330 research outputs found

    Coexistence of digital terrestrial television and next generation cellular networks in the 700 MHz band

    Full text link
    "(c) 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works."With the spectrum liberation obtained by the deployment of digital terrestrial television and the analog TV switch-off, new bands are being assigned to IMT LTE. In the first cellular deployments in the digital dividend at the 800 MHz band, problems emerged due to the interference cellular networks can cause to DTT signals. Possible solutions imply either an inefficient use of the spectrum (increasing the guard band and reducing the number of DTT channels) or a high cost (using anti-LTE filters for DTT receivers). The new spectrum allocated to mobile communications is the 700 MHz band, also known as the second digital dividend. In this new IMT band, the LTE uplink is placed in the lower part of the band. Hence, the ITU-R invited several studies to be performed and reported the results to WRC-15. In this article, we analyze the coexistence problem in the 700 MHz band and evaluate the interference of LTE signals to DTT services. Several coexistence scenarios have been considered, and laboratory tests have been performed to measure interference protection ratios.Fuentes, M.; García Pardo, C.; Garro Crevillen, E.; Gómez Barquero, D.; Cardona Marcet, N. (2014). Coexistence of digital terrestrial television and next generation cellular networks in the 700 MHz band. IEEE Wireless Communications. 21(6):63-69. doi:10.1109/MWC.2014.7000973S636921

    Interference Analysis Between Digital Terrestrial Television (DTT) and 4G LTE Mobile Networks in the Digital Dividend Bands

    Full text link
    With the introduction of digital terrestrial television (DTT) and the analogue television switch-off, terrestrial broadcast spectrum in the UHF band is being released for mobile communications, in particular for fourth generation (4G) long term evolution (LTE) mobile services. This spectrum is known as digital dividend. An impending problem when deploying 4G LTE mobile networks in the digital dividend bands is that interferences may appear in the adjacent radio frequency channels used for DTT. In this paper, we analyze the adjacent coexistence of DTT and 4G LTE networks in the digital dividend bands at 700 MHz and 800 MHz. A generic framework is adopted such that results can be easily extrapolated to different scenarios and bands. Results are presented as a function of the guard band between technologies, for both LTE uplink and downlink adjacent to the DTT signals, and for fixed outdoor and portable indoor DTT reception. Also, the effect of using anti-LTE filters is studied.This work was supported by the Spectrum Regulator of Colombia ANE (Agencia Nacional del Espectro).Ribadeneira Ramírez, JA.; Martínez, G.; Gómez Barquero, D.; Cardona, N. (2016). Interference Analysis Between Digital Terrestrial Television (DTT) and 4G LTE Mobile Networks in the Digital Dividend Bands. IEEE Transactions on Broadcasting. 62(1):24-34. doi:10.1109/TBC.2015.2492465S243462

    Spectrum Sharing for LTE-A and DTT: Field Trials of an Indoor LTE-A Femtocell in DVB-T2 Service Area

    Full text link
    (c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.In this paper, we study a particular case which goes a step beyond the previous ones, as it aims at sharing the same frequency band in the same area between long term evolution-advance (LTE-A) and digital video broadcasting-terrestrial second generation (DVB-T2) technologies. Those geographical areas that are not covered because the useful DTT signal is obstructed by the environment or it has a limited coverage by the network design can be called micro-TVWS. We assume that a DVB-T2 transmitter provides coverage for fixed rooftop reception as a primary service, to a building in which a LTE-A femtocell is installed indoors for local coverage, as a secondary service. The results have been obtained by laboratory emulation and validated through field measurements using professional equipment. Our results provide the technical restrictions of the LTE-A femtocell, mainly on the maximum allowable effective isotropic radiated power that could transmit on the DTT band in terms of carrier separation, from co-channel to adjacent band. These results meet the need of spectrum for IMT-Advanced technologies, so spectrum sharing is proposed in this paper as a new solution to make an efficient use of this resource.This work was supported in part by the Ministerio de Educacion y Ciencia, Spain, under Grant "DEFINE5G" TEC2014-60258-C2-1-R and Grant "ARCO5G" TEC2014-56469-REDT, and in part by the European FEDER Funds.Martínez Pinzón, G.; Cardona Marcet, N.; García Pardo, C.; Fornés Leal, A.; Ribadeneira-Ramírez, JA. (2016). Spectrum Sharing for LTE-A and DTT: Field Trials of an Indoor LTE-A Femtocell in DVB-T2 Service Area. IEEE Transactions on Broadcasting. 62(3):552-561. https://doi.org/10.1109/TBC.2016.2582338S55256162

    Utjecaj LTE sustava zasnovanog na kognitivnoj radio tehnologiji na DVB-T2 sustav zasnovan na metodi diverzifikacije

    Get PDF
    In recent years, the development of advanced wireless communication systems has been rapidly progressing. In Europe, the 2nd Generation Terrestrial Digital Video Broadcasting (DVB-T2) and Long-Term Evolution (LTE) are the most promising techniques to provide multimedia services efficiently (in flexible quality and with high spectrum efficiency). The purpose of this work is to explore possible influences of the LTE {uplink services}, using cognitive radio (CR) technology, on the area which is covered by DVB-T2 services. In the case of DVB-T2, both single-input single-output (SISO) and multiple-input single-output (MISO) transmission techniques are considered. The defined coexistence scenarios are measured with an appropriate measurement testbed. The performance of the received TV signal is evaluated on its physical layer (PHY) level. The obtained results allow better understand the influence of LTE system on DVB-T2 which is using diversity technique in the same RF channel (co-channel coexistence). One of the main results is that there are the same requirements on the Forward Error Correction (FEC) decoding process in the DVB-T2 receiver, when power imbalances between TV transmitters (an both SISO and MISO modes) are considered at the interfering LTE signal. This finding was also proved by analysis of variance (ANOVA).U posljednje vrijeme se znatno ubrzao razvoj naprednih bežičnih komunikacijskih sustava. U Europi metode prijenosa signala zasnovane na DVB-T2 (eng. 2nd Generation Terrestrial Digital Video Broadcasting) i LTE (eng. Long-Term Evolution) metodama najviše obećavaju u području učinkovitog pružanja multimedijalnih usluga (s prilagodivom kvalitetom i s visokom učinkovitosti spektra). U ovom radu je razmotrena mogućnost korištenja LTE signala uzlazne veze, uz korištenje kognitivne radio tehnologije, u području pokrivenom DVB-T2 signalom. Razmotrene su metode prijenosa DVB-T2 signala s jednim ulazom i jednim izlazom (eng. Single-Input Single-Output, SISO) te više ulaza i jednim izlazom (eng. Multiple-Input Single-Output, MISO). Definirani su scenariji koegzistencije i isti su izmjereni korištenjem prikladnog mjernog ispitnog stola. Kvaliteta primljenog TV signala je evaluirana na fizičkom sloju. Prikupljeni rezultati omogućuju bolje razumijevanje utjecaja LTE sustava na DVB-T2 koji koristi metodu diverzifikacije u istom radio-frekvencijskom kanalu (koegzistencija susjednog kanala). Jedan od glavnih rezultata je postojanje istih zahtjeva na proces dekodiranja s ispravljanjem pogrešaka u prijemniku (eng. Forward Error Correction) DVB-T2 prijemnika kada se neravnoteža snaga između TV predajnika (MISO i SISO režimi rada) uzima u obzir na interferirajućem LTE signalu. Navedeni rezultat potvrđen je analizom varijance

    Spectrum Utilisation and Management in Cognitive Radio Networks

    Get PDF

    5th Generation mobile networks: a new opportunity for the convergence of mobile broadband and broadcast services

    Full text link
    © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.[EN] This article analyzes the challenges and opportunities that the upcoming definition of future 5G mobile networks brings to the mobile broadband and broadcast industries to form a single converged network. It reviews the state-of-the-art in mobile and broadcast technologies and the current trends for convergence between both industries. This article describes the requirements and functionalities that the future 5G must address in order to make an efficient and flexible cellular-broadcasting convergence. Both industries would benefit from this convergence by exploiting synergies and enabling an optimum use of spectrum based on coordinated spectrum sharing.The authors would like to thank the funding received from the Spanish Ministry of Science and Innovation within the Project number TEC2011-27723-C02-02.Calabuig Gaspar, J.; Monserrat Del Río, JF.; Gómez Barquero, D. (2015). 5th Generation mobile networks: a new opportunity for the convergence of mobile broadband and broadcast services. IEEE Communications Magazine. 53(2):198-205. https://doi.org/10.1109/MCOM.2015.7045409S19820553

    Compact low-cost filter for 5G interference reduction in UHF broadcasting band

    Get PDF
    The allocation of part of the UHF band to 4G and 5G services has generated the appearance of channel interferences over the digital terrestrial television frequency band. In order to reduce these interferences, this work presents a novel and efficient band-stop filter implemented using microstrip technology. The filter, designed with rectangular split-ring resonators etched in the ground plane, provides a cutoff frequency above channel 48 (694 MHz), a high roll-off rate of 44 dB in 56 MHz and a rejection bandwidth of 250 MHz that covers the upper UHF band occupied by 4G and 5G with rejection levels close to 35 dB. The filter is manufactured entirely over a printed circuit board without lumped elements to reduce production costs, fine tuning after the assembly stage and maintenance. Moreover, it presents a compact subwavelength size of only 0.07 λ × 0.17 λ to facilitate installation, whether at the input of the TV terminal or integrated with the balun at the rooftop antenna.This research was funded in part by the Ministerio de Ciencia, Innovación y Universidades and in part by the European Regional Development Fund under Grant PGC2018-098350-B-C22

    Frequency and Network Planning and Optimization of the Digital Terrestrial Television DVB-T2 Networks in Colombia

    Full text link
    [EN] In December 2011, Colombia updated its national Digital Terrestrial Television (DTT) standard from DVB-T to DVBT2, the second-generation European DTT standard. DVBT2 is the current state-of-the art DTT system in the world, and it brings very significant improvements in terms of capacity, robustness and flexibility compared with any other DTT technology. The iTEAM Research Institute was very involved in the promotion and adoption of DVB-T2 in Colombia. The case of Colombia is unique because it was the first country to deploy DVB-T2 with 6 MHz channelization, and because the digital networks will co-exist with the analogue NTSC network until the analogue switch-off and with digital ISDB-Tb and DVB-T networks in the neighbor countries. Furthermore, DVB-T2 networks will be deployed from scratch without any constraint imposed by existing DVB-T infrastructure. This paper provides an overview of the frequency and network DVB-T2 planning activities performed by the iTEAM Research Institute in cooperation with the Spectrum Regulator of Colombia.This work was partially supported by the Spectrum Regulator of Colombia ANE (Agencia Nacional del Espectro). The authors thank the Spanish companies Ingenia-Telecom and Axión Infraestructuras de Telecomunicación, partners in some of the projects developed for the ANE.Gómez Barquero, D.; López Sánchez, J.; Martinez Pinzon, G.; Ribadeneira Ramírez, JA.; Garro Crevillen, E.; García Pardo, C.; Fuentes Muela, M.... (2014). Frequency and Network Planning and Optimization of the Digital Terrestrial Television DVB-T2 Networks in Colombia. Waves. 6:35-49. http://hdl.handle.net/10251/56485S3549
    corecore