13,392 research outputs found

    Codes from incidence matrices and line graphs of Hamming graphs

    Get PDF
    AbstractWe examine the p-ary codes, for any prime p, that can be obtained from incidence matrices and line graphs of the Hamming graphs, H(n,m), obtaining the main parameters of these codes. We show that the codes from the incidence matrices of H(n,m) can be used for full permutation decoding for all m,n≥3

    Codes Related to and Derived from Hamming Graphs

    Get PDF
    Masters of ScienceCodes Related to and Derived from Hamming Graphs T.R Muthivhi M.Sc thesis, Department of Mathematics, University of Western Cape For integers n; k 1; and k n; the graph k n has vertices the 2n vectors of Fn2 and adjacency de ned by two vectors being adjacent if they di er in k coordinate positions. In particular, 1 n is the classical n-cube, usually denoted by H1(n; 2): This study examines the codes (both binary and p-ary for p an odd prime) of the row span of adjacency and incidence matrices of these graphs. We rst examine codes of the adjacency matrices of the n-cube. These have been considered in [14]. We then consider codes generated by both incidence and adjacency matrices of the Hamming graphs H1(n; 3) [12]. We will also consider codes of the line graphs of the n-cube as in [13]. Further, the automorphism groups of the codes, designs and graphs will be examined, highlighting where there is an interplay. Where possible, suitable permutation decoding sets will be given

    Codes, graphs and designs related to iterated line graphs of complete graphs

    Get PDF
    Philosophiae Doctor - PhDIn this thesis, we describe linear codes over prime fields obtained from incidence designs of iterated line graphs of complete graphs Li(Kn) where i = 1, 2. In the binary case, results are extended to codes from neighbourhood designs of the line graphs Li+1(Kn) using certain elementary relations. Codes from incidence designs of complete graphs, Kn, and neighbourhood designs of their line graphs, L1(Kn) (the so-called triangular graphs), have been considered elsewhere by others. We consider codes from incidence designs of L1(Kn) and L2(Kn), and neighbourhood designs of L2(Kn) and L3(Kn). In each case, basic parameters of the codes are determined. Further, we introduce a family of vertex-transitive graphs Γn that are embeddable into the strong product L1(Kn)⊠  K2, of triangular graphs and K2, a class which at first sight may seem unnatural but, on closer look, is a repository of graphs rich with combinatorial structures. For instance, unlike most regular graphs considered here and elsewhere that only come with incidence and neighbourhood designs, Γn also has what we have termed as 6-cycle designs. These are designs in which the point set contains vertices of the graph and every block contains vertices of a 6-cycle in the graph. Also, binary codes from incidence matrices of these graphs have other minimum words in addition to incidence vectors of the blocks. In addition, these graphs have induced subgraphs isomorphic to the family Hn of complete porcupines (see Definition 4.11). We describe codes from incidence matrices of Γn and Hn and determine their parameters.South Afric

    Duality and free energy analyticity bounds for few-body Ising models with extensive homology rank

    Get PDF
    We consider pairs of few-body Ising models where each spin enters a bounded number of interaction terms (bonds) such that each model can be obtained from the dual of the other after freezing k spins on large-degree sites. Such a pair of Ising models can be interpreted as a two-chain complex with k being the rank of the first homology group. Our focus is on the case where k is extensive, that is, scales linearly with the number of bonds n. Flipping any of these additional spins introduces a homologically nontrivial defect (generalized domain wall). In the presence of bond disorder, we prove the existence of a low-temperature weak-disorder region where additional summation over the defects has no effect on the free energy density f(T) in the thermodynamical limit and of a high-temperature region where an extensive homological defect does not affect f(T). We also discuss the convergence of the high- and low-temperature series for the free energy density, prove the analyticity of limiting f(T) at high and low temperatures, and construct inequalities for the critical point(s) where analyticity is lost. As an application, we prove multiplicity of the conventionally defined critical points for Ising models on all { f, d} tilings of the infinite hyperbolic plane, where df/(d + f) \u3e 2. Namely, for these infinite graphs, we show that critical temperatures with free and wired boundary conditions differ, Tc(f)T(f)
    • …
    corecore