786 research outputs found

    Sensing Matrix Design and Sparse Recovery on the Sphere and the Rotation Group

    Full text link
    In this paper, {the goal is to design deterministic sampling patterns on the sphere and the rotation group} and, thereby, construct sensing matrices for sparse recovery of band-limited functions. It is first shown that random sensing matrices, which consists of random samples of Wigner D-functions, satisfy the Restricted Isometry Property (RIP) with proper preconditioning and can be used for sparse recovery on the rotation group. The mutual coherence, however, is used to assess the performance of deterministic and regular sensing matrices. We show that many of widely used regular sampling patterns yield sensing matrices with the worst possible mutual coherence, and therefore are undesirable for sparse recovery. Using tools from angular momentum analysis in quantum mechanics, we provide a new expression for the mutual coherence, which encourages the use of regular elevation samples. We construct low coherence deterministic matrices by fixing the regular samples on the elevation and minimizing the mutual coherence over the azimuth-polarization choice. It is shown that once the elevation sampling is fixed, the mutual coherence has a lower bound that depends only on the elevation samples. This lower bound, however, can be achieved for spherical harmonics, which leads to new sensing matrices with better coherence than other representative regular sampling patterns. This is reflected as well in our numerical experiments where our proposed sampling patterns perfectly match the phase transition of random sampling patterns.Comment: IEEE Trans. on Signal Processin

    Tight bounds on the mutual coherence of sensing matrices for Wigner D-functions on regular grids

    Full text link
    Many practical sampling patterns for function approximation on the rotation group utilizes regular samples on the parameter axes. In this paper, we relate the mutual coherence analysis for sensing matrices that correspond to a class of regular patterns to angular momentum analysis in quantum mechanics and provide simple lower bounds for it. The products of Wigner d-functions, which appear in coherence analysis, arise in angular momentum analysis in quantum mechanics. We first represent the product as a linear combination of a single Wigner d-function and angular momentum coefficients, otherwise known as the Wigner 3j symbols. Using combinatorial identities, we show that under certain conditions on the bandwidth and number of samples, the inner product of the columns of the sensing matrix at zero orders, which is equal to the inner product of two Legendre polynomials, dominates the mutual coherence term and fixes a lower bound for it. In other words, for a class of regular sampling patterns, we provide a lower bound for the inner product of the columns of the sensing matrix that can be analytically computed. We verify numerically our theoretical results and show that the lower bound for the mutual coherence is larger than Welch bound. Besides, we provide algorithms that can achieve the lower bound for spherical harmonics

    Structured Sparsity Models for Multiparty Speech Recovery from Reverberant Recordings

    Get PDF
    We tackle the multi-party speech recovery problem through modeling the acoustic of the reverberant chambers. Our approach exploits structured sparsity models to perform room modeling and speech recovery. We propose a scheme for characterizing the room acoustic from the unknown competing speech sources relying on localization of the early images of the speakers by sparse approximation of the spatial spectra of the virtual sources in a free-space model. The images are then clustered exploiting the low-rank structure of the spectro-temporal components belonging to each source. This enables us to identify the early support of the room impulse response function and its unique map to the room geometry. To further tackle the ambiguity of the reflection ratios, we propose a novel formulation of the reverberation model and estimate the absorption coefficients through a convex optimization exploiting joint sparsity model formulated upon spatio-spectral sparsity of concurrent speech representation. The acoustic parameters are then incorporated for separating individual speech signals through either structured sparse recovery or inverse filtering the acoustic channels. The experiments conducted on real data recordings demonstrate the effectiveness of the proposed approach for multi-party speech recovery and recognition.Comment: 31 page

    Fast computation of spherical phase-space functions of quantum many-body states

    Full text link
    Quantum devices are preparing increasingly more complex entangled quantum states. How can one effectively study these states in light of their increasing dimensions? Phase spaces such as Wigner functions provide a suitable framework. We focus on phase spaces for finite-dimensional quantum states of single qudits or permutationally symmetric states of multiple qubits. We present methods to efficiently compute the corresponding phase-space functions which are at least an order of magnitude faster than traditional methods. Quantum many-body states in much larger dimensions can now be effectively studied by experimentalists and theorists using these phase-space techniques.Comment: 12 pages, 3 figure

    Signal Processing and Propagation for Aeroacoustic Sensor Networking,” Ch

    Get PDF
    Passive sensing of acoustic sources is attractive in many respects, including the relatively low signal bandwidth of sound waves, the loudness of most sources of interest, and the inherent difficulty of disguising or concealing emitted acoustic signals. The availability of inexpensive, low-power sensing and signal-processing hardware enables application of sophisticated real-time signal processing. Among th

    Fundamental limits to optical response in absorptive systems

    Get PDF
    At visible and infrared frequencies, metals show tantalizing promise for strong subwavelength resonances, but material loss typically dampens the response. We derive fundamental limits to the optical response of absorptive systems, bounding the largest enhancements possible given intrinsic material losses. Through basic conservation-of-energy principles, we derive geometry-independent limits to per-volume absorption and scattering rates, and to local-density-of-states enhancements that represent the power radiated or expended by a dipole near a material body. We provide examples of structures that approach our absorption and scattering limits at any frequency, by contrast, we find that common "antenna" structures fall far short of our radiative LDOS bounds, suggesting the possibility for significant further improvement. Underlying the limits is a simple metric, χ2/Imχ|\chi|^2 / \operatorname{Im} \chi for a material with susceptibility χ\chi, that enables broad technological evaluation of lossy materials across optical frequencies.Comment: 21 pages and 6 figures (excluding appendices, references

    Fundamental Limits of Nanophotonic Design

    Full text link
    Nanoscale fabrication techniques, computational inverse design, and fields from silicon photonics to metasurface optics are enabling transformative use of an unprecedented number of structural degrees of freedom in nanophotonics. A critical need is to understand the extreme limits to what is possible by engineering nanophotonic structures. This thesis establishes the first general theoretical framework identifying fundamental limits to light--matter interactions. It derives bounds for applications across nanophotonics, including far-field scattering, optimal wavefront shaping, optical beam switching, and wave communication, as well as the miniaturization of optical components, including perfect absorbers, linear optical analog computing units, resonant optical sensors, multilayered thin films, and high-NA metalenses. The bounds emerge from an infinite set of physical constraints that have to be satisfied by polarization fields in response to an excitation. The constraints encode power conservation in single-scenario scattering and requisite field correlations in multi-scenario scattering. The framework developed in this thesis, encompassing general linear wave scattering dynamics, offers a new way to understand optimal designs and their fundamental limits, in nanophotonics and beyond.Comment: PhD thesi
    corecore