1,364 research outputs found

    Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies

    Full text link
    We review the observed demographics and inferred evolution of supermassive black holes (BHs) found by dynamical modeling of spatially resolved kinematics. Most influential was the discovery of a tight correlation between BH mass and the velocity dispersion of the host-galaxy bulge. It and other correlations led to the belief that BHs and bulges coevolve by regulating each other's growth. New results are now replacing this simple story with a richer and more plausible picture in which BHs correlate differently with different galaxy components. BHs are found in pure-disk galaxies, so classical (elliptical-galaxy-like) bulges are not necessary to grow BHs. But BHs do not correlate with galaxy disks. And any correlations with disk-grown pseudobulges or halo dark matter are so weak as to imply no close coevolution. We suggest that there are four regimes of BH feedback. 1- Local, stochastic feeding of small BHs in mainly bulgeless galaxies involves too little energy to result in coevolution. 2- Global feeding in major, wet galaxy mergers grows giant BHs in short, quasar-like "AGN" events whose feedback does affect galaxies. This makes classical bulges and coreless-rotating ellipticals. 3- At the highest BH masses, maintenance-mode feedback into X-ray gas has the negative effect of helping to keep baryons locked up in hot gas. This happens in giant, core-nonrotating ellipticals. They inherit coevolution magic from smaller progenitors. 4- Independent of any feedback physics, the averaging that results from successive mergers helps to engineer tight BH correlations.Comment: 136 pages, 38 postscript figures, 4 tables; requires cittable.tex, psfig.tex, annrev4K-E.tex; accepted for publication in Volume 51 (2013) of Annual Review of Astronomy and Astrophysics; Supplementary Information will be submitted to arXiv separately in approximately 2013 Jun

    Supermassive black holes do not correlate with dark matter halos of galaxies

    Full text link
    Supermassive black holes have been detected in all galaxies that contain bulge components when the galaxies observed were close enough so that the searches were feasible. Together with the observation that bigger black holes live in bigger bulges, this has led to the belief that black hole growth and bulge formation regulate each other. That is, black holes and bulges "coevolve". Therefore, reports of a similar correlation between black holes and the dark matter halos in which visible galaxies are embedded have profound implications. Dark matter is likely to be nonbaryonic, so these reports suggest that unknown, exotic physics controls black hole growth. Here we show - based in part on recent measurements of bulgeless galaxies - that there is almost no correlation between dark matter and parameters that measure black holes unless the galaxy also contains a bulge. We conclude that black holes do not correlate directly with dark matter. They do not correlate with galaxy disks, either. Therefore black holes coevolve only with bulges. This simplifies the puzzle of their coevolution by focusing attention on purely baryonic processes in the galaxy mergers that make bulges.Comment: 12 pages, 9 Postscript figures, 1 table; published in Nature (20 January 2011

    Impact of supermassive black hole growth on star formation

    Full text link
    Supermassive black holes are found at the centre of massive galaxies. During the growth of these black holes they light up to become visible as active galactic nuclei (AGN) and release extraordinary amounts of energy across the electromagnetic spectrum. This energy is widely believed to regulate the rate of star formation in the black holes' host galaxies via so-called "AGN feedback". However, the details of how and when this occurs remains uncertain from both an observational and theoretical perspective. I review some of the observational results and discuss possible observational signatures of the impact of super-massive black hole growth on star formation.Comment: Invited Review for Nature Astronomy - accepted for publication. 11 pages 6 figure

    Mass and Mean Velocity Dispersion Relations for Supermassive Black Holes in Galactic Bulges

    Full text link
    Growing evidence indicate supermassive black holes (SMBHs) in the mass range of MBHM_{\rm BH}∼106−1010M⊙\sim 10^6-10^{10}M_{\odot} lurking in central bulges of many galaxies. Extensive observations reveal fairly tight power laws of MBHM_{\rm BH} versus the mean stellar velocity dispersion σ\sigma of the host bulge. The dynamic evolution of a bulge and the formation of a central SMBH should be physically linked by various observational clues. In this contribution, we reproduce the empirical MBH−σM_{\rm BH}-\sigma power laws based on a self-similar general polytropic quasi-static bulge evolution and a sensible criterion of forming a SMBH surrounding the central density singularity of a general singular polytropic sphere (SPS) \cite{loujiang2008}. Other properties of host bulges and central SMBHs are also examined. Based on our model, we discuss the intrinsic scatter of the MBH−σM_{\rm BH}-\sigma relation and a scenario for the evolution of SMBHs in different host bulges.Comment: 8 pages, 2 figures, accepted for publication in the Proceedings of Science for VII Microquasar Workshop: Microquasars and Beyon
    • …
    corecore