can be reduced using the proposed low pass filter approach in the spherical 

harmonics domain by filtering out the higher modes. The filtered results with different 

threshold mode numbers are compared with the original signal in Figure 5.7(b), which shows 

that the wind noise is reduced in the whole frequency range from 10 Hz to 1000 Hz by the 

proposed low pass filtering in the spherical harmonics domain.  

 

    

                         (a)                                                                            (b) 

Figure 5.7 (a) The magnitude of the spherical harmonics coefficients of the wind noise at 

different modes and frequencies, and (b) the comparison of the original signal and the 

spherical harmonics domain filtered signal with different threshold mode number.  
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                              (a)                                                                      (b) 

Figure 5.8 (a) The wind noise reduction as a function of frequency for various threshold 

mode number M, and (b) the overall wind noise reduction as a function of the threshold mode 

number M.  

 

This can be observed more clearly from Figure 5.8(a) for the wind noise reduction as a 

function of frequency. In addition, more wind noise is attenuated when fewer modes are used 

in the low pass filtering, as indicated in Figure 5.8(b), where the overall wind noise reduction 

(WNR) in the whole frequency range 10 Hz to 1000 Hz is shown as a function of the 

threshold mode number.  The overall WNR decreases from 19.0 dB to 3.5 dB as the threshold 

mode number increases from 1 to 48.  

The above results demonstrate that the spherical harmonics coefficients for the wind 

noise are randomly distributed at each frequency in the spherical harmonics domain, as 

opposed to the sound signal where the sound energy dominates at the first few spherical 

harmonics modes. This difference can be utilized to reduce wind noise while retaining the 

desired sound signal with the proposed low pass filter method in the spherical harmonics 

domain.  
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To investigate the performance of the proposed spherical harmonics domain low pass 

filter method when retrieving a sound signal from wind noise, a noisy sound signal was 

recorded with the spherical microphone array with both the loudspeaker and the fan 

operating. A single tonal sound signal at different frequencies was played through the 

loudspeaker to conduct two sets of experiments.  

In the first set of experiments, the sound signal was higher in amplitude than the wind 

noise and the results are shown in Figure 5.9, where the spherical harmonics coefficients are 

presented for the noisy sound signal when the frequency of the sound signal is 150 Hz and 

500 Hz, respectively. In Figure 5.9, the SPL of the desired sound signal is 10 dB and 8 dB 

higher than the wind noise at 150 Hz and 500 Hz, respectively. In this case, the difference 

between the sound and the wind noise in the spherical harmonics domain can be observed 

because the sound energy is higher than the wind noise at the same frequency, as illustrated 

by the red marker ellipses in Figure 5.9(a) and (b). On the other hand, the wind noise energy 

is randomly distributed across the frequency range in the spherical harmonics domain, which 

is consistent with Figure 5.7(a).  

These observations indicate that the wind noise can be reduced by the proposed low pass 

filter method in the spherical harmonics domain as discussed in the previous section. The low 

pass filtered results are compared with the original signal in Figure 5.9(c) and (d) for the 

single tonal sound of frequency 150 Hz and 500 Hz, respectively. It can be observed from 

Figure 5.9(c) that when only the first mode is kept in the spherical harmonics domain, the 

wind noise is reduced by 19.2 dB across the whole frequency range from 10 Hz to 1000 Hz 

and the desired SPL at 150 Hz is retained with an error of 0.5 dB. For the 500 Hz tonal sound 

in Figure 5.9(d), when only the first mode is retained in the spherical harmonics domain (M = 

1), the wind noise is significantly reduced by 19.2 dB but the desired sound signal is also 

degraded by 5.5 dB. When the first 5 modes are retained in the spherical harmonics domain 
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(M = 5), the wind noise is reduced by 13.0 dB across the whole frequency range from 10 Hz 

to 1000 Hz, and the desired SPL is degraded by 1.0 dB.  

 

    

                           (a)                                                                     (b) 

  

                              (c)                                                                      (d) 

Figure 5.9 The magnitude of the spherical harmonics coefficients for the wind noise 

contaminated sound signal at different modes and frequencies for a sound signal at (a) 150 

Hz and (b) 500 Hz, and comparison of the spherical harmonics domain low pass filtered 

signal with the original signal for the sound signal at (c) 150 Hz and (d) 500 Hz. The sound 

signal at 150 Hz and 500 Hz are 10 dB and 8 dB higher than the wind noise, respectively.  
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The above results demonstrate that when the sound signal is higher in amplitude than the 

wind noise, the proposed low pass filter method in the spherical harmonics domain can 

reduce the measured wind noise by 13.0 dB with the sound signal degradation less than 1.0 

dB. In practical applications, the sound signal might be lower in amplitude than the wind 

noise. In this situation, the difference between the sound signal and wind noise cannot be 

seen in the spherical harmonics domain, as illustrated by Figure 5.10(a) and (b). However, the 

spherical harmonics domain low pass filtered results in Figure 5.10( (c) and (d) demonstrate 

that the proposed method can still extract the desired sound signal from the wind noise.  

For the 150 Hz tonal sound with a sound pressure level of 84 dB (3 dB lower than the 

wind noise), the low pass filtered results with M = 1 and M = 5 obtain the same sound level of 

84 dB at 150 Hz in Figure 5.9(c). For the 500 Hz tonal sound with a sound pressure level of 

71 dB (8 dB lower than the wind noise), the low pass filtered results with M = 5 and M = 10 

derive almost the same sound level of 70 dB at 500 Hz, which are both about 5 dB higher 

than that with M = 1 as shown in Figure 5.9(d).   
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                          (a)                                                                      (b) 

  

                              (c)                                                                       (d) 

Figure 5.10 The magnitude of the spherical harmonics coefficients of the wind noise 

contaminated sound signal at different mode and different frequency for sound signal at (a) 

150 Hz and (b) 500 Hz, and comparison of the spherical harmonics domain low pass filtered 

signal with the original signal for the sound signal at (c) 150 Hz and (d) 500 Hz. The sound 

signal at 150 Hz and 500 Hz are 3 dB and 8 dB lower than the wind noise, respectively.  

 

To further evaluate the performance of the proposed method, a multi-tonal signal 

consisting of 125 Hz, 250 Hz, and 500 Hz sounds was recorded in the presence of wind noise. 

The 125 Hz sound was 94 dB and 7 dB higher than the wind noise, the 250 Hz sound was 82 

dB which is the same level as the wind noise, and the 500 Hz sound was 72 dB and 2.5 dB 

lower than the wind noise. The spherical harmonics domain low pass filtered signals with 
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different threshold mode numbers are compared with the original signal in Figure 5.11. It can 

be seen that when only the first mode is retained (M = 1), the error for 250 Hz and 500 Hz 

sounds is 1.5 dB and 3.0 dB, respectively, although the error for the 125 Hz sound is within 

0.5 dB. When the first 5 modes are retained (M = 5), the error is within 1.0 dB for all the 

three tonal signals, and the wind noise is reduced by 10 dB. With more than 5 modes retained 

(e.g., M = 10), there is almost no further improvement in the measurement accuracy of the 

desired sound signals, but the wind noise reduction is decreased by 3 dB. Therefore, the 

threshold mode number M = 5 is considered appropriate for this case, with a 10 dB wind 

noise reduction and measurement error within 1.0 dB.  

In summary, the above results demonstrate that the proposed low pass filter method in the 

spherical harmonics domain can extract the desired sound signal from the noisy signal even 

when the sound signal is lower in amplitude than the wind noise. In theory, more than 20 dB 

and 10 dB measured wind noise reduction are expected at 150 Hz and 500 Hz, respectively, 

with a measurement accuracy of the desired SPL within 0.5 dB, as shown in Table 5.1 and 

Table 5.2. In the experiments, 19.2 dB and 13.2 dB wind noise reductions were observed at 

150 Hz and 500 Hz, respectively, with the measurement accuracy of the desired SPL within 

1.0 dB. Experimental results with the multi-tonal sound signals show a wind noise reduction 

of 10 dB with the measurement error within 1.0 dB for all three tonal sounds.  

It is noteworthy that the above results are based on the indoor fan test. For the potential 

full-field outdoor wind turbine testing, the sound signals should be similar to those in the 

current stage, e.g., most of the sound energy is focused in the first few modes in the spherical 

harmonics domain. The wind noise may be different in the following two aspects, first the 

wind direction keeps changing in outdoor environments, and second the turbulence scale in 

atmospheric turbulence is much larger than that in the wind produced by fans. The changing 

wind direction will not be a problem, because for real time processing, the wind direction can 
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be assumed to be constant in a short time period such as 1 second. On the other hand, the 

large scale turbulence might change the wind noise energy distribution in the spherical 

harmonics domain, which might affect the wind noise reduction performance. This will be 

investigated in the future with outdoor measurement of wind noise with the spherical 

microphone array.  

 

 

Figure 5.11 Comparison of the spherical harmonics domain low pass filtered signal with the 

original signal for the multi-tonal sound signal consisting of 125 Hz, 250 Hz and 500 Hz 

tonal sound. 

 

5.2.3 Conclusions 

This section utilized a portable rigid spherical microphone array to characterize and 

reduce wind noise without degrading the sound pressure level of the desired sound signal to 

be measured. The wind noise was found to be randomly distributed in the spherical 

harmonics domain at each frequency, contrasting with the sound signal that dominates in the 

first few spherical harmonics modes. A low pass filter method in the spherical harmonics 
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domain was proposed to reduce the wind noise while preserving the sound pressure level of 

the desired sound signal. Experimental results show that 19.2 dB and 13.2 dB wind noise 

reduction are observed at 150 Hz and 500 Hz, respectively, with the measurement accuracy 

of the desired sound pressure level within 1.0 dB, even when the sound signal is 8 dB lower 

than the wind noise. The proposed method was also validated with the measurements of the 

multi-tonal sound signals in the presence of wind noise, which showed a 10 dB wind noise 

reduction with the measurement error within 1.0 dB. Future work will extend the proposed 

method to sound source localization using beamforming algorithms in the spherical 

harmonics domain.  

5.3  Wind noise effect on the beamforming performance of a 

spherical microphone array 

In this section, the wind noise effect on the common spherical beamforming performance 

is investigated in the laboratory environment. In the experiments, a commercial axial fan is 

used to generate wind noise, which is measured with a rigid spherical microphone array and 

analyzed in the spherical harmonics domain. The effect of wind noise on the spherical 

harmonic beamforming performance of the Plane Wave Decomposition (PWD) beamformer, 

Delay and Sum (DAS) beamformer and Maximum Variance Distortionless Response 

(MVDR) beamformer are presented and compared in terms of the directivity factor first. 

Then, experimental results of the MVDR beamforming map with and without wind noise are 

illustrated and discussed for different Signal-to-Noise Ratio (SNR) at different frequencies.  

5.3.1 Theoretical models 

The recorded signals are first transformed to the spherical harmonics domain via the 

discrete spherical Fourier transform, i.e., [132] 

 

†
nm =x Y x

 

 (5.10) 
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where the superscript † denotes the pseudo inverse operation, x = [x(θ1, φ1), …, x(θq, φq), …, 

x(θQ, φQ)]T, x(θq, φq) is the pressure signal at the q-th microphone and Q = 64 is the number 

of microphones in the spherical microphone array, xnm = [x00, x1(-1), x10, x11, …, xNN]T is the 

spherical harmonics coefficients, N is the highest order of the decomposition, and the 

elements of the matrix Y of dimensions Q×(N+1)2 defined in Eq. (5.8) 

Three typical spherical beamforming algorithms are investigated, i.e., the PWD 

beamformer, the DAS beamformer, and the MVDR beamformer. The filter coefficients of all 

the three beamformers can be written in the following form with different matrix B [132] 

 

H 1
H

H 1
nm

nm
nm nm

−

−=
v Bw

v B v
 

 (5.11) 

where vnm = [v00, v1(-1), v10, v11, …, vNN], vnm = bn(kr)[Yn
m(θl, φl)]*, bn = 4πin[jn(kr) – 

jn'(ka)/hn'(ka)hn(kr)], jn is the spherical Bessel function, hn is the spherical Hankel function of 

the section kind, jn' and hn' are their derivatives, k and a are the wavenumber and array radius, 

respectively. 

The PWD beamformer is based on the idea that the signals recorded by the spherical 

microphone array can be decomposed to plane waves with directional amplitude density, and 

the matrix B is given as [140] 

 

( )2 2 2 2 2
0 1 1 1

1 diag , , , ,
4 Nb b b b b
π

= ⋅B L

 

 (5.12) 

The DAS beamformer has the attractive property of a constant white noise gain with a 

maximum robustness, and the matrix B is given as [132] 

 

1 H− −=B Y Y

 

 (5.13) 

The MVDR beamformer aims to minimize the output power subject to a distortionless 

constraint on the response in the look direction, and the matrix B is given as [141] 

 

HE nm nm =  B x x

 

 (5.14) 
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where E[·] denotes the expectation operator. To improve the robustness of the MVDR 

beamformer, the frequency smoothing technique is applied [142]. In practical 

implementations, Eq. (5.14) is estimated by 

 

( ) ( )H

1

1 I

nm nm
i

i i
I =

= ∑B x x

 

 (5.15) 

where I denotes the number of time domain snapshots [141].  

When the array weights are determined with Eq. (5.11), the output of the spherical 

microphone array beamformer is written as 

 

( ) H, nm nmy θ φ = w x

 

 (5.16) 

In the presence of wind noise, the recorded signal can be written as the superposition of 

the sound signal snm and the wind noise nnm, i.e., xnm = snm + nnm.  

 

( ) ( )H, nm nm nmy θ φ = +w s n

 

 (5.17) 

Therefore the presence of wind noise introduces an extra term on the array output, i.e., the 

spherical harmonic coefficients of wind noise. In the following section, wind noise is 

measured with a spherical microphone array and analyzed in the spherical harmonics domain 

first, and then the effect of wind noise on the beamforming performance is studied with 

simulation and experiments. To quantitatively evaluate the beamforming performance, the 

Root Mean Square Error (RMSE) is defined to assess the accuracy of the sound source 

direction localization, i.e., [137] 

 

( ) ( )2 2
0 s 0 sRMSE θ θ φ φ= − + −

 

 (5.18) 

where (θs, φs) and (θ0, φ0) are the actual and estimated sound source direction, respectively. In 

addition, the Directivity Factor (DF) is calculated as [20]  

 
( )

( )

2
0 0

2 2

0 0

,
1 , sin
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y d d
π π
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θ φ θ θ φ
π
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 (5.19) 
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where y(θ, φ) is the array output at the direction (θ, φ), and (θ0, φ0) is the front direction with 

a maximum array output power. The DF is a scalar that quantifies the array directivity and 

measures the ratio between the peak and the average array output power over all directions. It 

can be considered as the improvement of the signal-to-noise ratio provided by the array due 

to its directional response [132]. 

5.3.2  Simulations and experiments 

A. Wind noise measurements 

The experiments were performed in an anechoic chamber with the experimental setup 

illustrated in Figure 5.12. A commercial axial fan was used to generate the wind noise and a 

B&K Type 4295 omnidirectional loudspeaker was employed to produce the sound signal. A 

Visisonics spherical microphone array with 64 microphones on a 20 cm diameter rigid sphere 

was utilized to measure the pressure fluctuations due to the sound signal and wind noise 

[138]. The spherical microphone array was placed in the middle of the anechoic chamber, and 

the fan and the loudspeaker were both 1.4 m away from the spherical microphone array. The 

fan was located at a direction of (90°, 90°) relative to the spherical microphone array, where 

(θ, φ) denotes the elevation angle and azimuth angle.  
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Figure 5.12. Experimental setup in the anechoic chamber. 

 

The wind noise was first measured when the fan was running at its highest speed and the 

mean wind speed around the spherical microphone array is about 4.2 m/s. It was found that 

the distribution of the wind noise around the sphere is non-uniform and has complex patterns, 

e.g., the wind noise on the microphone at the front of the sphere is much higher than that at 

the rear of the sphere, as shown in Figure 5.13(a). This means that the wind noise is highly 

directional, thus the spherical harmonic coefficients of higher modes will be large, because 

different modes of the spherical harmonics function represent different patterns, e.g., the first 

mode Y0
0(θ, φ) represents a monopole pattern, the spherical harmonics of the order n = 1 are 

dipole patterns, and higher modes have more complex patterns [16].  

To illustrate this, the spherical harmonics coefficients of the wind noise at 20 Hz, 60 Hz 

and 100 Hz are shown in Figure 5.13(b) to (d), where the mode number is l = n(n+1)+m+1, 

where l = 1 represents the first mode Y0
0(θ, φ) and the l = 49 indicates the highest mode 

YN
N(θ, φ). It is clear that the spherical harmonics coefficients of higher modes have similar 

value to those of lower modes and no regularity of the coefficients distribution is observed at 

the three frequencies. In contrast, the sound signal below 100 Hz is dominated by the first 
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few spherical harmonics, as shown in Figure 5.14 for a single tonal sound at 100 Hz recorded 

by the spherical microphone array. At 100 Hz, the sound wavelength is much larger than the 

size of the spherical microphone array; hence the sound signals at the front and rear of the 

sphere are almost the same both in amplitude and phase, as shown in Figure 5.14(a). In this 

case, the directivity pattern is almost a monopole, so the coefficient of the first spherical 

harmonic mode is much larger than those of the higher modes, as shown in Figure 5.14(b). 

 

                                   (a)                                                             (b) 

 

                                   (c)                                                             (d) 

Figure 5.13 (a) Comparison of the time domain wind noise waveform measured at the front 

(100°, 0°) and the rear (100°, 180°) of the rigid spherical microphone array, and the spherical 

harmonics coefficients at (b) 20 Hz, (c) 60 Hz and (d) 100 Hz.  
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                                   (a)                                                             (b) 

Figure 5.14 Comparison of the time domain sound signal waveform measured at the front 

(100°, 0°) and the rear (100°, 180°) of the rigid spherical microphone array, and (b) the 

spherical harmonics coefficients at 100 Hz.  

 

The distinct characteristics of wind noise and sound signal in the spherical harmonics 

domain can be explained qualitatively. Wind noise is caused by pressure fluctuations in 

turbulence rather than the impressible sound wave. The turbulence wavelength ζ = U0/f is 

much smaller than the sound wavelength λ = c0/f at frequency f, because the wind speed U0 

(4.2 m/s in our test) is usually two orders of magnitude smaller than the speed of sound c0 

(340 m/s) [9]. At low frequency, e.g., 100 Hz, the sound wavelength is 3.4 m, much larger 

than the sphere diameter (here 0.2 m), while the turbulence wavelength is only 0.042 m, 

much smaller than the sphere diameter. This might be the reason that the sound energy is 

dominated by the first few modes and the wind noise energy is irregularly distributed in the 

spherical harmonics domain.  

By substituting the spherical harmonic coefficients of the wind nose and sound signal to 

Eq. (5.16), the array output can be obtained. Comparing Figure 5.13(b) and Figure 5.14(c), 

the presence of wind noise introduces an extra vector on the spherical harmonic coefficients 
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of the desired sound signal. The quantitative effect of wind noise on the beamforming 

performance will be investigated in the next section.  

B. Simulation results 

To investigate effect of wind noise on the beamforming performance of the PWD, DAS, 

and MVDR beamformers systematically, synthetic tonal signals of different frequencies are 

superposed to the measured wind noise to compose the noisy signals of various SNR. The 

SNR is defined as the ratio of the overall sound energy to the overall wind noise energy in all 

the microphones in the spherical array, which is calculated as  

 ( )
( )

( )

2
s,

1
10

2
n,

1

10log

Q

q
q
Q

q
q

P f
SNR f

P f

=

=

=
∑

∑
  (5.20) 

where Ps,q(f) and Pn,q(f) is the sound signal and wind noise at the q-th microphone, 

respectively. The performance of the beamforming is evaluated by the RMSE and the DF for 

the sound source localization accuracy and the spatial resolution, respectively. Because the 

wind noise dominates in the low frequency range below 200 Hz, the effect of wind noise on 

the beamforming performance of the PWD, DAS and MVDR beamformers are illustrated in 

Figure 5.15, which shows the DF as a function of frequency from 10 Hz to 200 Hz for 

different SNR. In the simulation, each calculation is based on 1 s recording of the wind noise 

with a sampling rate of 44.1 kHz, and a total of 20 s recordings are calculated for average, 

where the vertical bars indicate the standard deviation.  

When there is no wind noise, all three types of beamformers can accurately localize the 

sound source location as the RMSE are all zero. The MVDR shows the best spatial resolution 

because it has the highest DF of about 28 dB, while the DAS beamformer has the worst 

spatial resolution with a DF of −3.8 dB. Figure 5.15 shows that when the wind noise is 

present, the PWD beamformer fails to localize the sound source direction because the RMSE 
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is over 60°, except at very high SNR such as 40 dB, where the RMSE is about 25°. Therefore, 

the PWD beamformer is not robust to wind noise. In contrast, the DF of the DAS beamformer 

is not affected by the wind noise while the RMSE grows with decreasing SNR while. When 

the SNR is 0 dB, the RMSE of the DAS beamformer is about 6° whereas when the SNR is 

−10 dB, the RMSE varies between 10° and 20° in the frequency range between 20 Hz and 

200 Hz, as illustrated in Figure 5.15(c). It is clear that the DAS beamformer is much more 

robust to the wind noise than the PWD beamformer. This is because the PWD beamformer is 

designed to maximize the directivity without considering the robustness, hence it has higher 

DF for clean signals but is not robust to noise [16]. In contrast, the DAS beamformer is 

designed to maximize the robustness without accounting for the directivity, thus it is robust to 

noise but shows a poor spatial resolution, especially in the low frequency range [16]. 

Different from the PWD and DAS beamformers, which are designed for clean signals and 

the array weights are independent of the input signals, the MVDR beamformer is tailored to 

the actual measured noisy signals. Figure 5.15(e) and (f) show that the RMSE of the MVDR 

beamformer is slightly increased due to the presence of wind noise, while the DF is heavily 

degraded and decreases with the SNR. When the SNR is −10 dB, the RMSE decreases from 

25° at 10 Hz to 4° at 200 Hz, and the DF increases from 0.6 dB at 10 Hz to 8.4 dB at 200 Hz. 

The MVDR beamformer shows better performance in the presence of wind noise with a 

smaller RMSE but a higher DF compared to the DAS beamformer. It can be observed from 

Figure 5.15(c) and (e) that the beamforming performance decreases in the lower frequency 

range for both DAS and MVDR beamformers. This might because at low frequencies such as 

10 Hz, the turbulence wavelength is 0.42 m, which is comparable to the size of the spherical 

microphone array and the wind noise signals around the sphere becomes more correlated that 

those at higher frequencies.  
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                              (a)                                                                     (b) 

 

                              (c)                                                                     (d) 

 

                              (e)                                                                     (f) 

Figure 5.15 (a) The RMSE and (b) the DF for the PWD beamformer, (c) the RMSE and (d) 

the DF for the DAS beamformer, and (e) the RMSE and (f) the DF for the MVDR 

beamformer as a function of frequency.   
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In summary, the presence of wind noise degrades the beamforming performance of the 

PWD, DAS, and MVDR beamformers in terms of the sound source direction localization 

accuracy and spatial resolution. The PWD fails as a beamformer under windy conditions 

because the RMSE is too large to find the sound source direction. The localization accuracy 

of the DAS beamformer is reduced although the spatial resolution is not affected by the wind 

noise. In contrast, the MVDR beamformer shows the best performance among the three 

beamformers with the smallest RMSE but the highest DF, and the performance increases with 

frequency from 10 Hz to 200 Hz. 

C. Experiment results 

To investigate the MVDR beamforming performance in the presence of wind noise and 

compare with that without wind, experiments were carried out to in an anechoic chamber to 

record both the pure sound signal and the wind noise contaminated sound signals, as shown 

in Figure 5.12. The fan was located at a direction of (90°, 90°) relative to the spherical 

microphone array, respectively. The pure sound signal was recorded first when the 

loudspeaker was active while the fan was not working. Then, the noisy signals were recorded 

when both the fan and sound source were active, and the sound pressure level of the single 

tonal sound signal was tuned to be 5 dB higher (SNR = +5dB), the same level (SNR = 0 dB), 

and 5 dB lower (SNR = −5 dB) than the wind noise.  

The experimental results of the beamforming map at 100 Hz are shown in Figure 5.16 to 

Figure 5.18 for the PWD, DAS and MVDR beamformers, respectively. Figure 5.16 shows 

that when there is no wind noise, the PWD beamformer is able to estimate the sound source 

direction with a 6.7° bias from the exact sound source direction. However, the PWD 

beamformer fails to localize the sound source direction when the wind noise is present, in 
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consistent with the simulation results in Figure 5.15(a), where a more than 90° RMSE is 

observed.  

 

 

                              (a)                                                                       (b) 

 

                               (c)                                                                       (d) 

Figure 5.16. The effect of wind noise on the PWD beamforming map at 100 Hz (a) without 

wind noise, and with wind noise at a SNR of (b) +5 dB, (c) 0 dB, and (d) −5 dB. The red 

cross markers indicate the actual sound source direction.  

 

In contrast, the DAS beamformer is more robust to wind noise, as illustrated in Figure 

5.17, which shows that when there is no wind, the sound source direction is correctly 

estimated, whereas when the wind noise is present, a small bias from the actual sound source 

direction is observed, i.e., a RMSE of 9.5°, 10.6° and 11.8° corresponding to the SNR of +5 

dB, 0 dB and −5 dB, respectively. It is worth noting that the dynamic range shown by the 

color bar in Figure 5.17 is zoomed to 1 dB for the array output pattern to be observed clearly, 
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therefore the spatial resolution of the DAS beamformer is very poor, with a DF of −3.6 dB. 

This is consistent with the simulation results in Figure 5.15(c) where a DF of −3.8 dB is 

obtained for the DAS beamformer regardless of the SNR value.  

 

 

                              (a)                                                                      (b) 

 

                               (c)                                                                     (d) 

Figure 5.17. The effect of wind noise on the DAS beamforming map at 100 Hz (a) without 

wind noise, and with wind noise at a SNR of (b) +5 dB, (c) 0 dB, and (d) −5 dB. The red 

cross markers indicate the actual sound source direction.  

 

The MVDR beamformer shows the best performance among the three beamformers, as 

shown in Figure 5.18. It can be observed that the sound source direction is correctly localized 

by the MVDR beamformer when there is no wind noise, with a high resolution, i.e., the DF is 

8.2 dB. In the presence of wind noise, the estimated sound source direction is slightly biased 

from the actual sound source direction denoted by the red cross marker in Figure 5.18, with a 

 

 

 
 

 

 

 

 

142 
 



 

RMSE of 6.7°, 7.1° and 8.7° corresponding to the SNR of +5 dB, 0 dB and −5 dB, 

respectively. In addition, the spatial resolution of the MVDR beamformer is higher than that 

of the DAS beamformer although it is reduced by the wind noise.  

 

 

                              (a)                                                                      (b) 

 

                               (c)                                                                     (d) 

Figure 5.18. The effect of wind noise on the MVDR beamforming map at 100 Hz (a) without 

wind noise, and with wind noise at a SNR of (b) +5 dB, (c) 0 dB, and (d) −5 dB. The red 

cross markers indicate the actual sound source direction.  

 

To quantitatively compare the beamforming performance of all three beamformers, the 

RMSE and the DF are calculated and summarized in Table 5.3, where the simulation results 

are also given for comparison. It is clear that the experimental results are consistent with the 

simulation results, and the best performance is achieved by the MVDR beamformer, with the 

smallest RMSE and the largest DF. For the MVDR beamformer, the wind noise increases the 
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RMSE from 1.1° without wind noise to 7.1° when the wind noise is present with a SNR of 0 

dB, and correspondingly the DF is reduced from 8.2 dB to 0.4 dB. It can also be observed 

from Table 5.3 that both the RMSE and DF of the MVDR beamformer are slightly dependent 

on the SNR when wind noise exists, with the RMSE increased from 6.7° to 8.7° and the DF 

decreased from 1.1 dB to 0.6 dB when the SNR varies from +5 dB to −5 dB.  

 

Table 5.3 The Root Mean Square Error (RMSE) and the Directivity Factor (DF) for the 

PWD,DAS and MVDR beamformers with and without wind noise at 100 Hz. 

  Experiments Simulations 
Beamformer SNR (dB) No wind +5 0 −5 No wind +5 0 −5 

PWD 
RMSE (°) 6.7 93.7 113.7 120.7 0 95.5 95.5 95.5 
DF (dB) 8.0 −6.1 −6.4 −7.1 7.0 −8.5 −8.5 −8.5 

DAS 
RMSE (°) 0 9.5 10.6 11.8 0 1.4 5.0 18.8 
DF (dB) −3.6 −3.6 −3.6 −3.6 −3.8 −3.8 −3.8 −3.8 

MVDR 
RMSE (°) 1.1 6.7 7.1 8.7 0 4.3 5.9 7.7 
DF (dB) 8.2 1.1 0.4 0.6 27.6 9.1 7.6 6.2 

 

In summary, the above results demonstrate that the MVDR beamformer can be used to 

localize the sound source direction with a certain accuracy under windy conditions. This 

indicate the possibility of applying the spherical microphone array for outdoor low frequency 

wind turbine noise measurements and noise source localization in windy environments, 

which will be pursued in the future work. In addition, it is noteworthy that the above results 

are based on tonal signals. For broadband sound signals, the beamforming can be performed 

in two ways. First, the broadband signals can be transformed to the frequency domain and the 

beamforming is performed for each frequency bin or in octave bands to localise the sound 

source direction. Second, the time domain broadband beamforming methods can be 

formulated to localise the sound source direction from the broadband signals directly. This 
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will be investigated together with the full-field outdoor wind turbine noise measurements in 

the future.  

5.3.3 Conclusions 

This section investigated the effect of wind noise on the beamforming performance of the 

PWD, DAS and MVDR beamformers with a rigid spherical microphone array. The wind 

noise was first measured and analysed in the spherical harmonics domain, and the wind noise 

energy was found to be irregularly distributed in the spherical harmonics domain. Then, the 

beamforming performance of the spherical PWD, DAS and MVDR beamformers was studied 

in the presence of wind noise for different SNR and frequencies, and the MVDR beamformer 

was found to achieve the best performance. The experimental results demonstrated that the 

MVDR beamformer is able to localize the sound source direction in the presence of wind 

noise at low frequency (100 Hz) with a low SNR of −5 dB, indicating the possibility of 

applying the spherical microphone array for outdoor wind turbine noise measurements. 

Future work will measure and localize the wind turbine noise with the spherical microphone 

array in outdoor windy conditions.  

5.4 Summary 

This chapter reports the research of utilizing a rigid spherical microphone array to 

characterise and reduce wind noise, and investigating the effect of wind noise on the 

spherical beamforming performance.  

First, the sound signals and wind noise were measured separately with the spherical 

microphone array and analysed in the spherical harmonics domain. The wind noise was found 

to be randomly distributed in the spherical harmonics domain, distinct from the sound signal 

which is concentrated in the first few spherical harmonic modes. This difference was utilized 

to reduce the wind noise without degrading the desired sound pressure level by using a low 
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pass filter method in the spherical harmonics domain. Experimental results with both single-

tonal and multi-tonal sound signals demonstrated that the proposed method can reduce wind 

noise by more than 10 dB in the frequency range below 500 Hz, and the sound pressure level 

of the desired sound signal can be extracted from wind noise with an error within 1.0 dB, 

even when the sound level is 8 dB lower than the wind noise. 

Then, the effects of wind noise on the beamforming performance of a spherical 

microphone array were investigated. It was shown that the presence of wind noise introduces 

an extra term on the array output. The wind noise was measured with the spherical 

microphone array, and the wind noise energy was found to be irregularly distributed in the 

spherical harmonics domain. The performance of the Plane Wave Decomposition (PWD), the 

Delay and Sum (DAS) and the Maximum Variance Distortionless Response (MVDR) 

beamformers was presented and compared in the presence of wind noise. The MVDR 

beamformer was found to be the best under various signal-to-noise ratios at different 

frequencies in terms of the directivity factor. Experiment results demonstrated that the 

MVDR beamformer is able to localise the sound source direction under windy conditions at 

low frequencies.  

Future work will investigate: 

(a) effect of the size of the spherical microphone array on wind noise reduction; 

(b) combination of the array and windscreen to further reduce wind noise; 

(c) application of other array such as differential microphone array for wind noise 

reduction; and 

(d) carry out outdoor onsite wind turbine noise measurements to test the proposed method 

for wind noise reduction. 
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6 Conclusions and future work 

6.1 Conclusions 

The objective of this PhD research was to investigate the mechanism of wind noise 

generation, to study the wind noise reduction mechanism of porous microphone windscreen, 

and to develop a new compact acoustic measurement system that is insensitive to wind noise. 

To achieve this research objective, an extensive literature review was presented first, based 

on which the theoretical approaches, numerical simulations, and experimental measurements 

were utilised in the investigation. To summarise, the following major outcomes and 

contributions are identified and documented in this thesis. 

• A pressure structure function model that incorporates both the inertial range and the 

dissipation range of turbulence is proposed, based on which the pressure spectrum 

extending to the dissipation range is obtained. This pressure spectrum can be used to 

describe wind noise spectra measured outdoors. 

• A pressure structure function model that combines the energy-containing range and 

the dissipation range is proposed, from which the pressure spectrum for small 

Reynolds number turbulent flows is obtained. This pressure spectrum can be utilized 

to predict the wind noise spectra in indoor environments such as wind tunnels and 

fans.  

• The effect of both the viscous and inertial forces on the wind noise reduction of 

porous microphone windscreens was investigated, and it was found that the design of 

porous microphone windscreens should take into account both turbulence suppression 

inside and wake generation behind the windscreens to achieve optimal performance. 

• Simulations and measurements with two microphones demonstrate that porous 

microphone windscreens are the most effective in attenuating wind noise in a certain 
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frequency range, where the windscreen diameter is approximately 2 to 4 times the 

turbulence wavelengths, and that the wind noise reduction is related to the spatial 

decorrelation of wind noise signals provided by porous microphone windscreens.  

• Spherical microphone arrays were used to suppress the wind noise in the measured 

signals, where a low pass filter method in the spherical harmonics domain was used to 

extract the desired sound signal from wind noise even when the sound signal is lower 

than the wind noise. 

6.2 Future works 

The goal of the research is to develop a reliable compact measurement system for wind 

turbine noise investigation. It is hoped that the size of measurement configuration will be 

reduced from current few meters to less than 10 centimetres based on the specially designed 

windproof shell and microphone array geometry together with the adaptive noise cancellation 

algorithm. Various potential research directions were spotted during the course of this PhD 

work, which can provide deeper understanding of wind noise generation and reduction, and 

will have productive outcomes when undertaken as potential future work. These include: 

• Conducting measurements of the velocity fluctuations and turbulence intensity both 

inside and outside porous microphone windscreens. This will help understand the 

relations between the velocity and pressure fluctuations in turbulent flows and thus 

the generation mechanism of wind noise.  

• Investigating the effect of the finite Reynolds number on wind noise spectra. The two 

theoretical models proposed this thesis assume that the Reynolds number to be either 

large or small. However, the quantitative relationship between the Reynolds number 

and wind noise spectra remains unclear.  
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• Studying the effect of the finite size of microphone diaphragm on the measured wind 

noise spectra. In the existing models, the interaction between the incoming flow and 

the microphone is not taken into account.  

• Building porous microphone windscreens with variable porosity to achieve better 

performance. It is shown in this thesis that the design of porous microphone should 

take into account both turbulence suppression inside and wake generation behind the 

windscreens. A variable porosity windscreen with inner low porosity material and 

outer high porosity material may offer superior performance.  

• Exploring other array such as the differential microphone array for wind noise 

reduction. The differential microphone arrays are small in size and are effective for 

the entire audio and sub-audio frequency bands, with a potential to be used for wind 

noise reduction as a compact system.  

• Combining the passive porous microphone windscreens with the spherical 

microphone array. Installing a porous layer around the spherical microphone array 

may reduce the wind noise effect and the combination system may have better wind 

noise reduction performance.  

• Carrying out outdoor experiments to measure the wind noise reduction of various 

windscreens. Most the experiments in this thesis were conducted in indoor 

environments. Outdoor experiments are desired to further verify the simulation and 

indoor measurement results.  
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Appendix A: List of publications 

The publications during the PhD candidature are as follows: 

• Journal articles 

1. Sipei Zhao, Eva Cheng, Xiaojun Qiu, Ian Burnett and Jacob Chia-chun Liu. Spatial 

decorrelation of wind noise by porous microphone windscreens. Journal of 

Acoustical Society of America. 2018, 143(1): 330-339. 

2. Sipei Zhao, Eva Cheng, Xiaojun Qiu, Ian Burnett and Jacob Chia-chun Liu. Wind 

noise spectra in small Reynolds number turbulent flows. Journal of Acoustical 

Society of America. 2017, 142(5): 3227-3233. 

3. Sipei Zhao, Matthew Dabin, Eva Cheng, Xiaojun Qiu, Ian Burnett and Jacob Chia-

chun Liu. On the physical mechanism of wind noise reduction by porous microphone 

windscreens. Journal of Acoustical Society of America. 2017, 142(4): 2454-2463. 

4. Sipei Zhao, Eva Cheng, Xiaojun Qiu, Ian Burnett and Jacob Chia-chun Liu. Pressure 

spectra in turbulent flows in the inertial and the dissipation ranges. Journal of 

Acoustical Society of America. 2016, 140(6): 4178-4182. 

5. Sipei Zhao, Matthew Dabin, Eva Cheng, Xiaojun Qiu, Ian Burnett and Jacob Chia-

chun Liu. Effects of wind noise on the spherical microphone array beamforming 

performance. Applied Acoustics. 2018 (submitted). 

6. Sipei Zhao, Matthew Dabin, Eva Cheng, Xiaojun Qiu, Ian Burnett and Jacob Chia-

chun Liu. Characterisation and reduction of wind noise with a spherical microphone 

array. Journal of Acoustical Society of America. 2018 (submitted). 

• Conference papers 

1. Sipei Zhao, Eva Cheng, Xiaojun Qiu, Ian Burnett and Jacob Chia-chun Liu. 

Experimental investigation on the wind noise reduction of semi-spherical metal mesh 
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windscreens. In Proc. of the 25th International Congress on Sound and Vibration 

(ICSV 25), Hiroshima, Japan, 8-12 July, 2018. (accepted) 

2. Sipei Zhao, Eva Cheng, Xiaojun Qiu, Ian Burnett and Jacob Chia-chun Liu. 

Simulations on the wind noise reduction by spherical shell windscreens. In Proc. of 

the 46th International Congress and Exposition on Noise Control Engineering 

(INTER-NOISE 2017), Hong Kong, 27-30 August, 2017. (Young Professional 

Grant) 

3. Sipei Zhao, Eva Cheng, Xiaojun Qiu, Jordan Lacey and Simon Maisch. A method of 

configuring fixed coefficient active noise controllers for traffic noise reduction. In 

Proc. of the 46th International Congress and Exposition on Noise Control 

Engineering (INTER-NOISE 2017), Hong Kong, 27-30 August, 2017.  

4. Sipei Zhao, Eva Cheng, Xiaojun Qiu, Ian Burnett and Jacob Chia-chun Liu. 

Estimation of the frequency boundaries of the inertial range for wind noise spectra in 

anechoic wind tunnels. In Proc. of the Second Australasian Acoustical Societies 

Conference (ACOUSTICS 2016), Brisbane, Australia, 9-11 Novermber, 2016.  

5. Sipei Zhao, Eva Cheng, Xiaojun Qiu, Pantea Alambeigi, Jane Burry and Mark Burry. 

A preliminary investigation on the sound field properties in the Sagrada Familia 

Basilica. In Proc. of the Second Australasian Acoustical Societies Conference 

(ACOUSTICS 2016), Brisbane, Australia, 9-11 Novermber, 2016.  

6. Pantea Alambeigi, Sipei Zhao, Jane Burry and Xiaojun Qiu. Complex human 

auditory perception and simulated sound performance prediction. In Proc. of the 21st 

International Conference of the Association for Computer-Aided Architectural Design 

Research in Asia (CAARDRIA 2016), Melbourne, Australia, 30 March-02 April, 2016. 

(Best Paper Award)    
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