14,214 research outputs found

    Continuous Methods for Elliptic Inverse Problems

    Get PDF
    Numerous mathematical models in applied and industrial mathematics take the form of a partial differential equation involving certain variable coefficients. These coefficients are known and they often describe some physical properties of the model. The direct problem in this context is to solve the partial differential equation. By contrast, an inverse problem asks for the identification of the variable coefficient when a certain measurement of a solution of the partial differential equation is available. A commonly used approach to inverse problems is to solve an optimization problem whose solution is an approximation of the sought coefficient. Such optimization problems are typically solved by discrete iterative schemes. It turns out that most known iterative schemes have their continuous counterparts given in terms of dynamical systems. However, such differential equations are usually solved by specific differential equation solvers. The primary objective of this thesis is to test the feasibility of differential equations based solvers for solving elliptic inverse problems. We will use differential equation solvers such as Euler\u27s Method, Trapezoidal Method, Runge-Kutta Method and Adams-Bashforth Method. In addition, these solvers will also be compared to built-in MATLAB ODE solvers. The performance and accuracy of these methods to solve inverse problems will be thoroughly discussed

    On the uniqueness of nonlinear diffusion coefficients in the presence of lower order terms

    Get PDF
    We consider the identification of nonlinear diffusion coefficients of the form a(t,u)a(t,u) or a(u)a(u) in quasi-linear parabolic and elliptic equations. Uniqueness for this inverse problem is established under very general assumptions using partial knowledge of the Dirichlet-to-Neumann map. The proof of our main result relies on the construction of a series of appropriate Dirichlet data and test functions with a particular singular behavior at the boundary. This allows us to localize the analysis and to separate the principal part of the equation from the remaining terms. We therefore do not require specific knowledge of lower order terms or initial data which allows to apply our results to a variety of applications. This is illustrated by discussing some typical examples in detail

    Simultaneous identification of diffusion and absorption coefficients in a quasilinear elliptic problem

    Full text link
    In this work we consider the identifiability of two coefficients a(u)a(u) and c(x)c(x) in a quasilinear elliptic partial differential equation from observation of the Dirichlet-to-Neumann map. We use a linearization procedure due to Isakov [On uniqueness in inverse problems for semilinear parabolic equations. Archive for Rational Mechanics and Analysis, 1993] and special singular solutions to first determine a(0)a(0) and c(x)c(x) for xΩx \in \Omega. Based on this partial result, we are then able to determine a(u)a(u) for uRu \in \mathbb{R} by an adjoint approach.Comment: 10 pages; Proof of Theorem 4.1 correcte

    Identification of nonlinear heat conduction laws

    Full text link
    We consider the identification of nonlinear heat conduction laws in stationary and instationary heat transfer problems. Only a single additional measurement of the temperature on a curve on the boundary is required to determine the unknown parameter function on the range of observed temperatures. We first present a new proof of Cannon's uniqueness result for the stationary case, then derive a corresponding stability estimate, and finally extend our argument to instationary problems

    Numerical identification of a nonlinear diffusion law via regularization in Hilbert scales

    Full text link
    We consider the reconstruction of a diffusion coefficient in a quasilinear elliptic problem from a single measurement of overspecified Neumann and Dirichlet data. The uniqueness for this parameter identification problem has been established by Cannon and we therefore focus on the stable solution in the presence of data noise. For this, we utilize a reformulation of the inverse problem as a linear ill-posed operator equation with perturbed data and operators. We are able to explicitly characterize the mapping properties of the corresponding operators which allow us to apply regularization in Hilbert scales. We can then prove convergence and convergence rates of the regularized reconstructions under very mild assumptions on the exact parameter. These are, in fact, already needed for the analysis of the forward problem and no additional source conditions are required. Numerical tests are presented to illustrate the theoretical statements.Comment: 17 pages, 2 figure

    Unique continuation property with partial information for two-dimensional anisotropic elasticity systems

    Full text link
    In this paper, we establish a novel unique continuation property for two-dimensional anisotropic elasticity systems with partial information. More precisely, given a homogeneous elasticity system in a domain, we investigate the unique continuation by assuming only the vanishing of one component of the solution in a subdomain. Using the corresponding Riemann function, we prove that the solution vanishes in the whole domain provided that the other component vanishes at one point up to its second derivatives. Further, we construct several examples showing the possibility of further reducing the additional information of the other component. This result possesses remarkable significance in both theoretical and practical aspects because the required data is almost halved for the unique determination of the whole solution.Comment: 14 pages, 1 figur
    corecore