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Abstract
We consider the identification of nonlinear diffusion coefficients of the form 
a(t, u ) or a(u) in quasi-linear parabolic and elliptic equations. Uniqueness 
for this inverse problem is established under very general assumptions using 
partial knowledge of the Dirichlet-to-Neumann map. The proof of our main 
result relies on the construction of a series of appropriate Dirichlet data and test 
functions with a particular singular behavior at the boundary. This allows us 
to localize the analysis and to separate the principal part of the equation from 
the remaining terms. We therefore do not require specific knowledge of lower 
order terms or initial data which allows to apply our results to a variety of 
applications. This is illustrated by discussing some typical examples in detail.

Keywords: uniqueness, parameter identification, nonlinear PDE, 
identifiability, nonlinear diffusion

(Some figures may appear in colour only in the online journal)

1. Introduction

Consider the inverse problem of identifying a = a(t, u ) for 0 ! t ! T  and g ! u ! g in a 
second order quasi-linear parabolic differential equation of the form
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−div (a(t, u )∇u + b(x, t, u )) + c(x, t, u ,∇u ) =
d
dt

d(t, u ). (1)

The equation shall hold on a bounded domain Ω ⊂ Rd , d = 2, 3 with piecewise smooth bound-
ary ∂Ω and for all 0 < t < T . We assume that for any choice of boundary values

u = g on ∂Ω× (0, T), (2)

in an appropriate class G of Dirichlet data and for coefficient functions a, b, c, d satisfying 
some structural properties, there exists a bounded weak solution with initial values

u(0 ) = u0 in Ω. (3)

Further, we assume to have access to additional measurements of the boundary fluxes

j = n · (a(t, u )∇u + b(x, t, u )) on ΓM × (0, T), (4)

on some non-trivial smooth part ΓM ⊂ ∂Ω of the boundary. Here n denotes the outward unit 
normal vector on ∂Ω. Our main result for this parabolic problem is that partial information 
{(g, j(g))}g∈G of the Dirichlet-to-Neumann map uniquely determines the diffusion coefficient 
a(t, u ) for 0 ! t ! T  and g ! u ! g. More precisely,

if a1 ̸≡ a2 on (0, T)× (g, g), then there exists g ∈ G : j1 ̸≡ j2 on ΓM × (0, T).
 

(5)

By ji, i = 1, 2, we denote the boundary fluxes (4) for solutions ui of (1)–(3) with parameter 
functions ai, bi, ci, di, and initial values u i,0 , respectively. No detailed knowledge of the lower 
order terms or the initial values will be required for the proof of the above assertion. The 
reverse statement that a1 ≡ a2 implies j1 ≡ j2 of course needs additional assumptions. This 
fact and the identification of a(u) in the corresponding elliptic problem will be discussed in 
detail later.

Uniqueness of unknown parameters in partial differential equations  is one of the main 
research topics in the field of inverse problems. The most prominent example probably is 
Calderón’s problem [3], where one aims to reconstruct an unknown spatially varying con-
ductivity a = a(x) in the elliptic equation −div(a(x)∇u) = 0 from observation of the full or 
partial Dirichlet-to-Neumann map; we refer to [19, 24, 33] for comprehensive reviews.

The identification of a = a(u) in the quasilinear elliptic equation −div(a(u)∇u) = 0 has 
been investigated by Cannon [4], who gave a constructive proof for the determination of the 
coefficient from knowledge of a single measurement of u along a curve on ∂Ω. A stable 
numerical method for the problem has been proposed in [12]. Simultaneous identification of 
two parameters a and c in the elliptic equation −div(a(u)∇u) + c(x)u = 0 has been consid-
ered in [13]. A survey of further related results can be found in [21, chapter 5].

The identification of parameters in nonlinear parabolic problems from boundary measure-
ments was considered in Cannon and DuChateau [5] which initiated a series of papers treating 
the spatially one-dimensional case [6, 7, 9, 11]. These results are based on monotonicity prop-
erties of the solution and use adjoint methods to prove uniqueness of the inverse problem with 
overdetermined boundary data; see also [8] where the nonlinearity is allowed to degenerate. 
A special case is treated by Lorenzi [27], who assumes that a(u) is already known on some 
interval which lies in the range of the initial datum. The identification of nonlinear lower order 
terms c = c(u), c = c(x, u), or c = c(u,∇u) in parabolic problems has been investigated in 
[10, 18, 20]. For an extensive overview of available results and further references on param-
eter identification in partial differential equations from single and multiple boundary measure-
ments, see e.g. [21, 25, 34].
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The proof of the main result of this manuscript is based on the following rationale: We 
start from a variational formulation of the problem (1) and (2). Due to its special form, the 
principal part can be reduced to a boundary integral if harmonic test functions are used in this 
variational principle. We then construct a sequence ϕε of harmonic test functions with a par-
ticular singular behavior in the limit ε → 0 and choose appropriate Dirichlet boundary data gε 
which vary locally around points where the right-hand side of (5) holds true. When inserting 
the corresponding solutions and test functions into the variational principle, one can see that 
the lower order terms scale differently with respect to ε compared to the principal part. The 
latter term however is localized at the boundary and can be fully controlled, which allows us 
to prove the validity of (5) by contradiction. The main arguments used in our proofs are rather 
general and allow us to extend the above results in various directions. Some particular results 
and examples for applications will be presented at the end of the manuscript.

Let us mention that singular functions have already been used successfully for uniqueness 
and stability proofs before, e.g. by Alessandrini [1] in the context of the Calderón problem 
and by von Harrach [17], who constructed particular functions via the unique continuation 
principle, to obtain identifiability results for the Calderón problem and a related problem with 
additional lower order term c = c(x)u .

Let us also briefly comment on internal measurements and the case of one spatial dimen-
sion: For internal measurements, the interesting case would be that of a single measurement, 
since otherwise if measurements were available for all possible initial and boundary data, they 
would again determine the Dirichlet-to-Neumann map. In the case of a single measurement, 
our approach does not work since our scaling arguments for the boundary datum (which is 
then fixed) cannot be applied. Since the singular behavior of the fundamental solution to the 
Laplace equation changes with dimension, it is not possible to directly transfer our results to 
one space dimension without further modification. As mentioned above, the one-dimensional 
case has also been treated in [5], yet without lower order terms.

This paper is organized as follows: In section 2, we first introduce our basic assumptions and 
then formulate in detail our main result concerning the parabolic problem discussed above. In 
section 3, we construct the singular test functions and derive some auxiliary estimates and in 
section 4, we complete the proof of our main assertion. In section 5, we establish the converse 
implication and state the corresponding results for the elliptic problem. In addition, we discuss 
possible extensions of our results concerning our assumptions on the geometry, the regularity 
of parameters, or the boundary conditions. To illustrate the applicability of our approach, we 
discuss in section 6 possible applications, including parabolic problems in bioheat transfer, 
systems of coupled equations arising in chemotaxis and urban crime modeling, as well as 
systems describing electron migration in semi-conductors and nanopores.

2. Assumptions and main result

Let us start by introducing a few general assumptions that will be utilized for our analysis 
throughout the text. The first assumption concerns the geometric setting.

Assumption 1. Ω ⊂ Rd , d = 2, 3 is a bounded Lipschitz domain and Γ′
M ⊂ ∂Ω is an open 

smooth part of the boundary with |Γ′
M| ≠ 0, i.e. there exists x̄ ∈ Γ′

M and ε0 > 0 such that 
Bε0(x̄ + ε0n(x̄)) ∩ Ω = ∅ and ΓM = Bε0(x̄) ∩ ∂Ω ⊂ Γ′

M . We further assume that ΓM  is flat, i.e. 
n(x) = n(x̄) = ed  on ΓM  with ed being the dth unit vector; see figure 1 for a sketch.

The last assumption is made for convenience of notation and can be relaxed to ΓM  being of 
class C1 by the usual localization argument. With the second assumption, we introduce some 
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general conditions on the parameter functions that appear in the parabolic problem under 
consideration.

Assumption 2. The parameters a, b, c, d  lie in W1,∞ with norm bounded by CA > 0 and 
0 < a ! a(t, u ) ! a for some a, a > 0 . Moreover, u0 ∈ L2(Ω) with ∥u0∥L2(Ω) ! C0.

Again, some of these assumptions can be relaxed considerably, which will become clear 
from the proofs. Since the parabolic problem under investigation is rather general, we assume 
for the moment the existence of solutions and uniform bounds. The validity of these mild 
assumptions has of course to be verified when considering particular applications.

Assumption 3. Let assumptions 1 and 2 hold. Then for any Dirichlet datum

g ∈ G := {g ∈ H1 (0, T; H1 (∂Ω)) : g ! g ! g and ∥g∥H1 (0,T;H1 (∂Ω)) ! CG}

with parameters g , g , and constant CG, there exists u ∈ L2 (0, T; H1 (Ω)) ∩ C([0, T]; L2 (Ω)) 
satisfying (2) and (3) in the sense of traces and (1) in the sense of distributions, i.e.

∫ T

0
(a(t, u )∇u + b(x, t, u ),∇ϕ)Ω + (c(x, t, u ,∇u ),ϕ)Ωd t = −

∫ T

0
(d(t, u ), ∂tϕ)Ωd t

 (6)

for all φ ∈ H1
0(0, T; H1

0(Ω)); as usual, (u, v)Ω denotes the scalar product of L2(Ω) here. More-
over, any such weak solution of (1)–(2) is bounded uniformly by

∥u∥L2 (0,T;H1 (Ω)) ! CU (7)

with a constant CU = CU(g, g, CA, CG, C0 ,Ω) that is independent of the particular choice of 
the coefficients, of the initial value, and of the Dirichlet datum g∈ G.

Bε(x̄ε)

x̄ε0

Bε0(x̄ε0)

x̄ε

x̄ ΓM

Ω
x

Figure 1. Sketch of the geometry near ΓM  and the singular points x̄ε = x̄ + εn(x̄).
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Here and below we use standard notation for function spaces, in particular, 
H−1(Ω) = H1

0(Ω)
′ is the dual space of H1

0(Ω), and Hs(0, T; X) denotes the appropriate 
Bochner space of functions f : (0, T) → X with values in some Banach-space X; let us refer to 
[16] for details. The above assumptions on the parameters allow us to define for any bounded 
weak solution u ∈ L2 (0, T; H1 (Ω)) the Neumann flux or generalized co-normal derivative 
j = n · (a(t, u )∇u + b(x, t, u )) as a linear functional on H1

0(0, T; H1 (Ω)) via
∫ T

0
⟨ j,ϕ⟩∂Ωd t :=

∫ T

0
(a(t, u )∇u + b(x, t, u ),∇ϕ)Ω

+ (c(x, t, u ,∇u ),ϕ)Ω + (d(t, u ), ∂tϕ)Ωd t,
 

(8)

for all ϕ ∈ H1
0(0, T; H1 (Ω)). Using assumptions 1–3, one can directly see that
∫ T

0
⟨ j,ϕ⟩∂Ωd t ! CA(3 + CU)∥ϕ∥H1 (0,T;H1 (Ω)) (9)

which establishes a uniform bound for j in the norm of linear functionals on H1
0(0, T; H1 (Ω)). 

Using standard convention, we say that j ≡ 0 on ΓM × (0, T), if
∫ T

0
⟨ j,ϕ⟩∂Ωd t = 0

holds for all ϕ ∈ H1
0(0, T; H1 (Ω)) with ϕ ≡ 0 on ∂Ω \ Γ× (0, T) in the sense of traces. 

Accordingly, we have j1 ≡ j2 on ΓM × (0, T) if j1 − j2 ≡ 0 on ΓM × (0, T).
We are now in the position to state our main result in a rigorous manner.

Theorem 1. Let assumption 1 hold and let ai, bi, ci, di, and u 0,i , for i = 1, 2 satisfy assump-
tion 2. For g∈ G, let u i(g) be corresponding weak solutions of (1)–(3) in the sense of assump-
tion 3 and let ji(g) denote the corresponding Neumann fluxes. Assume that a1 (̃t, g̃) ̸= a2 (̃t, g̃) 
for some 0 < t̃ < T  and g ! g̃ ! g, then there exists a Dirichlet datum g∈ G such that 
j1(g) ̸≡ j2(g) on ΓM × (0, T).

Some extensions of this result will be stated in section 5. In the proof of theorem 1, which is 
presented in section 4, we will use particular test functions ϕ in the definition of the co-normal 
derivative (8) with a very specific singular behavior at the boundary. The next section presents 
some auxiliary results required for the construction of these functions.

3. Auxiliary results

Let Φ denote the fundamental solution of the Laplace equation, i.e.

Φ(x) =

{
− 1

2π log|x|, d = 2,
1

4 π
1
|x| , d = 3.

For x̄ ∈ ∂Ω and ε0 > 0 as defined assumption 1, and for any 0 < ε ! ε0, we define

λε
x̄ (x) = n(x̄) ·∇Φ(x − x̄ε), x̄ε = x̄ + εn(x̄) (10)

for all x ̸= x̄ + εn(x̄), and we set λε
x̄ (x̄ε) = 0 for completeness. By construction and assump-

tion 1, we have x̄ε /∈ Ω for 0 < ε ! ε0, and hence λε
x̄  is a smooth function in Ω.
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Lemma 1. For every 0 < ε ! ε0, we have λε
x̄ ∈ C∞(Ω) and ∆λε

x̄ (x) = 0 for all x ∈ Ω. In 
addition, there exists a constant CL = CL( p,Ω, ε0 ) > 0  independent of ε such that

∥λε
x̄∥L p(Ω) ! CL

⎧
⎪⎨

⎪⎩

1, p < d/(d − 1),
| ln(ε)|

1
p , p = d/(d − 1),

ε1+ d
p−d, p > d/(d − 1).

The gradient of λε
x̄  can further be estimated by

∥∇λε
x̄∥L p(Ω) ! CL

{
| ln(ε)|, p = 1,
ε

d
p−d, p > 1.

Proof. Smoothness of λε
x̄  and ∆λx̄(x) = 0 follow by direct computation. By assumption 1, 

we further know that Ω ⊂ BR(x̄ε) \ Bε(x̄ε) for 0 < ε ! ε0; see figure 1. Hence
∫

Ω
|λε

x̄ | pd x ! C′
∫

BR(x̄ε)\Bε(x̄ε)
|x − x̄ε|(1 −d) pd x ! C′′

∫ R

ε
r(1 −d)( p−1 )d r.

The estimates for the norm of λε
x̄  then follow directly by integration. The gradient of λε

x̄ , on the 
other hand, can be estimated by |∇λε

x̄ (x)| ! C′|x − x̄ε|−d and hence
∫

Ω
∥∇λε

x̄∥ pd x ! C′′
∫

BR(x̄ε)\Bε(x̄ε)
|x − x̄ε|−dpd x ! C′′′

∫ R

ε
rd(1 −p)−1 d r.

The estimates for ∇λε
x̄  then again follow directly by computing this integral. □ 

The next result describes in more detail the behavior of λε
x̄  away from the singularity.

Lemma 2. For any 0 < ε ! ε0 and all x ∈ Ω with |x − x̄| ! ε0/2 there holds

|λε
x̄ (x)| ! C′

L and |∇λε
x̄ (x)| ! C′

L

with constant C′
L = C′

L(Ω, ε0 ) independent of ε and the choice of x.

Proof. First consider the case that ε ! ε0/4. Then

|x − x̄ε| ! |x − x̄|− |x̄ − x̄ε| ! ε0 /2 − ε0 /4 = ε0 /4.

Otherwise, we have ε0/4 ! ε ! ε0, and thus

|x − x̄ε| ! |x − x̄ε0 |− |x̄ε0 − x̄ε| ! ε0 − (ε0 − ε0 /4) = ε0 /4.

Hence |x − x̄ε| ! ε0/4 in both cases. Using the particular form of λε
x̄ , we therefore obtain the 

bounds |λε
x̄ | ! C|x − x̄ε|1−d ! C′ε1−d

0  and |∇λε
x̄ (x)| ! C|x − x̄ε|−d ! C′ε−d

0 . □ 

As a next step, let us also characterize in more detail the behavior of λε
x̄  in the neighborhood 

of the point x̄ ∈ ΓM on the boundary.

Lemma 3. There exists a constant C′′
L > 0, such that for any 0 < ε < ε0

∫

ΓM∩Bε(x̄)
∂nλ

ε
x̄ d s(x) ! C′′

L/ε and ∂nλ
ε
x̄ ! 0 on ΓM ∩ Bε(x̄).

H Egger et alInverse Problems 33 (2017) 115005
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Proof. We only consider the case d = 3 in detail. By assumption 1, n(x) = n(x̄) on ΓM . 
A brief inspection of figure 1 further reveals that |x − x̄ε|2 = |x − x̄|2 + ε2 for x ∈ ΓM and 
n(x̄) · (x − x̄ε) = −ε. We therefore obtain

4 π∂nλ
ε
x̄ (x) = 3

|n(x̄) · (x − x̄ε)|2

|x − x̄ε|5 − |n(x̄)|2

|x − x̄ε|3 =
3 ε2 − |x − x̄|2 − ε2

|x − x̄ε|5 .

This shows ∂nλε
x̄ ! 2−5/2ε−3 for all x ∈ ΓM ∩ Bε(x̄) and thus positivity of the normal de-

rivative. The lower bound on the integral follows by noting that |ΓM ∩ Bε(x̄)| = πε2/4. The 
estimate for dimension d = 2 can be derived in a similar way. □ 

4. Proof of theorem 1

We can now turn to the proof of our main result which proceeds by contradiction.

4.1. An integral identity

Let the assumptions of theorem 1 hold but assume that there exists some (̃t, g̃) ∈ (0, T)× (g, g) 
such that a1 (̃t, g̃) ! a2 (̃t, g̃) + 2 η with η > 0. By assumption 2, we know that a1 and a2 are 
continuous and hence

a1(t, g) ! a2(t, g) + η, for all t ∈ (t1, t2) and g ∈ (g1, g2) (11)

for some appropriate intervals (t1 , t2 ) and (g1 , g2 ) around t̃  and g̃. Let us denote by

Ai(t, g) =
∫ g

g1

ai(t, u )du , i = 1, 2 (12)

the anti-derivatives of the diffusion parameters ai(t, g). The following identity will be one of 
the central arguments for the proof of theorem 1.

Lemma 4. Let the assumptions of theorem 1 be valid. Then
∫ T

0
(A1 (t, u 1 )− A2 (t, u 2 ), ∂n ϕ)∂Ωd t =

∫ T

0
⟨ j1 − j2 ,ϕ⟩∂Ω − (d 1 (t, u 1 )− d 2 (t, u 2 ), ∂tϕ)Ω

− (b1 (x, t, u 1 )− b2 (x, t, u 2 ),∇ϕ)Ω − (c1 (x, t, u 1 ,∇u 1 )− c2 (x, t, u 2 ,∇u 2 ),ϕ)Ω d t

for all ϕ ∈ H1
0(0, T; H1 (Ω)) with ∆ϕ = 0 on Ω× (0, T).

Proof. Subtracting the two equation (8) which define the fluxes ji, we obtain
∫ T

0
⟨ j1 − j2 ,ϕ⟩∂Ωd t =

∫ T

0
(a1 (t, u 1 )∇u 1 − a2 (t, u 2 )∇u 2 ,∇ϕ)Ω + (d(t, u 1 )− d(t, u 2 ), ∂tϕ)Ω

+ (b1 (x, t, u 1 )− b2 (x, t, u 2 ),∇ϕ)Ω
+ (c1 (x, t, u 1 ,∇u 1 )− c2 (x, t, u 2 ,∇u 2 ),ϕ)Ω d t

for all ϕ ∈ H1
0(0, T; H1 (Ω)). We can now express the terms ai(t, u i)∇u i = ∇Ai(t, u i) via the 

primitives, and then use integration-by-parts for the first term on the right hand side as well as 
∆ϕ = 0 to obtain the result. □ 

H Egger et alInverse Problems 33 (2017) 115005
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4.2. Construction of Dirichlet data

We now define spatial and temporal cutoff functions that will be used for localization of the 
following estimates in space and time, i.e.

χε
x̄ (x) =

⎧
⎨

⎩

1, |x − x̄| ! ε/2,
2 − 2|x − x̄|/ε, ε/2 < |x − x̄| < ε,
0, else,

 (13)

and

χ(t) = max{(t − t1 )(t2 − t), 0 }. (14)

With the help of these auxiliary functions, we can now construct candidates for appropriate 
Dirichlet data g to be used for the proof of theorem 1. This construction also yields a constant 
CG to be used in assumption 3.

Lemma 5. There exist positive constants γ and CG such that for any 0 < ε ! ε0 the func-
tion gε

x̄ (x, t) = g1 + γε(3 −d)/2 χε
x̄ (x)χ(t) satisfies

g ! g1 ! gεx̄ ! g2 ! ḡ and ∥gεx̄∥H1 (0,T;H1 (∂Ω)) ! CG.

Proof. Since χ is piecewise smooth, 0 ! χ(t) ! T2/4 and |χ′(t)| ! T , the func-
tions gε are uniformly bounded and also differentiable with respect to t and by choosing 
γ = 4 (g2 − g1)min(1, ε(d−3 )/2

0 )/T 2 , we can satisfy the asserted pointwise bounds. We there-
fore only have to consider the spatial derivatives in detail. By direct computation

∥∇gεx̄ (·, t)∥L2 (∂Ω) !
γT 2

4
ε(3 −d)/2 ∥∇χε

x̄∥L2 (ΓM∩Bε(x̄)).

Furthermore, by definition of χε
x̄,

∥∇χε
x̄∥2

L2 (ΓM∩Bε(x̄)) ! C′
∫ ε

ε/2
ε−2 rd−2 d r = C′′εd−3 .

This shows that ∥∇gε
x̄ (·, t)∥L2 (∂Ω) ! γC1 , and the same estimate can be obtained for the time 

derivative ∥∂t∇gε
x̄ (·, t)∥L2 (∂Ω). Thus we obtain

∥gε
x̄∥H1 (0,T;H1 (∂Ω)) ! 2 γC1 + C2 ,

and we may choose CG = 2γ0C1 + C2 with γ0 = 4 (ḡ− g)min(1, ε(d−3 )/2
0 )/T 2 ! γ as uni-

form bound for the norm. □ 

By assumption 3 we therefore know, that for any g = gεx̄ as defined above, we have weak 
solutions u i(g) and corresponding fluxes ji(g) as required in theorem 1.

4.3. Test function and estimates for the flux

We test the identity of lemma 4 with appropriate test functions ϕ to prove the theorem.

Lemma 6. Set ϕε
x̄ (x, t) = λε

x̄ (x)χ(t) and let u ε
i = u i(gεx̄ ) be weak solutions of (1)–(3) in the 

sense of assumption 3 for Dirichlet data g = gεx̄ and with parameter functions a = ai , b = bi , 
c = ci , d = di, and initial values u i,0  satisfying assumption 2. Then

H Egger et alInverse Problems 33 (2017) 115005
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∫ T

0
(A1 (t, u ε1 )− A2 (t, u ε2 ), ∂nϕ

ε
x̄ )∂Ω d t ! C1 ε

(1 −d)/2 .

If, in addition, j1 ≡ j2 on ΓM × (0, T), then

∣∣∣
∫ T

0
⟨ j1 − j2 ,ϕε

x̄ ⟩∂Ω − (d 1 (t, u 1 )− d 2 (t, u 2 ), ∂tϕ
ε
x̄ )Ω − (b1 (x, t, u 1 )− b2 (x, t, u 2 ),∇ϕε

x̄ )Ω

− (c1 (x, t, u 1 ,∇u 1 )− c2 (x, t, u 2 ,∇u 2 ),ϕε
x̄ )Ω d t

∣∣∣ ! C2 | ln(ε)|

for all 0 < ε ! ε0 with some positive constants C1, C2 independent of ε.

Proof. Using the particular construction of the anti-derivatives Ai, of the Dirichlet datum gε
x̄ , 

and of the test function ϕε
x̄, we directly obtain

(A1 (t, u ε1 )− A2 (t, u ε2 ), ∂nϕ
ε
x̄ (t))∂Ω =

(
A1 (t, gεx̄ )− A2 (t, gεx̄ ),χ(t)∂nλ

ε
x̄
)
ΓM∩Bε(x̄).

Since g1 ! gεx̄ ! g2 on Bε(x̄) ∩ ΓM × (t1 , t2 ) by lemma 5 and a1 − a2 ! η on (t1 , t2 )× (g1 , g2 ) 
by assumption (11), we can use lemma 3 and some elementary computations to see that

∫ t2

t1

(
A1 (t, gεx̄ )− A2 (t, gεx̄ ),χ(t)∂nλ

ε
x̄
)
ΓM∩Bε(x̄) d t ! C1 ε

1 −d
2 .

Since j1 ≡ j2 on ΓM × (t1 , t2 ) and χε0
x̄ ≡ 0 on ∂Ω \ ΓM, we further see that

∫ T

0
⟨ j1 − j2 ,χ(t)λε

x̄ ⟩∂Ωd t =
∫ T

0
⟨ j1 − j2 ,χ(t)(1 − χε0

x̄ )λε
x̄ ⟩∂Ωd t

! CA(3 + CU)∥(1 − χε0
x̄ )λε

x̄χ∥H1 (0,T;H1 (Ω)) ! C,

where we used the estimate (9) for the flux and the uniform bounds for the cutoff functions 
and λε

x̄  provided by lemma 2. The constant C therefore can be chosen independent of ε. Using 
lemma 1, we can further estimate

∫ T

0
(b1 (x, t, u 1 )− b2 (x, t, u 2 ),∇ϕε

x̄ )Ω d t ! C| ln(ε)|

and the other terms of lower order can be estimated similarly due to the bounds of assumption 
3 and the uniform estimates for the singular function λε

x̄ . □ 

4.4. Proof of theorem 1

For ε sufficiently small, the estimates of lemma 6 are in contradiction to the identity of lemma 
4. Thus the assumption (11) cannot be valid. This concludes the proof of theorem 1. □ 

5. Further results and extensions

We now present some further results, that can be deduced or derived in a similar way as theo-
rem 1, and then discuss some possibilities for relaxing the assumptions.
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5.1. The reverse implication

As mentioned in the introduction, the reverse result

a1 ≡ a2 on (0, T)× (g, g) =⇒ j1 (g) ≡ j2 (g) on ΓM × (0, T) for all g ∈ G
 

(15)

does in general not hold, unless more information about the lower order terms and the solution 
is available. A mismatch of the Neumann data therefore does not allow to deduce a difference 
in the parameter. For the following assertion, we additionally require

Assumption 4. For any g∈ G and initial value u0  satisfying assumption 2, the weak solu-
tion u(g) of (1)–(3) specified in assumption 3 is unique and satisfies g ! u(g) ! g.

In many applications, assumption 4 can be verified by comparison principles or similar 
considerations. From the results of the previous sections and the above considerations, we can 
now directly deduce validity of the following assertion.

Theorem 2. Let the assumptions of theorem 1 hold. Furthermore, let assumption 4 be valid 
and assume that b1 = b2, c1 = c2, d1 = d2, and u0,1 = u0,2 . Then

a1 ≡ a2 on (0, T)× (g, g) ⇐⇒ j1 (g) ≡ j2 (g) on ΓM × (0, T) for all g ∈ G.

Note that the assertion of theorem 1 is inline with similar results reported in literature; see, 
e.g. [18, 20]. Also there, the validity of the reverse implication provided by theorem 2 would 
require further assumptions. For linear elliptic problems without lower order terms, like the 
Calderón problem, the reverse implication is however trivially satisfied.

5.2. Elliptic problems

A brief inspection of the proof of theorem 1 shows that similar arguments can be used to 
derive a corresponding result for the elliptic problem

−div (a(u)∇u + b(x, u)) + c(x, u,∇u) = 0 in Ω, (16)

u = g on ∂Ω. (17)
The assumptions on the coefficients can now be replaced by

Assumption 5. The coefficients a, b, and c lie in W1,∞ with norm bounded by a uniform 
constant CA and, in addition, 0 < a ! a ! a for some a, a > 0 .

Again, we first only have to require existence of weak solutions together with some uni-
form bounds. The corresponding assumption for the elliptic case reads

Assumption 6. For any g∈ G = {g∈ H1(∂Ω) : g! g! gand ∥g∥H1(∂Ω) ! CG} there 
exists a function u∈ H1(Ω) which satisfies (17 ) in the sense of traces and (16 ) in the sense of 
distributions, i.e.

(a(u)∇u + b(x, u),∇φ)Ω + (c(x, u,∇u),φ)Ω = 0

for all test function φ ∈ H1
0(Ω). Moreover, any such weak solution is bounded by

∥u∥H1(Ω) ! CU

with a constant CU = CU(CA, CG, ε0 ,Ω, d, g, ḡ) independent of the particular choice of the 
parameters and the boundary data.
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The Neumann flux can now be defined as a linear functional on H1(Ω) by

⟨ j,ϕ⟩∂Ω =

∫

Ω
a(u )∇u ·∇ϕ+ b(x, u ) ·∇ϕ+ c(x, u ,∇u )ϕ d x (18)

for all φ ∈ H1(Ω). With similar reasoning as in the parabolic case, we then obtain

Theorem 3. Let assumption 1 hold and ai, bi, ci, i = 1, 2 satisfy assumption 5 . For any 
g∈ G let u i(g) denote weak solutions in the sense of assumption 6  and let ji(g) be the corre-
sponding Neumann fluxes. Then

a1 ̸≡ a2 on (g, g) =⇒ j1 (g) ̸≡ j2 (g) on ΓM for some g∈ G. (19)

If, in addition, the weak solution u(g) is unique for any g∈ G and satisfies g ! u(g) ! u(g), 
and if b1 ≡ b2 and c1 ≡ c2, then the reverse implication holds as well.

Let us note that the corresponding problem with b ≡ 0 and c(x, u,∇u) = c(x)u has already 
been treated in [13], where knowledge of a allowed us to determine coefficient c ! 0 in a 
second step; see also [21] for further results in this direction and the comments in section 7.

5.3. Extensions

Before we close this section, let us briefly discuss some possible extensions concerning our 
assumptions on the parameters and the domain.

5.3.1. Regularity of the solution, the coefficients, and the boundary data. A brief inspection 
of our estimates shows that the assumptions on the coefficients can be relaxed considerably, 
e.g. only some integrability or growth conditions for the coefficient governing the lower order 
terms are required. Also the regularity requirement on the Dirichlet data can be relaxed and 
estimates for the solution in Lp spaces may be used. We leave the details of such generaliza-
tions to the reader.

5.3.2. Assumptions on the geometry. The usual localization argument allows us to deal also 
with the case that ΓM  is not flat but given as the graph of a C1 function. For sufficiently small 
ε0, we may assume that ΓM  is almost flat and n(x) = n(x̄) + o(1), which is enough to prove 
the required estimates with slight modification of the proofs given above. We again leave the 
details to the reader.

5.3.3. Boundary conditions. In our proofs we only require local control of the Dirichlet 
boundary values on ΓM . Other types of boundary conditions, e.g. of Neumann or Robin type 
or even nonlinear conditions, can therefore be prescribed on the inaccessible part ∂Ω \ ΓM. In 
particular, we do not need knowledge of any boundary data on ∂Ω \ ΓM. Hence, the data really 
required for our uniqueness results consists of

{(g|ΓM×(0,T), j(g)|ΓM×(0,T))}g∈G,

which is sometimes referred to as local Dirichlet-to-Neumann map [24]. A quick inspection 
of our proofs reveals that the additional terms coming from the boundary conditions on the 
inaccessible part can again be treated as lower order terms and therefore do not influence the 
validity of our results.
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6. Applications

The uniqueness results of the previous sections have many practically relevant applications. 
For illustration, we now discuss discuss in some detail problems arising in bioheat transfer, 
in chemotaxis or urban crime modeling, and in semiconductor device simulation. Particular 
emphasis will be put on the verification of our assumptions in the context of these applications.

6.1. Nonlinear heat transfer

Heat transfer in biological tissue, for instance in the liver, can be modeled by the following 
quasilinear heat equation [30]

∂tu − div (a(u )∇u ) + c(u b − u ) = 0 on Ω× (0, T). (20)

Here u describes the unknown temperature of the tissue while the blood temperature ub and 
the coefficient c are assumed to be known. The heat conduction coefficient a = a(u) is related 
to the material properties and is, in general, unknown. To close the system, we supplement the 
problem with the following initial and boundary values

u(x, 0) = u0(x) in Ω, (21)

u (x, t) = g(x, t) on ∂Ω× (0, T). (22)

We assume that the Dirichlet data g∈ G satisfy the conditions of assumption 3 with g = 0 
and g = ub. As a consequence of maximal regularity results ([2] theorem 1.1), one can show 
global existence of a unique weak solution u ∈ L2 (0, T; H1 (Ω)) ∩ C0([0, T]; L2 (Ω)) for any 
initial value u0 ∈ L2(Ω), provided that a and u0 satisfy the conditions of assumption 2. In 
addition, the uniform bounds

∥u∥L2 (0,T;H1 (Ω)) ! C
(
∥u0∥L2 (Ω) + ∥g∥L2 (0,T;H1 /2 (∂Ω))

)
.

hold and 0 ! u ! ub on Ω× (0, T) if also 0 ! u0 ! ub. The last assertion follows from maxi-
mum principles which can be applied once solvability is known, since then the coefficient a(u) 
can be treated as a space-dependent coefficient and the equation becomes linear.

These considerations show that assumptions 3 and 4 hold. By application of theorem 2, we 
thus obtain the following result.

Corollary 1. Let ai : R → R, i ∈ {1, 2}, be two functions satisfying the above conditions, 
and let u i(0) = u 0 ∈ L2(Ω) be given initial data. Then

a1 ≡ a2 on (0, u b) ⇐⇒ j1 (g) ≡ j2 (g) for all g∈ G.

In principle, it is again sufficient to know ji(g) for all g∈ G on a part ΓM  of the boundary; 
see section 5.3.

6.2. Coupled nonlinear drift-diffusion

Coupled systems of non-linear drift-diffusion equations appear in many applications, e.g. in 
chemotaxis [29] or in modeling and prediction of urban crime [31]. Here we consider a para-
bolic elliptic system of the form

∂tu − div (a(u )∇u + b(u )∇V) = 0 in Ω× (0, T), (23)

−∆V + V = h(u) in Ω× (0, T). (24)
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The function a(u) depends on the system at hand and is usually unknown. The same is in 
principle true also for the coefficients b and h, which may however be at least partially deter-
mined, provided that a is known and that the measurements are sufficiently rich; see [14] 
and section 7. To complete the description of the problem, we further require the boundary 
conditions

u = g on ∂Ω× (0, T), (25)

∂nV = 0 on ∂Ω× (0, T), (26)

and we assume knowledge of the initial state for the first variable

u(x, 0 ) = u0 (x) in Ω. (27)

Let us now turn to the verification of our assumptions. It is well known that for b(u) = u, the 
above system may exhibit blow-up in finite time. This can be prevented by requiring

b(0) = b(1 ) = 0, (28)

and u0 ∈ C2(Ω) with 0 ! u0 ! 1 and g ∈ G ∩ C∞(Ω× [0, T]), where we set g = 0 
and ḡ = 1. Furthermore, we assume h∈ W1,∞(R). Using similar arguments as in [14,  
theorem 3.1], assumptions 1 and 2 ensure the global existence of a unique solution (u, V) with 
u ∈ L p(0, T; H1 (Ω)) ∩ H1 (0, T; L2 (Ω)) and V ∈ L∞(0, T; W2,p(Ω)). Moreover, the following 
a priori bound holds

∥u∥L2 (0,T;H1 (Ω)) ! C
(
∥u0∥H1 (Ω) + ∥g∥H1 (ΩT)

)
.

In addition we can apply [14, lemma 3.2] to ensure that

0 ! u (x, t) ! 1 a.e. on Ω× (0, T),

and thus assumption 4 is also satisfied. We can now apply theorem 1 by considering only 
equation (23) and treating V as an unknown term of lower order. This leads to the following 
uniqueness result.

Corollary 2. Let ai, bi : R → R, i ∈ {1, 2}, be functions satisfying assumption 2, let 
hi ∈ W1,∞(R), i ∈ {1, 2}, with norm bounded by CA as in assumption 2, and let u 0,i ∈ C2 (Ω) 
with 0 ! u 0,i ! 1  be given. Then

j1 (g) ≡ j2 (g) for all g∈ G =⇒ a1 ≡ a2 on (0, 1 ).

If bi = b, hi = h and u i,0 = u 0 are known, then the reverse implications holds true as well.

Similar as in theorem 2, the reverse direction follows directly from the uniqueness of the solu-
tion to the parabolic elliptic system for given parameters and initial values.

6.3. Nonlinear Poisson–Nernst–Planck systems

Our arguments can also be applied to more complicated systems of partial differential equa-
tions. To illustrate this, let us consider the Poisson–Nernst–Planck system which arises in 
models for semiconductors [28] and also describes ionic fluxes through biological and synth-
etic channels [15, 26]. Here we consider a system with non-linear diffusion coefficients which 
is relevant for high concentration densities [23]. The model equations then read
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∂tu = div (a(u )∇u + u ∇V) in Ω× (0, T) (29)

∂t ũ = div (ã(ũ )∇ũ − ũ ∇V) in Ω× (0, T) (30)

−∆V = u− ũ+ ξ in Ω× (0, T), (31)

where u, ũ are concentrations of positive and negative charges, V is the electric potential, and 
ξ is a given charge distribution. The system is complemented with two initial conditions

u(x, 0) = u0(x) and ũ(x, 0) = ũ0(x), (32)

and we prescribe

u = g, ũ = g̃, on ΓD × (0, T), (33)

on ΓD ⊂ ∂Ω which models open ends of the domain connected to respective charge reser-
voirs. We choose g, g̃∈ G satisfying 0 = g ! g, g̃ ! g for appropriate g > 0, depending 
on T and ∥ξ∥L∞(Ω). Homogeneous Neumann boundary conditions for u and ũ are used on 
ΓN = ∂Ω \ ΓD and appropriate mixed boundary conditions are prescribed for the potential V.

In order to ensure well-posedness of the Poisson–Nernst–Planck system we 
require additional conditions to hold, namely [23, H1–H5]; let us refer to [23, sec-
tion  1.7] for a detailed discussion under what conditions on the geometry these assump-
tions are satisfied. Assuming [23, H1–H5], existence of a unique weak solutions 
(u, ũ, V) ∈ [L2(0, T; H1 (Ω) ∩ L∞(Ω))]2 × L∞(0, T; W2,p(Ω)) has been derived in [23, theo-
rems 2.3 and 2.4]. In addition, one can obtain uniform bounds for the solution depending only 
on the bounds for the problem data.

With similar reasoning as in the previous example, we can consider ∇V  as an unknown 
lower order term. In order to separate the influence of a and ã in the flux j(gu , gw), we choose 
either gu or gw constant which implies that one of the corresponding primitive functions A or 
Ã vanishes.

Corollary 3. Let the assumptions of [23, theorem 2.3 and 2.4] on the domain, the coef-
ficients, and the initial data be valid. Furthermore, let u i(g, g̃), ũ i(g, g̃), i = 1, 2 denote the 
weak solutions corresponding to parameters ai, ãi, and let ji(g, g̃) denote the corresponding 
fluxes. Then

j1 (g, g̃) ≡ j2 (g, g̃) on ΓD × (0, T) for all g, g̃ ∈ G =⇒ a1 ≡ a2 and ã1 ≡ ã2 on (g, g).

It should be clear now that with similar reasoning one can determine diffusion coefficients 
in rather general systems of parabolic elliptic type.

7. Discussion

In this paper, we considered the identification of diffusion coefficient functions a(t, u ) and 
a(u) in parabolic and elliptic partial differential equations. Using rather general arguments 
based on singular functions, we were able to establish uniqueness from local observation 
of the Dirichlet-to-Neumann map even in the presence of unknown lower order terms. 
This allows to apply our results to rather general problems, which was demonstrated in 
examples.
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Knowledge of the leading order coefficient can eventually be used to obtain uniqueness 
also for the coefficients in lower order terms in a second step. For illustration of the main idea, 
let us consider an elliptic problem of the form

−div (a(u)∇u) + c(x, u,∇u) = 0 in Ω,
u = g on ∂Ω.

The knowledge of the diffusion coefficient a(u) allows to introduce a new variable w = A(u), 
with A(u) =

∫ u
0 a(g)dg, and to transform the problem equivalently into

−∆w + c̃(x, w,∇w) = 0 in Ω,
w = g̃ on ∂Ω,

with g̃= A(g) and c̃(x, w,∇w) = c(x, A−1 (w), (1 /a(A−1 (w))∇w). The transformation 
w = A(u) is a diffeomorphism and therefore also the Dirichlet-to-Neumann map transforms 
equivalently. Some special problems of this form have already been treated successfully: The 
identification of c(x, w) has been addressed successfully by Isakov and Sylvester [22] and 
uniqueness for c(x,∇w) has been established by Sun [32]. The uniqueness of a coefficient 
c(w,∇w) is shown in [20]. The results of this paper may therefore be valuable as one basic 
ingredient for the proof of uniqueness of several parameters in rather general parabolic and 
elliptic problems.
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