2,801 research outputs found

    The Road Ahead for Networking: A Survey on ICN-IP Coexistence Solutions

    Full text link
    In recent years, the current Internet has experienced an unexpected paradigm shift in the usage model, which has pushed researchers towards the design of the Information-Centric Networking (ICN) paradigm as a possible replacement of the existing architecture. Even though both Academia and Industry have investigated the feasibility and effectiveness of ICN, achieving the complete replacement of the Internet Protocol (IP) is a challenging task. Some research groups have already addressed the coexistence by designing their own architectures, but none of those is the final solution to move towards the future Internet considering the unaltered state of the networking. To design such architecture, the research community needs now a comprehensive overview of the existing solutions that have so far addressed the coexistence. The purpose of this paper is to reach this goal by providing the first comprehensive survey and classification of the coexistence architectures according to their features (i.e., deployment approach, deployment scenarios, addressed coexistence requirements and architecture or technology used) and evaluation parameters (i.e., challenges emerging during the deployment and the runtime behaviour of an architecture). We believe that this paper will finally fill the gap required for moving towards the design of the final coexistence architecture.Comment: 23 pages, 16 figures, 3 table

    Design issues in quality of service routing

    Get PDF
    The range of applications and services which can be successfully deployed in packet-switched networks such as the Internet is limited when the network does nor provide Quality of Service (QoS). This is the typical situation in today's Internet. A key aspect in providing QoS support is the requirement for an optimised and intelligent mapping of customer traffic flows onto a physical network topology. The problem of selecting such paths is the task of QoS routing QoS routing algorithms are intrinsically complex and need careful study before being implemented in real networks. Our aim is to address some of the challenges present m the deployment of QoS routing methods. This thesis considers a number of practical limitations of existing QoS routing algorithms and presents solutions to the problems identified. Many QoS routing algorithms are inherently unstable and induce traffic fluctuations in the network. We describe two new routing algorithms which address this problem The first method - ALCFRA (Adaptive Link Cost Function Routing Algorithm) - can be used in networks with sparse connectivity, while the second algorithm - CAR (Connectivity Aware Routing) - is designed to work well in other network topologies. We also describe how to ensure co-operative interaction of the routing algorithms in multiple domains when hierarchial routing is used and also present a solution to the problems of how to provide QoS support m a network where not all nodes are QoS-aware. Our solutions are supported by extensive simulations over a wide range of network topologies and their performance is compared to existing algorithms. It is shown that our solutions advance the state of the art in QoS routing and facilitate the deployment of QoS support in tomorrow's Internet

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    Collective behavior of colloids due to critical Casimir interactions

    Full text link
    If colloidal solute particles are suspended in a solvent close to its critical point, they act as cavities in a fluctuating medium and thereby restrict and modify the fluctuation spectrum in a way which depends on their relative configuration. As a result effective, so-called critical Casimir forces (CCFs) emerge between the colloids. The range and the amplitude of CCFs depend sensitively on the temperature and the composition of the solvent as well as on the boundary conditions of the order parameter of the solvent at the particle surfaces. These remarkable, moreover universal features of the CCFs provide the possibility for an active control over the assembly of colloids. This has triggered a recent surge of experimental and theoretical interest in these phenomena. We present an overview of current research activities in this area. Various experiments demonstrate the occurrence of thermally reversible self-assembly or aggregation or even equilibrium phase transitions of colloids in the mixed phase below the lower consolute points of binary solvents. We discuss the status of the theoretical description of these phenomena, in particular the validity of a description in terms of effective, one-component colloidal systems and the necessity of a full treatment of a ternary solvent-colloid mixture. We suggest perspectives on the directions towards which future research in this field might develop.Comment: review, 88 pages, 19 figure

    Reconciling cooperation, biodiversity and stability in complex ecological communities

    Get PDF
    Empirical observations show that ecological communities can have a huge number of coexisting species, also with few or limited number of resources. These ecosystems are characterized by multiple type of interactions, in particular displaying cooperative behaviors. However, standard modeling of population dynamics based on Lotka-Volterra type of equations predicts that ecosystem stability should decrease as the number of species in the community increases and that cooperative systems are less stable than communities with only competitive and/or exploitative interactions. Here we propose a stochastic model of population dynamics, which includes exploitative interactions as well as cooperative interactions induced by cross-feeding. The model is exactly solved and we obtain results for relevant macro-ecological patterns, such as species abundance distributions and correlation functions. In the large system size limit, any number of species can coexist for a very general class of interaction networks and stability increases as the number of species grows. For pure mutualistic/commensalistic interactions we determine the topological properties of the network that guarantee species coexistence. We also show that the stationary state is globally stable and that inferring species interactions through species abundance correlation analysis may be misleading. Our theoretical approach thus show that appropriate models of cooperation naturally leads to a solution of the long-standing question about complexity-stability paradox and on how highly biodiverse communities can coexist.Comment: 25 pages, 10 figure

    Community analysis in social networks

    Full text link
    We present an empirical study of different social networks obtained from digital repositories. Our analysis reveals the community structure and provides a useful visualising technique. We investigate the scaling properties of the community size distribution, and that find all the networks exhibit power law scaling in the community size distributions with exponent either -0.5 or -1. Finally we find that the networks' community structure is topologically self-similar using the Horton-Strahler index.Comment: Submitted to European Physics Journal

    Survey of Spectrum Sharing for Inter-Technology Coexistence

    Full text link
    Increasing capacity demands in emerging wireless technologies are expected to be met by network densification and spectrum bands open to multiple technologies. These will, in turn, increase the level of interference and also result in more complex inter-technology interactions, which will need to be managed through spectrum sharing mechanisms. Consequently, novel spectrum sharing mechanisms should be designed to allow spectrum access for multiple technologies, while efficiently utilizing the spectrum resources overall. Importantly, it is not trivial to design such efficient mechanisms, not only due to technical aspects, but also due to regulatory and business model constraints. In this survey we address spectrum sharing mechanisms for wireless inter-technology coexistence by means of a technology circle that incorporates in a unified, system-level view the technical and non-technical aspects. We thus systematically explore the spectrum sharing design space consisting of parameters at different layers. Using this framework, we present a literature review on inter-technology coexistence with a focus on wireless technologies with equal spectrum access rights, i.e. (i) primary/primary, (ii) secondary/secondary, and (iii) technologies operating in a spectrum commons. Moreover, we reflect on our literature review to identify possible spectrum sharing design solutions and performance evaluation approaches useful for future coexistence cases. Finally, we discuss spectrum sharing design challenges and suggest future research directions
    corecore