13,583 research outputs found

    Adaptive Network Coding Schemes for Satellite Communications

    Full text link
    In this paper, we propose two novel physical layer aware adaptive network coding and coded modulation schemes for time variant channels. The proposed schemes have been applied to different satellite communications scenarios with different Round Trip Times (RTT). Compared to adaptive network coding, and classical non-adaptive network coding schemes for time variant channels, as benchmarks, the proposed schemes demonstrate that adaptation of packet transmission based on the channel variation and corresponding erasures allows for significant gains in terms of throughput, delay and energy efficiency. We shed light on the trade-off between energy efficiency and delay-throughput gains, demonstrating that conservative adaptive approaches that favors less transmission under high erasures, might cause higher delay and less throughput gains in comparison to non-conservative approaches that favor more transmission to account for high erasures.Comment: IEEE Advanced Satellite Multimedia Systems Conference and the 14th Signal Processing for Space Communications Workshop (ASMS/SPSC), 201

    Energy Efficient Adaptive Network Coding Schemes for Satellite Communications

    Full text link
    In this paper, we propose novel energy efficient adaptive network coding and modulation schemes for time variant channels. We evaluate such schemes under a realistic channel model for open area environments and Geostationary Earth Orbit (GEO) satellites. Compared to non-adaptive network coding and adaptive rate efficient network-coded schemes for time variant channels, we show that our proposed schemes, through physical layer awareness can be designed to transmit only if a target quality of service (QoS) is achieved. As a result, such schemes can provide remarkable energy savings.Comment: Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 24 March 201

    Short Codes with Mismatched Channel State Information: A Case Study

    Full text link
    The rising interest in applications requiring the transmission of small amounts of data has recently lead to the development of accurate performance bounds and of powerful channel codes for the transmission of short-data packets over the AWGN channel. Much less is known about the interaction between error control coding and channel estimation at short blocks when transmitting over channels with states (e.g., fading channels, phase-noise channels, etc...) for the setup where no a priori channel state information (CSI) is available at the transmitter and the receiver. In this paper, we use the mismatched-decoding framework to characterize the fundamental tradeoff occurring in the transmission of short data packet over an AWGN channel with unknown gain that stays constant over the packet. Our analysis for this simplified setup aims at showing the potential of mismatched decoding as a tool to design and analyze transmission strategies for short blocks. We focus on a pragmatic approach where the transmission frame contains a codeword as well as a preamble that is used to estimate the channel (the codeword symbols are not used for channel estimation). Achievability and converse bounds on the block error probability achievable by this approach are provided and compared with simulation results for schemes employing short low-density parity-check codes. Our bounds turn out to predict accurately the optimal trade-off between the preamble length and the redundancy introduced by the channel code.Comment: 5 pages, 5 figures, to appear in Proceedings of the IEEE International Workshop on Signal Processing Advances in Wireless Communications (SPAWC 2017

    Robust and scalable matching pursuits video transmission using the Bluetooth air interface standard

    Get PDF

    Design issues for the Generic Stream Encapsulation (GSE) of IP datagrams over DVB-S2

    Get PDF
    The DVB-S2 standard has brought an unprecedented degree of novelty and flexibility in the way IP datagrams or other network level packets can be transmitted over DVB satellite links, with the introduction of an IP-friendly link layer - he continuous Generic Streams - and the adaptive combination of advanced error coding, modulation and spectrum management techniques. Recently approved by the DVB, the Generic Stream Encapsulation (GSE) used for carrying IP datagrams over DVBS2 implements solutions stemmed from a design rationale quite different from the one behind IP encapsulation schemes over its predecessor DVB-S. This paper highlights GSE's original design choices under the perspective of DVB-S2's innovative features and possibilities

    Peak-Age Violation Guarantees for the Transmission of Short Packets over Fading Channels

    Get PDF
    We investigate the probability that the peak age of information in a point-to-point communication system operating over a multiantenna wireless fading channel exceeds a predetermined value. The packets are scheduled according to a last-come first-serve policy with preemption in service, and are transmitted over the channel using a simple automatic repetition request protocol. We consider quadrature phase shift keying modulation, pilot-assisted transmission, maximum-likelihood channel estimation, and mismatched scaled nearest-neighbor decoding. Our analysis, which exploits nonasymptotic tools in information theory, allows one to determine, for a given information packet size, the physical layer parameters such as the SNR, the number of transmit and receive antennas, the amount of frequency diversity to exploit, and the number of pilot symbols, to ensure that the system operates below a target peak-age violation probability.Comment: 6 pages, 6 figures. To be presented at Infocom 201
    corecore