4 research outputs found

    Existence of codes with constant PMEPR and related design

    Get PDF
    Recently, several coding methods have been proposed to reduce the high peak-to-mean envelope ratio (PMEPR) of multicarrier signals. It has also been shown that with probability one, the PMEPR of any random codeword chosen from a symmetric quadrature amplitude modulation/phase shift keying (QAM/PSK) constellation is logn for large n, where n is the number of subcarriers. Therefore, the question is how much reduction beyond logn can one asymptotically achieve with coding, and what is the price in terms of the rate loss? In this paper, by optimally choosing the sign of each subcarrier, we prove the existence of q-ary codes of constant PMEPR for sufficiently large n and with a rate loss of at most log/sub q/2. We also obtain a Varsharmov-Gilbert-type upper bound on the rate of a code, given its minimum Hamming distance with constant PMEPR, for large n. Since ours is an existence result, we also study the problem of designing signs for PMEPR reduction. Motivated by a derandomization algorithm suggested by Spencer, we propose a deterministic and efficient algorithm to design signs such that the PMEPR of the resulting codeword is less than clogn for any n, where c is a constant independent of n. For symmetric q-ary constellations, this algorithm constructs a code with rate 1-log/sub q/2 and with PMEPR of clogn with simple encoding and decoding. Simulation results for our algorithm are presented

    Existence of Codes With Constant PMEPR and Related Design

    Full text link

    Joint design of PAPR, PICR and OBP in OFDM systems

    Get PDF
    Orthogonal frequency division multiplexing (OFDM) technique has been adopted by many existing and future wireless communication systems for high-speed data transmission. However, a major problem of OFDM systems is the high peak-to-average power ratio (PAPR) of OFDM signals, which results in inefficient operations of nonlinear devices in the system such as power amplifiers (PAs). On the other hand, at the receiver end, frequency offset, caused by Doppler frequency shifts, mismatched oscillators, or a fast fading channel, destroys the orthogonality among subcarriers and results in inter-carrier interference (ICI), thus degrades the detection performance of OFDM systems. Analogous to the definition of PAPR, the peak interference-to-carrier ratio (PICR) is defined to represent the effect of ICI. In addition, due to the sidelobes of modulated subcarriers, OFDM systems also suffer from high out-of-band power (OBP) radiations. High OBP results in the need for wide guard band and thus inefficient usage of frequency band
    corecore