360,582 research outputs found

    Structural and cognitive deficits in chronic carbon monoxide intoxication: a voxel-based morphometry study

    Get PDF
    BACKGROUND: Patients with carbon monoxide (CO) intoxication may develop ongoing neurological and psychiatric symptoms that ebb and flow, a condition often called delayed encephalopathy (DE). The association between morphologic changes in the brain and neuropsychological deficits in DE is poorly understood. METHODS: Magnetic resonance imaging and neuropsychological tests were conducted on 11 CO patients with DE, 11 patients without DE, and 15 age-, sex-, and education-matched healthy subjects. Differences in gray matter volume (GMV) between the subgroups were assessed and further correlated with diminished cognitive functioning. RESULTS: As a group, the patients had lower regional GMV compared to controls in the following regions: basal ganglia, left claustrum, right amygdala, left hippocampus, parietal lobes, and left frontal lobe. The reduced GMV in the bilateral basal ganglia, left post-central gyrus, and left hippocampus correlated with decreased perceptual organization and processing speed function. Those CO patients characterized by DE patients had a lower GMV in the left anterior cingulate and right amygdala, as well as lower levels of cognitive function, than the non-DE patients. CONCLUSIONS: Patients with CO intoxication in the chronic stage showed a worse cognitive and morphologic outcome, especially those with DE. This study provides additional evidence of gray matter structural abnormalities in the pathophysiology of DE in chronic CO intoxicated patients

    Does white matter structure or hippocampal volume mediate associations between cortisol and cognitive ageing?

    Get PDF
    AbstractElevated glucocorticoid (GC) levels putatively damage specific brain regions, which in turn may accelerate cognitive ageing. However, many studies are cross-sectional or have relatively short follow-up periods, making it difficult to relate GCs directly to changes in cognitive ability with increasing age. Moreover, studies combining endocrine, MRI and cognitive variables are scarce, measurement methods vary considerably, and formal tests of the underlying causal hypothesis (cortisol→brain→cognition) are absent. In this study, 90 men, aged 73 years, provided measures of fluid intelligence, processing speed and memory, diurnal and reactive salivary cortisol and two measures of white matter (WM) structure (WM hyperintensity volume from structural MRI and mean diffusivity averaged across 12 major tracts from diffusion tensor MRI), hippocampal volume, and also cognitive ability at age 11. We tested whether negative relationships between cognitive ageing differences (over more than 60 years) and salivary cortisol were significantly mediated by WM and hippocampal volume. Significant associations between reactive cortisol at 73 and cognitive ageing differences between 11 and 73 (r=−.28 to −.36, p<.05) were partially mediated by both WM structural measures, but not hippocampal volume. Cortisol-WM relationships were modest, as was the degree to which WM structure attenuated cortisol–cognition associations (<15%). These data support the hypothesis that GCs contribute to cognitive ageing differences from childhood to the early 70s, partly via brain WM structure

    Mechanisms of Cognitive Impairment in Cerebral Small Vessel Disease: Multimodal MRI Results from the St George's Cognition and Neuroimaging in Stroke (SCANS) Study.

    Get PDF
    Cerebral small vessel disease (SVD) is a common cause of vascular cognitive impairment. A number of disease features can be assessed on MRI including lacunar infarcts, T2 lesion volume, brain atrophy, and cerebral microbleeds. In addition, diffusion tensor imaging (DTI) is sensitive to disruption of white matter ultrastructure, and recently it has been suggested that additional information on the pattern of damage may be obtained from axial diffusivity, a proposed marker of axonal damage, and radial diffusivity, an indicator of demyelination. We determined the contribution of these whole brain MRI markers to cognitive impairment in SVD. Consecutive patients with lacunar stroke and confluent leukoaraiosis were recruited into the ongoing SCANS study of cognitive impairment in SVD (n = 115), and underwent neuropsychological assessment and multimodal MRI. SVD subjects displayed poor performance on tests of executive function and processing speed. In the SVD group brain volume was lower, white matter hyperintensity volume higher and all diffusion characteristics differed significantly from control subjects (n = 50). On multi-predictor analysis independent predictors of executive function in SVD were lacunar infarct count and diffusivity of normal appearing white matter on DTI. Independent predictors of processing speed were lacunar infarct count and brain atrophy. Radial diffusivity was a stronger DTI predictor than axial diffusivity, suggesting ischaemic demyelination, seen neuropathologically in SVD, may be an important predictor of cognitive impairment in SVD. Our study provides information on the mechanism of cognitive impairment in SVD

    CSF total tau levels are associated with hippocampal novelty irrespective of hippocampal volume

    Get PDF
    We examined the association between cerebrospinal fluid (CSF) biomarkers of Alzheimer's disease, neural novelty responses, and brain volume in predementia old age. Methods: We conducted a cross-sectional analysis of the observational, multicentric DZNE-Longitudinal Cognitive Impairment and Dementia Study (DELCODE) study. Seventy-six participants completed task functional magnetic resonance imaging and provided CSF (40 cognitively unimpaired, 21 experiencing subjective cognitive decline, and 15 with mild cognitive impairment). We assessed the correlation between CSF biomarkers and whole-brain functional magnetic resonance imaging novelty responses to scene images. Results: Total tau levels were specifically and negatively associated with novelty responses in the right amygdala and right hippocampus. Mediation analyses showed no evidence that these associations were dependent on the volume of hippocampus/amygdala. No relationship was found between phosphorylated-tau or Aβ42 levels and novelty responses. Discussion: Our data show that CSF levels of total tau are associated with anatomically specific reductions in novelty processing, which cannot be fully explained by atrophy

    Resting state connectivity and cognitive performance in adults with cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy

    Get PDF
    Cognitive impairment is an inevitable feature of cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), affecting executive function, attention and processing speed from an early stage. Impairment is associated with structural markers such as lacunes, but associations with functional connectivity have not yet been reported. Twenty-two adults with genetically-confirmed CADASIL (11 male; aged 49.8 ± 11.2 years) underwent functional magnetic resonance imaging at rest. Intrinsic attentional/executive networks were identified using group independent components analysis. A linear regression model tested voxel-wise associations between cognitive measures and component spatial maps, and Pearson correlations were performed with mean intra-component connectivity z-scores. Two frontoparietal components were associated with cognitive performance. Voxel-wise analyses showed an association between one component cluster and processing speed (left middle temporal gyrus; peak −48, −18, −14; ZE = 5.65, pFWEcorr = 0.001). Mean connectivity in both components correlated with processing speed (r = 0.45, p = 0.043; r = 0.56, p = 0.008). Mean connectivity in one component correlated with faster Trailmaking B minus A time (r = −0.77, p &lt; 0.001) and better executive performance (r = 0.56, p = 0.011). This preliminary study provides evidence for associations between cognitive performance and attentional network connectivity in CADASIL. Functional connectivity may be a useful biomarker of cognitive performance in this population

    Lifestyle and Genetic Contributions to Cognitive Decline and Hippocampal Structure and Function in Healthy Aging

    Get PDF
    Background: Engagement in cognitively stimulating activities (CA) and leisure time physical activity (PA) have been associated with maintaining cognitive performance and reducing the likelihood of cognitive decline in older adults. However, neural mechanisms underlying protective effects of these lifestyle behaviors are largely unknown. In the current study, we investigated the effect of self-reported PA and CA on hippocampal volume and semantic processing activation during a fame discrimination task, as measured by functional magnetic resonance imaging (fMRI). We also examined whether possession of the apolipoprotein E (APOE) ?4 allele could moderate the effect of PA or CA on hippocampal structure or function. Methods: Seventy-eight healthy, cognitively intact older adults underwent baseline neuropsychological assessment, hippocampal volume measurement via manually-traced structural MRI, and task-activated fMRI. Results: After 18 months, 27 participants declined by one standard deviation or more on follow-up neuropsychological testing. Logistic regression analyses revealed that CA alone or in combination with baseline hippocampal structure or functional activity did not predict the probability of cognitive decline. In contrast, PA interacted with APOE 4 status such that engagement in PA reduced the risk of cognitive decline in APOE 4 carriers only. Furthermore, the benefits of PA appeared to diminish with reduced functional activity or volume in the hippocampus. Conclusions: Our findings suggest that increased leisure time PA is associated with reduced probability of cognitive decline in persons who are at high risk for AD. The beneficial effects of PA in this group may be related to enhancement of the functional and structural integrity of the hippocampus

    The role of anterior cingulate cortex in the affective evaluation of conflict

    Get PDF
    An influential theory of anterior cingulate cortex (ACC) function argues that this brain region plays a crucial role in the affective evaluation of performance monitoring and control demands. Specifically, control-demanding processes such as response conflict are thought to be registered as aversive signals by ACC, which in turn triggers processing adjustments to support avoidance learning. In support of conflict being treated as an aversive event, recent behavioral studies demonstrated that incongruent (i.e., conflict inducing), relative to congruent, stimuli can speed up subsequent negative, relative to positive, affective picture processing. Here, we used fMRI to investigate directly whether ACC activity in response to negative versus positive pictures is modulated by preceding control demands, consisting of conflict and task-switching conditions. The results show that negative, relative to positive, pictures elicited higher ACC activation after congruent, relative to incongruent, trials, suggesting that ACC's response to negative (positive) pictures was indeed affectively primed by incongruent (congruent) trials. Interestingly, this pattern of results was observed on task repetitions but disappeared on task alternations. This study supports the proposal that conflict induces negative affect and is the first to show that this affective signal is reflected in ACC activation

    Interleukin-6, age, and corpus callosum integrity.

    Get PDF
    The contribution of inflammation to deleterious aging outcomes is increasingly recognized; however, little is known about the complex relationship between interleukin-6 (IL-6) and brain structure, or how this association might change with increasing age. We examined the association between IL-6, white matter integrity, and cognition in 151 community dwelling older adults, and tested whether age moderated these associations. Blood levels of IL-6 and vascular risk (e.g., homocysteine), as well as health history information, were collected. Processing speed assessments were administered to assess cognitive functioning, and we employed tract-based spatial statistics to examine whole brain white matter and regions of interest. Given the association between inflammation, vascular risk, and corpus callosum (CC) integrity, fractional anisotropy (FA) of the genu, body, and splenium represented our primary dependent variables. Whole brain analysis revealed an inverse association between IL-6 and CC fractional anisotropy. Subsequent ROI linear regression and ridge regression analyses indicated that the magnitude of this effect increased with age; thus, older individuals with higher IL-6 levels displayed lower white matter integrity. Finally, higher IL-6 levels were related to worse processing speed; this association was moderated by age, and was not fully accounted for by CC volume. This study highlights that at older ages, the association between higher IL-6 levels and lower white matter integrity is more pronounced; furthermore, it underscores the important, albeit burgeoning role of inflammatory processes in cognitive aging trajectories
    corecore