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We examine the p-ary codes, for any prime p, that can be obtained from incidencematrices
and line graphs of the Hamming graphs, H(n,m), obtaining the main parameters of these
codes. We show that the codes from the incidence matrices of H(n,m) can be used for full
permutation decoding for allm, n ≥ 3.
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1. Introduction

Codes obtained from the row span of an incidence matrix G of a regular graph Γ of some classes of graphs have been
seen to share certain properties that can make such classes useful for practical purposes: if Γ = (V , E) is a graph of valency
ν, and |V | = N , then G is an N × 1

2Nν matrix of 0s and 1s with rows labelled by the vertices, columns by the edges; the code
Cp(G) spanned by the rows of G over Fp, for any prime p, might be

[ 1
2Nν,N, ν

]
p or

[ 1
2Nν,N − 1, ν

]
p (if p = 2), and every

minimum vector a scalar multiple of the incidence vector of the set of edges through a vertex, i.e. a row of G. Furthermore,
there is often a gap in the weight enumerator between ν and 2(ν − 1), the latter arising from the difference of two rows;
see [6,12,13] for two particular classes. If L(Γ ) denotes the line graph (see Section 2 for the definition) of Γ , then the code
spanned by the rows of an adjacency matrix A of L(Γ ) over Fp will be a subcode of C2(G) if p = 2, of minimum weight in
the range [ν, 2(ν − 1)]; if p is odd, the code is less interesting, being of minimumweight at most 4 if Γ has a closed path of
length 4. We look here at this question for the Hamming graphs.
The Hamming graph H(n,m), for n,m integers, is the graph with vertices themnn-tuples of Rn, where R is a set of sizem,

and adjacency defined by two n-tuples being adjacent if they differ in one coordinate position. For example, the n-cube Qn
is H(n, 2)with R = F2. The number of edges of H(n,m) is 12m

n(m− 1)n. The codes from incidence matrices and line graphs
of H(n,m) thus have length 12m

n(m− 1)n.
Our main results are summarized in the following theorem, where, in all cases, if A is a matrix and p a prime, Cp(A)

denotes the row span of A over Fp:

Theorem 1. Let Gn(m) be an mn × 1
2m

n(m − 1)n incidence matrix for the Hamming graph H(n,m). Let L(H(n,m)) denote
the line graph of H(n,m), An(m) a 12m

n(m− 1)n× 1
2m

n(m− 1)n adjacency matrix for L(H(n,m)), Ln(m) a 12m
n(m− 1)n×

1
2m

n(m−1)n((m−1)n−1) incidence matrix, for L(H(n,m)), and Jn(m) a 12m
n(m−1)n((m−1)n−1)× 1

2m
n(m−1)n((m−

1)n− 1)(2(m− 1)n− 3) incidence matrix for L(L(H(n,m))). Then
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1. For n ≥ 1, m ≥ 3, C2(Gn(m)) =
[ 1
2m

n(m− 1)n,mn − 1, (m− 1)n
]
2 and Cp(Gn(m)) =

[ 1
2m

n(m− 1)n,mn, (m− 1)n
]
p

for p odd. For m = 2, p any prime, Cp(Gn(2)) = [2n−1n, 2n − 1, n]p.
For n ≥ 2, all p and m ≥ 3, and for n ≥ 3 and m = 2, the minimum words are the non-zero scalar multiples of the rows of
Gn(m).
For n ≥ 2, C2(Gn(m))⊥ has minimum weight 3 for m ≥ 3; Cp(Gn(m))⊥ has minimum weight 4 for p odd, any m, and for
p = 2 = m.

2. For m odd, C2(An(m)) = C2(Gn). For m even, C2(An(m)) is the subcode of C2(Gn) spanned by the differences of the rows of
Gn.
For p odd, Cp(An(m)) has minimum weight at most 4.

3. For n ≥ 3, C2(Ln(2)) = [2n−1n(n− 1), 2n−1n− 1, 2(n− 1)]2 and Cp(Ln(2)) = [2n−1n(n− 1), 2n−1n, 2(n− 1)]p for p odd.
The minimum words are the scalar multiples of the rows of Ln(2).
For all p, Cp(Ln(2))⊥ has words of weight 4, and for p = 2 it has minimum weight 3.

4. For n ≥ 3, C2(Jn(2)) = [2n−1n(n − 1)(2n − 3), 2n−1n(n − 1) − 1, 2(2n − 3)]2 and Cp(Jn(2)) = [2n−1n(n − 1)(2n −
3), 2n−1n(n− 1), 2(2n− 3)]p for p odd. For all p the minimum words are the scalar multiples of the rows of Jn(2).

The automorphism group of these graphs and codes is Sm o Sn. In its action of degree 12m
n(m − 1)n on the edge set of H(n,m),

any transitive subgroup of it can be used for full permutation decoding using the code Cp(Gn(m)) and any information set.

A transitive subgroup of Sm o Sn of ordermn(m− 1)n is described in Section 9.
We have used Magma [2,4] for computations for small values of the parameters in order to get an idea of what general

results may hold. The proofs of the various parts of the theorem will follow from propositions in the following sections.
We give some background definitions and notation in Sections 2 and 3. The result for permutation decoding is in Section 9.
Finally, in Section 10 we discuss briefly these ideas applied to the graphs Hk(n,m) from the Hamming association scheme.

2. Background and terminology

The notation for designs and codes is as in [1]. An incidence structureD = (P ,B,J), with point setP , block setB and
incidence J is a t-(v, k, λ) design, if |P | = v, every block B ∈ B is incident with precisely k points, and every t distinct
points are together incident with precisely λ blocks. The design is symmetric if it has the same number of points and blocks.
The code CF (D) of the designD over the finite field F is the space spanned by the incidence vectors of the blocks over F . If
Q is any subset of P , then we will denote the incidence vector ofQ by vQ , and ifQ = {P}where P ∈ P , then we will write
vP instead of v{P}. Thus CF (D) = 〈vB | B ∈ B〉, and is a subspace of FP , the full vector space of functions from P to F . For
any w ∈ FP and P ∈ P , w(P) denotes the value of w at P . If F = Fp then the p-rank of the design, written rankp(D), is the
dimension of its code CF (D), which we usually write as Cp(D).
All the codes here are linear codes, and the notation [n, k, d]q will be used for a q-ary code C of length n, dimension k,

and minimum weight d, where the weight wt(v) of a vector v is the number of non-zero coordinate entries. The support,
Supp(v), of a vector v is the set of coordinate positions where the entry in v is non-zero. So |Supp(v)| = wt(v). The distance
d(u, v) between two vectors u, v is the number of coordinate positions inwhich they differ, i.e., wt(u−v). A generator matrix
for C is a k × n matrix made up of a basis for C , and the dual code C⊥ is the orthogonal under the standard inner product
(, ), i.e. C⊥ = {v ∈ F n | (v, c) = 0 for all c ∈ C}. A check matrix for C is a generator matrix for C⊥. The all-one vector will be
denoted by ȷ, and is the vector with all entries equal to 1. If we need to specify the lengthm of the all-one vector, we write
ȷm. A constant vector is one whose only non-zero entries are 1. Two linear codes of the same length and over the same field
are isomorphic if they can be obtained from one another by permuting the coordinate positions. An automorphism of a code
C is an isomorphism from C to C . The automorphism groupwill be denoted by Aut(C). Any code is isomorphic to a codewith
generator matrix in so-called standard form, i.e. the form [Ik | A]; a check matrix then is given by [−AT | In−k]. The set of the
first k coordinates in the standard form is called an information set for the code, and the set of the last n − k coordinates is
the corresponding check set.
The graphs, Γ = (V , E) with vertex set V and edge set E, discussed here are undirected with no loops. If x, y ∈ V and

x and y are adjacent, we write [x, y] for the edge in E that they define. A graph is regular if all the vertices have the same
valency. An adjacency matrix A of a graph with N vertices is an N × N matrix with entries aij such that aij = 1 if vertices vi
and vj are adjacent, and aij = 0 otherwise. An incidence matrix of Γ = (V , E) is a |V |×|E|matrix Bwith rows labelled by the
vertices and columns by the edges and entries bi,j = 1 if the vertex labelled by row i is on the edge labelled by column j, and
bi,j = 0 otherwise. If Γ is regular with valency k, then the 1-(|E|, k, 2) design with incidence matrix B is called the incidence
design of Γ . The neighbourhood design of a regular graph is the 1-design formed by taking the points to be the vertices of the
graph and the blocks to be the sets of neighbours of a vertex, for each vertex, i.e. an adjacency matrix as an incidence matrix
for the design. The line graph of a graph Γ = (V , E) is the graph L(Γ ) with E as vertex set and where adjacency is defined
so that e and f in E, as vertices, are adjacent in L(Γ ) if e and f as edges of Γ share a vertex in Γ . The code of a graph Γ over
a finite field F is the row span of an adjacency matrix A over the field F , denoted by CF (Γ ) or CF (A). The dimension of the
code is the rank of the matrix over F , also written rankp(A) if F = Fp, in which case we will speak of the p-rank of A or Γ ,
and write Cp(Γ ) or Cp(A) for the code. It is also the code over Fp of the neighbourhood design. Similarly, if B is an incidence
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matrix for Γ , Cp(B) denotes the row span of B over Fp and is the code of the design with blocks the rows of B, in the case that
Γ is regular. IfM is an adjacency matrix for L(Γ )where Γ is regular of valency k, N vertices, e edges, then

BBT = A+ kIN and BTB = M + 2Ie. (1)

Permutation decoding, first developed byMacWilliams [16], involves finding a set of automorphisms of a code called a PD-
set. The method is described fully in MacWilliams and Sloane [17, Chapter 16, p. 513] and Huffman [5, Section 8]. In [10,15]
the definition of PD-sets was extended to that of s-PD-sets for s-error-correction:

Definition 1. If C is a t-error-correcting code with information set I and check set C, then a PD-set for C is a set S of
automorphisms of C which is such that every t-set of coordinate positions is moved by at least one member of S into the
check positions C.
For s ≤ t an s-PD-set is a set S of automorphisms of C which is such that every s-set of coordinate positions is moved by

at least one member of S into C.

The algorithm for permutation decoding is given in [5] and requires that the generator matrix is in standard form.
Furthermore, there is a combinatorial lower bound for |S|; see [9,18], or [5].

3. Hamming graphs

The Hamming graph H(n,m), for n,m integers, is the graph with vertices themnn-tuples of Rn, where R is a set of sizem
whichwewill take to be a ring with identity (in particularZm or Fm whenm is a prime power) and adjacency defined by two
n-tuples being adjacent if they differ in one coordinate position. It is a regular graph of valency (m− 1)n and 12m

n(m− 1)n
edges. Edges will be denoted [x, x + e] where x, e ∈ Rn and wt(e) = 1. As usual we will denote the standard basis for Rn
by {e1, . . . , en}, so e1 = (1, 0, . . . , 0), for example. It is well known that Aut(H(n,m)) = Sm o Sn (see [3]), where Sn is the
symmetric group on the n coordinate positions of Rn, now acting naturally on the n-tuples, and Sm acts on the elements of
R. Thus by Whitney [19], Aut(L(H(n,m))) = Sm o Sn, where L(H(n,m)) is the line graph of H(n,m).
An incidence matrix for H(n,m) will be denoted by Gn(m) and the 1-design defined by taking for points the set Pn of

edges of H(n,m) and for blocks the rows of Gn(m), will be denoted by Gn(m). Thus if x ∈ Rn, it defines the block x, where

x = {[x, x+ e] | e ∈ Rn,wt(e) = 1}. (2)

Thus Gn(m) is a 1-
( 1
2m

n(m− 1)n, (m− 1)n, 2
)
design.

The following general result about the automorphism groups holds:

Lemma 1. Let Γ = (V , E) be a regular graph with |V | = N, |E| = e and valency v. Let G be the 1- (e, v, 2) incidence design
from an incidence matrix G for Γ . Then Aut(Γ ) = Aut(G).

Proof. Denote the set of points of G by P (=E) and the blocks of G byB. Thus for P ∈ V , P is the set of edges through P .
First suppose α ∈ Aut(Γ ). Then α maps edges to edges so it acts naturally on P . Naturally its action onB is defined so

that (P)α = Pα . So if X ∈ P , then X = [P,Q ], Xα = [Pα,Q α], so Xα ∈ (P)α = Pα . So α ∈ Aut(G).
Now suppose α ∈ Aut(G). Then α acts onP , the edges of Γ , and on the blocksB, so that for X ∈ B, Xα ∈ Bα . We need to

define α to act on vertices P ∈ V , and we do this by defining Pα = Q if (P)α = Q . If [P,Q ] ∈ E then we need to show that
[Pα,Q α] ∈ E. Now [P,Q ] ∈ P,Q , so [P,Q ]α ∈ (P)α, (Q )α . So [P,Q ]α = [Pα, R] = [Q α, S]. Since P 6= Q , so that Pα 6= Q α ,
we must have [P,Q ]α = [Pα,Q α], so that Pα and Q α are together on an edge, and hence α ∈ Aut(Γ ). �

This shows that Aut(Gn(m)) = Sm o Sn. Note that this is in contrast to the automorphism group of the neighbourhood
design, which may well be larger; see [7, Proposition 3], wherem = 2 and the group is larger, and [8, Proposition 3], where
m 6= 2 and the group is the same as that of the graph.
For H(n,m) we assume a natural ordering on the elements of R. An mn × 1

2m
n(m − 1)n incidence matrix Gn(m) can be

written in the followingway: take the natural ordering of the rows corresponding to them-ary representation of the natural
numbers from 0 to mn − 1, and divide the rows into m sections Ri, i = 0, . . . ,m − 1, where the rows in Ri are labelled by
the vectors x = (x1, . . . , xn)with xn = i. The columns are ordered so that we first take all the edges between vertices in the
rows from R0, followed by those edges between vertices from rows R1, up to all those in Rm−1. Then take all edges between
vertices in rows R0 and R1, then R0 and R2, up to R0 and Rm−1, then R2 and R3, and so on inductively until finally Rm−2 and
Rm−1. Thus an incidence matrix Gn(m)will have the following form:

Gn(m) =



Gn−1(m) 0 0 0 · · · I I I · · · 0 0 0
0 Gn−1(m) 0 0 · · · I 0 0 · · · 0 0 0
0 0 Gn−1(m) 0 · · · 0 I 0 · · · 0 0 0
0 0 0 Gn−1(m) · · · 0 0 I · · · 0 0 0
...

...
...

...
...

...
...

...
...

...
...

...

0 0 0 0 Gn−1(m) 0 0 0 · · · 0 I I

 , (3)
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where I = Imn−1 and there are m − 1 of them in each of the m sets Ri of rows. The columns are also in blocks, and there

are
(
m+1
2

)
of them. There arem column blocks Ci for which the only entry is Gn−1, and these are the firstm column blocks,

C1, . . . , Cm.
For example, form = 2 and 3,

Gn(2) =
[
Gn−1(2) 0 I
0 Gn−1(2) I

]
, Gn(3) =

 Gn−1(3) 0 0 I I 0
0 Gn−1(3) 0 I 0 I
0 0 Gn−1(3) 0 I I

 , (4)

where I = I2n−1 in Gn(2) and I = I3n−1 in Gn(3).
A general observation about the codes from incidence matrices is in the following lemma:

Lemma 2. Let Γ = (V , E) be a graph such that V = V1 ∪̇ V2 (disjoint union) and every x ∈ V2 is on an edge with some y ∈ V1.
Let Γ1 = (V1, E1)where E1 is the set of edges between vertices in V1. If G is an incidence matrix for Γ , G1 an incidence matrix for
Γ1, p any prime, then rankp(G) ≥ rankp(G1)+ |V2|.
Proof. We order the rows and columns of G as follows: for the rowswe take V1 followed by V2. For the columnswe first take
all the edges between members of V1, and then follow with edges between V1 and V2, and finally edges between vertices in
V2. Then

G =
[
G1 X 0
0 Y Z

]
,

where Y has only one entry 1 in each column and there are at least |V2| such columns, so the rank of the second set of rows
is at least |V2|, and clearly also at most |V2|. The top set has rank at least that of G1. �

The following general result for connected graphs is from [14]:

Result 1. Let Γ = (V , E) be a graph, G an incidence matrix for Γ , Cp(G) the row-span of G over Fp. If Γ is connected then
dim(C2(G)) = |V | − 1, and if Γ is connected and has a closed path of odd length≥ 3, then dim(Cp(G)) = |V | for odd p.

4. Codes from an incidence matrix for H(n,m)

In this section we consider the codes Cp(Gn(m)). All the notation will be as defined in Section 3. We take R to be a ring,
in fact usually Zm, or a field ifm is a prime power.
We first need a lemma.

Lemma 3. Let Γ be a graph, G an incidence matrix for Γ , and (P,Q , R, S) a closed path in Γ . For any prime p, if C = Cp(G),
then

u = v[P,Q ] + v[R,S] − v[P,S] − v[Q ,R] ∈ C⊥.

In particular, for p any prime, m ≥ 2, then for n ≥ 2, Cp(Gn(m))⊥ contains the weight-4 word

u(x, x+ e, x+ f ) = v[x,x+e] − v[x,x+f ] − v[x+e+f ,x+e] + v[x+e+f ,x+f ], (5)

where x ∈ Rn, wt(e) = wt(f ) = 1, e 6= f . Further, Cp(Gn(m))⊥ has minimum weight 4 for p odd, any m, and for p = 2 = m;
C2(Gn(m))⊥ has minimum weight 3 for m ≥ 3.
Proof. For the first statement, note that it is clear that (u, r) = 0 for any row r of G. Then note that (x, x+ e, x+ e+ f , x+ f )
is a closed path in H(n,m) for n ≥ 2. It is easy to verify that C⊥ cannot contain vectors of weight 2. Vectors of weight 3 can
only occur in the case p = 2, m > 2 and will have the form v[x,x+αe] + v[x,x+βe] + v[x+αe,x+βe], where wt(e) = 1, α, β ∈ R,
and α 6= β . �

We prove our results for m = 2 separately as these have already been studied for p = 2 (see [6]), and we can use a
different proof in this case.

Proposition 1. Let Gn(2) be a 2n × 2n−1n incidence matrix for H(n, 2).
For n ≥ 1, p any prime, Cp(Gn(2)) = [2n−1n, 2n − 1, n]p. For n ≥ 3 the minimum words are the scalar multiples of the rows

of Gn and Cp(Gn(2))⊥ is spanned by the weight-4 vectors of Eq. (5).
For n ≥ 3, Aut(Cp(Gn(2))) = S2 o Sn = Tn o Sn, where Tn is the translation group on Fn2.

Proof. For the dimension, it is clearly true for n = 1. Assume it is true for n − 1, where n ≥ 2. Then it easily follows from
Eq. (4) that the rank of Gn is 2n − 1, by induction.
Write C = Cp(Gn(2)). To prove the statement concerning the minimum weight, we show that the weight of a word in

the dual to C⊥ must be at least n by examining combinatorial properties of the supports of the weight-4 vectors. LetBn be
the set of supports of the vectors u(a, b, c) as defined in Eq. (5). Then (Pn,Bn) is a 1-(2n−1n, 4, r) design, where r = (n−1),
since the blocks containing [x, x+ ei] are u(x, x+ ei, x+ ej) where i 6= j. Furthermore, any two points are together on one
or no blocks, since two points determine the block.
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Letw ∈ C and Supp(w) = S, where |S| = s. Let P = [0, e1] ∈ S. Suppose that in S there are k points of the type that are
on a block with P , and ` that are not. Then s = k+`+1. Counting blocks ofBn through the point P , suppose that there are zi
that meet S in i points. Then z0 = z1 = zi = 0 for i ≥ 5, sincew cannot meet a block ofBn only once. Thus r = z2 + z3 + z4
and z2+ 2z3+ 3z4 = k = s− 1− `. Thus r = n− 1 ≤ z2+ 2z3+ 3z4 ≤ (s− 1) so s ≥ n. Since there are vectors of weight n,
this is the minimum weight. Suppose s = n. Thus the inequalities above are equalities and so z3 = z4 = 0, and ` = 0. Thus
S consists of [0, e1] and points of the form [0, ej], [e1, e1+ ej], [ej, e1+ ej], and each block ofBn meets S exactly twice, since
this argument applies to any point of S. Furthermore, since ` = 0 for each point of S, any two points of S are on a block.
This implies that S = 0̄ or ē1, and since n is the minimum weight,w = α0̄ or αē1.
That the vectors of weight 4 span C⊥ follows in the same way as for the binary codes, as proved in [6, Proposition 15], by

finding dim(C⊥) linearly independent weight-4 vectors of this form.
For the statement regarding the automorphism group of Cp(Gn(2)), we know that for n ≥ 3 the words of weight n are the

scalar multiples of the rows of Gn(2), i.e. of the incidence vectors of the blocks of Gn(2), and since any automorphism of the
code must preserve weight classes, we see that the blocks of the design are preserved, and thus we have an automorphism
of the design. Now use Lemma 1. �

Note. The group S2 o Sn = T o Sn is known as the generalized symmetric group.

Now we take m ≥ 3. Notice that H(1,m) = Km, where Km is the complete graph on m vertices, and thus G1(m) is an
m×

(m
2

)
incidence matrix for Km. This matrix is written asMm in [12] where it is proved that, writing

G1(m) = Mm =
[
Mm−1 Im−1
0 · · · 0 1 · · · 1

]
, (6)

form ≥ 3, whereM2 =
[
1
1

]
, then dim(Cp(Mm)) = m form ≥ 3 and p an odd prime, and that form ≥ 4 theminimumweight

of Cp(Mm) is m − 1 for m ≥ 4. It is well known that dim(C2(Mm)) = m − 1, the minimum weight of C2(Mm) is m − 1, and
the words of weight m − 1 are the rows of Mm. We need these facts in the proposition below, where we exclude the case
m = 2 since this has been examined in Proposition 1 and elsewhere (see [6]).

Proposition 2. Let Gn(m) be an mn × 1
2m

n(m− 1)n incidence matrix for H(n,m).
For n ≥ 2, p odd, m ≥ 3,

• Cp(Gn(m)) =
[ 1
2m

n(m− 1)n,mn, (m− 1)n
]
p;

• C2(Gn(m)) =
[ 1
2m

n(m− 1)n,mn − 1, (m− 1)n
]
2.

For all p, the minimum vectors are the non-zero scalar multiples of the rows of Gn(m). For n ≥ 2, Aut(Cp(Gn(m))) = Sm o Sn.

Proof. Recall that Γ = H(n,m) has mn vertices, valency (m − 1)n and 12m
n(m − 1)n edges. We take Gn(m) as written in

Eq. (3).
The statement about the dimension of the codes is clear since H(n,m) is clearly connected so we can use Result 1

immediately for p = 2, and also for p odd since (0, e1, ae1) for a 6= 0, 1 is a closed path of length 3.
Each w ∈ Cp(Gn(m)) is written as a concatenation of vectors wi, for 1 ≤ i ≤

(
m+1
2

)
, where wi has length

1
2m

n−1(m− 1)(n− 1) if 1 ≤ i ≤ m and lengthmn−1 for i > m.
Case (i): p odd
For p odd, we need to look first atm = 3, since Cp(G1(3)) is the full space F33, of minimumweight 1. So we consider G2(3)

in order to establish an induction base.

G2(3) =

 G1(3) 0 0 I I 0
0 G1(3) 0 I 0 I
0 0 G1(3) 0 I I

 , where G1(3) =

[ 1 1 0
1 0 1
0 1 1

]
, I = I3. (7)

First observe that the sum of any two multiples of rows of G1(3) has weight at least 2, i.e. three rows are needed to get
weight 1 from G1(3). We will show that the minimum weight of Cp(G2(3)) is (m − 1)n = 4 and that the minimum words
are the scalar multiples of the rows of G2(3).
As mentioned before, we label the column blocks as Ci for i = 1, . . . , 6. We write w ∈ Cp(G2(3)) as w =

(w1, w2, w3, w4, w5, w6)wherewi is that part ofw in the columnblock Ci. If two or three rows from R0 are taken thenwe get
a vector ofweight at least 6, and similarly forR1,R2. Similarly if at least one row fromeach ofR0 andR1 are taken, and similarly
for the other pairs. Now takew a sum of some rows from each of R0, R1, R2. Let ri, i = 1, 2, 3 denote the rows of G1(3), and
ρi for i = 1, . . . , 9 the rows of G2(3). Ifw =

∑3
i=1 αiρi +

∑3
i=1 βiρi+3 +

∑3
i=1 γiρi+6 thenw1 =

∑3
i=1 αiri,w2 =

∑3
i=1 βiri,

w3 =
∑3
i=1 γiri, w4 = (α1 + β1, α2 + β2, α3 + β3), w5 = (α1 + γ1, α2 + γ2, α3 + γ3), w6 = (β1 + γ1, β2 + γ2, β3 + γ3).

Clearly wt(wi) ≥ 1 for i = 1, 2, 3 (since the rows of G1(3) are linearly independent); if wt(w4) < 3 then α1 = −β1, say,
and β1 + γ1 and α1 + γ1(=− β1 + γ1) are not both zero unless α1 = β1 = γ1 = 0 in which case wt(wi) ≥ 2 for i = 1, 2, 3
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and so wt(w) ≥ 6. So we have wt(w) ≥ 4. If we have equality then, since either w5 or w6 is not zero, we have w4 = 0 and
the same argument will yield that α2 = β2 = γ2 = 0, giving a contradiction. Thus we have the result form = 3 and n = 2.
We can now turn to the general value of m ≥ 3, p odd. To establish the induction base, we know that for m ≥ 4

the minimum weight of G1(m) is m − 1. So we can start our induction at n = 2 for m = 3 and at n = 1 for m ≥ 4.
Suppose the assertion is true for n − 1. For the minimum weight, we have w = (w1, . . . , wN) ∈ Cp(Gn(m)) where

N =
(
m+1
2

)
. We consider combinations of rows from Ri for i = 0, . . . ,m − 1. If w is a sum of k ≥ 2 rows from R0

then wt(w) = wt(w1)+ k(m− 1) ≥ (m− 1)(n− 1)+ k(m− 1) = (m− 1)n+ (m− 1)(k− 1) > (m− 1)n. Similarly for all
the Ri, i = 1, . . . ,m − 1. If w is a combination of rows from at least two blocks Ri then the components from the Gn−1(m)
will provide weight at least 2(m− 1)(n− 1) > (m − 1)n unless n = 2 and so m ≥ 4 and we are taking just two blocks of
rows, so that wt(w) ≥ 2(m − 1)(n − 1) + 2(m − 2), since the blocks containing Imn−1 overlap in only one column block.
Thus wt(w) > (m− 1)n in this case too. This completes the proof for p odd.
Case (ii): p = 2
For p = 2, note that anymn−1 rows of Gn(m) are linearly independent.We can proceed directly by induction, supposing

the assertion is true for n = 1, fromknown results concerningMm. Suppose it is true for n−1,where n−1 ≥ 1. A sumof rows
from R0 will yield zero from the component in Gn−1(m) only if all the rows are taken in the sum, in which case the weight is
at least (m− 1)mn−1 > (m− 1)n sincemn−1 ≥ 3n−1 > n for n ≥ 2. Ifw is a combination of rows from at least two blocks Ri
and if at least two of the components from Gn−1(m) are non-zero then we argue as we did in the case of p odd. So the only
case that needs consideration is that case when all the components, or all but one, from the Gn−1(m) are zero. Ifw is a sum
of all the rows in k blocks of rows Rij , j = 1, . . . , k, wherem > k ≥ 2, then wt(w) = k(m− 1)m

n−1 > (m− 1)n. Similarly if
we take fewer than all the rows from one block Ri, but all the rows in some other blocks Rj. In all events, wt(w) > (m− 1)n
if more than one row is taken. This completes the proof for p = 2.
The statement regarding the automorphism group of Cp(Gn(m)) follows as in Proposition 1. �

5. Line graphs

Wemake a few general observations about line graphs and their associated codes.
Let Γ = (V , E) be a regular graph with vertex set V , edge set E, and N = |V |, |E| = e, valency v. L(Γ ) denotes the line

graph of Γ . Then e = 1
2Nv. We write L1 = L(Γ ), and recursively Li = L(Li−1) for i ≥ 2, and we can write L0 = Γ . Let

Li = (Vi, Ei) and write vi for the valency of Li. Then by definition |Vi| = |Ei−1| and vi = 2(vi−1 − 1) for i ≥ 1, where V0 = V ,
E0 = E and v0 = v. It follows that, form ≥ 1,

|Vm| = e
m−2∏
i=0

(2iv − 2i+1 + 1), |Em| = e
m−1∏
i=0

(2iv − 2i+1 + 1), vm = 2(2m−1v − 2m + 1). (8)

Example 1. Let Γ = H(n, 2) = Qn. Then N = 2n, v = n, e = 2n−1n. Thus form ≥ 1,

|Vm| = 2n−1n
m−2∏
i=0

(2in− 2i+1 + 1), |Em| = 2n−1n
m−1∏
i=0

(2in− 2i+1 + 1), vm = 2(2m−1n− 2m + 1). (9)

For theHamming graphs in general, L(H(n,m)) has 12m
n(m−1)n vertices, valency 2((m−1)n−1) and 12m

n(m−1)n((m−
1)n− 1) edges.
Wewill denote the neighbourhood design of L(H(n,m)) byLn, where the block defined by the point [x, x+ e] is denoted

by [x, x+ e] and given by

[x, x+ e] = {[x, x+ f ] | wt(f ) = 1, f 6= e} ∪ {[x+ e, x+ e+ f ] | wt(f ) = 1, f 6= e}. (10)

The designLn is a symmetric 1-
( 1
2m

n(m− 1)n, 2((m− 1)n− 1), 2((m− 1)n− 1)
)
design.

Belowwe note some general observations about the codes from line graphs. From the observation that if (P1, P2, . . . , Pr)
is a closed path in Γ , where r ≥ 3, then ([P1, P2], [P2, P3], . . . , [Pr , P1]) is a closed path in L(Γ ), so we have immediately
from Lemma 3, if (P,Q , R, S) is a closed path in Γ , G1 an incidence matrix for L(Γ ), p any prime, then

v[[P,Q ],[P,S]] + v[[Q ,R],[R,S]] − v[[P,S],[R,S]] − v[[P,Q ],[Q ,R]] ∈ Cp(G1)⊥.

From this follows:

Lemma 4. If Γ is a graph with closed paths of length 4, and C is the p-ary code from an incidence matrix for Γ , p any prime,
then C⊥ has minimum weight at most 4. Furthermore, if Gi is an incidence matrix for Li(Γ ), then C(Gi)⊥ has minimum weight
at most 4, for any i ≥ 1.

Also from Lemma 3, if Γ = (V , E), P ∈ V , and {Q , R, S, T } neighbours of P , then if p is any prime and G1 is an incidence
matrix for L(Γ ), it follows that

v[[P,Q ],[P,R]] + v[[P,S],[P,T ]] − v[[P,Q ],[P,T ]] − v[[P,R],[P,S]] ∈ Cp(G1)⊥.
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Recall that if [P,Q ] is an edge in Γ then the block of the symmetric design from the neighbours of each point of the line
graph L(Γ ) is denoted by

[P,Q ] = {[P, R] | R 6= Q } ∪ {[R,Q ] | R 6= P}.

Proposition 3. Let Γ be a graph and (P,Q , R, S) a closed path in Γ , p an odd prime. Then

v[P,Q ] + v[R,S] − v[P,S] − v[Q ,R] ∈ Cp(L(Γ )).

Proof. It can be verified directly that

v[P,Q ] + v[R,S] − v[P,S] − v[Q ,R] = −2(v[P,Q ] + v[R,S] − v[P,S] − v[Q ,R]),

and this is not 0 since p is odd. �

6. Codes from an adjacency matrix for L(H(n,m))

In this section we look at Cp(L(H(n,m))), i.e. codes from an adjacency matrix for the line graph of H(n,m). We can use
our results from Section 4 to study these codes. Here Gn = Gn(m)will be amn× 1

2m
n(m− 1)n incidence matrix for H(n,m)

given in the form of Eq. (3), and An = An(m)will be the corresponding 12m
n(m− 1)n× 1

2m
n(m− 1)n adjacency matrix for

L(H(n,m)). As usual
GTnGn = An + 2I 12mn(m−1)n.

Further, we write Gn = [Gn−1|In−1], as in Eq. (3), whereGn−1 ismn× 1
2m

n(m− 1)(n− 1) and In−1 ismn× 1
2m

n(m− 1) and

Gn−1 =



Gn−1 0 0 0 · · · · · ·

0 Gn−1 0 0 · · · · · ·

0 0 Gn−1 0 · · · · · ·

0 0 0 Gn−1 · · ·
...

...
...

... · · ·
...

0 0 0 0 · · · Gn−1

 , In−1 =



I I I · · · 0 0 0
I 0 0 · · · 0 0 0
0 I 0 · · · 0 0 0
0 0 I · · · 0 0 0
...

...
...

...
...

...
...

0 0 0 · · · 0 I I

 ,
where I = Imn−1 . There are m blocks of rows and m blocks of columns in Gn−1, m − 1 copies of I in each block of rows of
In−1, which hasm blocks of rows and

(m
2

)
blocks of columns.

We will also write

An−1 =



An−1 0 0 0 · · · · · ·

0 An−1 0 0 · · · · · ·

0 0 An−1 0 · · · · · ·

0 0 0 An−1 · · · · · ·

...
...

...
... · · ·

...

0 0 0 0 · · · An−1

 ,

a symmetric 12m
n(m − 1)(n − 1) × 1

2m
n(m − 1)(n − 1)matrix, partitioned into m blocks of rows and columns. Then it is

easy to verify that, for n ≥ 2 and allm, with notation as above,

An =
[

An−1 GTn−1In−1

ITn−1Gn−1 ITn−1In−1

]
, (11)

where ITn−1In−1 is a symmetricm
n−1

(m
2

)
×mn−1

(m
2

)
matrix with 2(m− 2) entries 1 in every row and column.

Proposition 4. For n ≥ 2, any m ≥ 2, let Gn(m) be an incidence matrix for H(n,m), An(m) an adjacency matrix for the line
graph L(H(n,m)).
For m odd, C2(An(m)) = C2(Gn(m)). For m even, C2(An(m)) is the subcode of C2(Gn(m)) spanned by the differences of the

rows of Gn(m).
For p an odd prime, Cp(An(m)) has minimum weight at most 4, and for n ≥ 3 and m = 2, Cp(An(2)) ⊇ Cp(Gn(2))⊥.

Proof. We write G = Gn(m), A = An(m). Over F2 we have GTG = A. Thus C2(A) ⊆ C2(G). By Proposition 2 C2(G) has rank
mn − 1. If ȷ = ȷmn is the all-one vector of lengthmn then ȷG = 0.
Let V be the row span of GT over F2 and C = C2(A). Then dim V = mn − 1. The map τ : V → C is defined by

τ : v = (v1, . . . , vmn) 7→ (v1, . . . , vmn)G, so that Vτ = C and dim C + dim ker(τ ) = dim V = mn − 1. A vector v is
in the kernel if and only if v ∈ V and vG = 0, and since ȷG = 0, we need determine when ȷ ∈ V .
Since GT is spanned by vectors of weight 2, it is an even-weight binary code. Ifm is odd thenmn is odd and hence ȷmn 6∈ V

and thus dim C = mn−1 and C = C2(G). Ifm is even thenm−1 is odd and if all the rows of ITn−1 are added, we get ȷmn ∈ V .
Hence dim(C) = mn − 2. Since this is the same of the dimension of the code spanned by the differences of the rows of G,
we have the result.
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In the case of Cp(An(m)) for p odd, Proposition 3 can be applied since H(n,m) clearly has closed paths of length 4.
If m = 2 then since Cp(An(2)) contains all the weight-4 vectors of the form described in Eq. (5), by Proposition 1,
Cp(An(2)) ⊇ Cp(Gn(2))⊥. �

7. Codes from an incidence matrix for L(H(n, 2))

We now consider the row span over Fp, for any prime p, of an incidence matrix Ln(2) for the line graph L(H(n, 2)) of
H(n, 2) for n ≥ 1.
We consider a 2n−1n × 2n−1n(n − 1) incidence matrix Ln(2) of L(H(n, 2)) with a particular ordering on the rows and

columns. Each row of Ln(2) has 2(n − 1) entries equal to 1, including the case n = 1 in which case the line graph has no
edges.
Let Gn = Gn(2) as given in Eq. (4), with rows and columns ordered as described in Section 3. Now for the rows of Ln(2)we

use the same ordering we had for the columns of Gn(2). We call these sets R1, R2, R3. For the columns, we assume we have
an ordering for Ln−1(2), and for the first set of columns for Ln(2)we insert Ln−1(2) in the rows R1. For the next set of columns,
we insert Ln−1(2) in R2 to show the edges [x + en, y + en], [x + en, z + en], where [x, y], [x, z] is an edge in L(H(n, 2)). For
the next columns we take all edges between those points in R1 and R3, followed by those in R2 and R3. We need to start with
L2(2), and from our ordering for G2(2)we can order the columns so that L2(2) is as follows:

G2(2) =

1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1

 , L2(2) =

1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1

 . (12)

Thus, representing 0 by the empty space for clarity,

L3(2) =



1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1


. (13)

In general, for n ≥ 2, recalling that for n = 2 the matrix Ln−1(2) has no columns,

Ln(2) =

 Ln−1(2) 0 X 0
0 Ln−1(2) 0 W
0 0 Y Z

 , (14)

where X,W are 2n−2(n − 1) × 2n−1(n − 1) matrices, and Y , Z are 2n−1 × 2n−1(n − 1) matrices. Further, every column of
X, Y , Z,W has exactly one non-zero entry 1 in it, and every row of X andW has precisely two non-zero entries 1 in it, while
every row of Y and Z has precisely n− 1 non-zero entries 1 in it. Clearly every row of Ln−1(2) has 2(n− 2) entries equal to
1. We label the column blocks Ci for i = 1, 2, 3, 4.
We first need a lemma that will be used as our induction base. The notation is as given above.

Lemma 5. C2(L3(2)) = [24, 11, 4]2 and for p odd Cp(L3(2)) = [24, 12, 4]p. The vectors of weight 4 are the scalar multiples of
the rows of L3(2) for all p.

Proof. For p = 2 we can simply use Magma to verify this for the binary code. Thus take p odd. It is easy to see that
Cp(L2(2)) has dimension 3 and minimum weight 2. However, not all the weight-2 vectors are scalar multiples of the
rows. Further, writing the rows of L2(2) as ri for 1 ≤ i ≤ 4, any three of the rows are linearly independent, and
w =

∑4
i=1 αiri = (α1 + α3, α1 + α4, α2 + α3, α2 + α4) = 0 only if α1 = α2 = −α3 = −α4.

Using Eq. (13), we label the submatrix of the first four rows of L3(2) as R1, the next four as R2 and the last four as
R3. Let C = Cp(L3(2)). Then any vector w ∈ C can be viewed as a concatenation of vectors in the four partitions of
the columns. So we write w = (w1, w2, w3, w4) where w1 and w2 are in F4p and w3 and w4 are in F8p . Thus wt(w) =
wt(w1)+wt(w2)+wt(w3)+wt(w4).
To show that C has dimension 12, notice that ([0, e1], [e1, e1+e2], [e1+e2, e1+e2+e3], [e1+e2+e3, e1+e3], [e1+e3, e1])

is a closed path of odd length 5, so we can use Result 1 since the graph is clearly connected.
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To prove the statement about the minimumweight and words we takew to be a sum of k ≥ 1 non-zero scalar multiples
of rows from R1. Then wt(w) = wt(w1) + 2k. If w1 = 0 then from the above discussion we must have k = 4 and thus
wt(w) = 8. Ifw1 6= 0 then wt(w) ≥ 2+ 2k ≥ 4, with equality only when k = 1 and we have a multiple of a row. The same
argument applies to a sum of rows from R2, sinceW is equivalent to X . If w is a sum of k ≥ 1 non-zero scalar multiples of
rows from R3, then wt(w) = 4k ≥ 4 with equality only if k = 1.
If w is a sum of k ≥ 1 non-zero scalar multiples of rows from R1 and m ≥ 1 non-zero scalar multiples of rows from R2,

then wt(w) = wt(w1)+ wt(w2)+ 2k+ 2m ≥ 2(k+ m) ≥ 4 with equality only if k = m = 1 and w1 = w2 = 0, and this
cannot happen. If w is a sum of k ≥ 1 non-zero scalar multiples of rows from R1 and m ≥ 1 non-zero scalar multiples of
rows from R3, then wt(w) = wt(w1) + wt(w3) + 2m. If w1 = 0 then k = 4 and wt(w) = wt(w3) + 2m > 4 if m ≥ 3. If
m = 1 then wt(w3) ≥ 6 since w3 = α(1, 1, 1, 1,−1,−1,−1,−1) + βy where y is a row of Y and has weight 2. If m = 2
thenw3 6= 0 so all words we get are of weight greater than 4. So wt(w1) ≥ 2, and so wt(w) ≥ 4with equality only ifm = 1,
wt(w1) = 2 and w3 = 0. The latter is impossible since the rows of X with one row of Y are linearly independent, where X
and Y are as shown in Eq. (13). A similar argument applies to w a sum of rows from R2 and R3. Thus we cannot get vectors
of weight 4 this way.
Finally we takew to be a sum of k ≥ 1 non-zero scalar multiples of rows from R1 and j ≥ 1 non-zero scalar multiples of

rows from R2 andm ≥ 1 non-zero scalar multiples of rows from R3. Then wt(w) = wt(w1)+wt(w2)+wt(w3)+wt(w4).
Denoting the 12 rows of L3 by ri for 1 ≤ i ≤ 12, write w =

∑4
i=1 αiri +

∑4
i=1 βir4+i +

∑4
i=1 γir8+i where k of the αi, m of

the βi and j of the γi are not zero. From Eq. (13) we see that

w3 = (α1 + γ1, α1 + γ2, α2 + γ3, α2 + γ4, α3 + γ1, α3 + γ3, α4 + γ2, α4 + γ4). (15)

If w3 = 0 then αi = α = −γi for all 1 ≤ i ≤ 4, and hence k = m = 4, and wt(w1) = 4. It also follows from Eq. (15) that if
w3 6= 0 then wt(w3) ≥ 2. The same argument applies to w4, so if w4 = 0 thenm = j = 4, and wt(w2) = 4, so wt(w) > 4.
So w4 6= 0 and hence wt(w3) ≥ 2 and wt(w) ≥ 6. So we can assume neither w3, w4 6= 0. Then wt(w) ≥ 6 if one of w1 or
w2 is not 0. So supposingw1, w2 = 0 then k = 4 = j, and, with α, β 6= 0,

w3 = α(1, 1, 1, 1,−1,−1,−1,−1)+ (γ1, γ2, γ3, γ4, γ1, γ3, γ2, γ4)
= (α + γ1, α + γ2, α + γ3, α + γ4,−α + γ1,−α + γ3,−α + γ2,−α + γ4).

From this we see that wt(w3) ≥ 4. Similarly,

w4 = β(1, 1, 1, 1,−1,−1,−1,−1)+ (γ1, γ2, γ3, γ4, γ1, γ3, γ2, γ4)
= (β + γ1, β + γ2, β + γ3, β + γ4,−β + γ1,−β + γ3,−β + γ2,−β + γ4).

So wt(w4) ≥ 4, and we cannot get a vector of weight at most 4 in this way. This completes the proof. �

Proposition 5. For n ≥ 1, let Ln(2) be a 2n−1n× 2n−1n(n− 1) incidence matrix for L(H(n, 2)).
For n ≥ 3,

• C2(Ln(2)) = [2n−1n(n− 1), 2n−1n− 1, 2(n− 1)]2;
• Cp(Ln(2)) = [2n−1n(n− 1), 2n−1n, 2(n− 1)]p for p odd.

For all p, the minimum words are the scalar multiples of the rows of Ln(2).
For all p, n ≥ 2, Cp(Ln(2))⊥ has minimum weight at most 4, and for p = 2, n ≥ 3, it has minimum weight 3. For n ≥ 3,

Aut(Cp(Ln(2))) = S2 o Sn.

Proof. Case (i): p odd
We prove the result stated by induction, having established it in Lemma 5 for n = 3.
Suppose the statement is true for n − 1, where n ≥ 4, and consider Ln(2) as shown in Eq. (14). We use the same

constructions and labelling as for the proof of the case n = 3. Thusw = (w1, w2, w3, w4). Let C = Cp(Ln(2)). It is clear that
dim(C) = 2n−1n since the rows from R1 and R2 give dimension 2n−1(n− 1), by induction, and those from R3 give dimension
2n−1 since each column has exactly one entry of 1 in it, and each row has at least one entry 1.
If w is a sum of k ≥ 1 non-zero scalar multiples of rows ri from R1, then wt(w) = wt(w1) + wt(w3) ≥ 2(n − 2) + 2k

since X has every row containing exactly two entries 1, and every column exactly one entry 1. If k ≥ 2 then wt(w) ≥ 2n,
so we only get weight 2(n − 1) when k = 1. The same argument holds for w a sum of rows in R2. If w is a sum of k 6= 0,
non-zero scalar multiples of rows from R3, then wt(w) = 2(n− 1)k ≥ 2(n− 1), (since Y , Z each have their rows consisting
of n− 1 entries equal to 1), with equality only if k = 1 andw is a scalar multiple of a row.
Ifw is a sumof k ≥ 1 non-zero scalarmultiples of rows from R1 andm ≥ 1 non-zero scalarmultiples of rows from R2 then

wt(w) = wt(w1)+wt(w2)+2k+2m > 2(n−1). Ifw is a sum of k ≥ 1 non-zero scalarmultiples of rows from R1 andm ≥ 1
non-zero scalar multiples of rows from R3, then wt(w) = wt(w1)+wt(w3)+m(n−1) ≥ 2(n−2)+wt(w3)+m(n−1) ≥
3n− 5 > 2n− 2 for n ≥ 4. So no weight 2(n− 1) can arise from this combination of rows, and similarly from R2 and R3.
Finally we takew to be a sum of k 6= 0 non-zero scalar multiples of rows from R1 and j 6= 0 non-zero scalar multiples of

rows from R2 andm 6= 0 non-zero scalar multiples of rows from R3. Then wt(w) = wt(w1)+wt(w2)+wt(w3)+wt(w4) ≥
4(n− 2) > 2n− 4 for n ≥ 4. This completes the proof for p odd.
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Case (ii): p = 2
Again by Lemma 5 we have the result for n = 3, so we use induction. So suppose n ≥ 4 and that it is true for n− 1, and

consider Ln(2) as shown in Eq. (14). We use the same constructions and labelling as before. Thusw = (w1, w2, w3, w4). Let
C = C2(Ln(2)). It is clear that dim(C) ≤ 2n−1n− 1 since the sum of all the rows is 0. Further notice that any 2n−1n− 1 rows
of Ln−1(2) are linearly independent. By induction the dimension is at least this as the rows from R1 give dimension at least
2n−2(n − 1) − 1, and the those from R2 and R3 give dimension 2n−2(n − 1) and 2n−1, respectively, since each column has
exactly one entry of 1 in it, and each row has at least one entry 1.
If w is a sum of k ≥ 1 rows ri from R1, then wt(w) = wt(w1) + wt(w3) ≥ wt(w1) + 2k since X has every

row containing exactly two entries 1, and every column exactly one entry 1. If w1 = 0 then k = 2n−2(n − 1) and
wt(w) = 2n−1(n−1) > 2(n−1). Otherwise wt(w) ≥ 2(n−2)+2k ≥ 2(n−2)+2 = 2(n−1)with equality only if k = 1.
The same argument holds forw a sumof rows in R2. Ifw is a sum of k 6= 0, rows from R2, thenwt(w) = 2(n−1)k ≥ 2(n−1),
(since Y , Z each have their rows consisting of n− 1 entries equal to 1), with equality only if k = 1 andw is a scalar multiple
of a row.
Ifw is a sum of k 6= 0 rows from R1 andm 6= 0 rows from R2 then wt(w) = wt(w1)+wt(w2)+ 2k+ 2m. Ifw1 = 0 then

k = 2n−2(n− 1) so wt(w) ≥ 2n−1(n− 1)+ 2 > 2(n− 1) for n ≥ 4. Similarly if w2 = 0. So we can assume neither is 0, in
which case wt(w) ≥ 4(n− 2)+ 4 > 2n− 2 for n ≥ 4. Now takew to be a sum of k ≥ 1 rows from R1 andm ≥ 1 rows from
R3. Then wt(w) = wt(w1)+wt(w3)+m(n− 1). Ifw1 = 0 then k = 2n−2(n− 1) and wt(w3) = 2n−1(n− 1)−m(n− 1), so
wt(w) = 2n−1(n−1) > 2(n−1). Otherwisewt(w1) ≥ 2(n−2) andwt(w) ≥ 2(n−2)+wt(w3)+m(n−1) ≥ 3n−5 > 2n−2
for n ≥ 4. So no weight 2(n− 1) can arise from this combination of rows, and similarly from R2 and R3.
Finally we takew to be a sum of k ≥ 1 rows from R1 and j ≥ 1 rows from R2 andm ≥ 1 rows from R3. Then ifw1, w2 6= 0,

wt(w) = wt(w1)+wt(w2)+wt(w3)+wt(w4) ≥ 4(n−2) > 2n−4 for n ≥ 4. Ifw1 = 0,w2 6= 0 then k = 2n−2(n−1) and
wt(w3) = 2n−1(n− 1)−m(n− 1) and wt(w) ≥ 2(n− 2)+ 2n−1(n− 1)−m(n− 1)+wt(w4) > 2(n− 1) unlessm = 2n−1
andwt(w4) = 0, 2. If wt(w4) = 0 then j = 2n−2(n−1) andw = 0. If wt(w4) = 2 then j = 2n−2(n−1)−1 andw is the row
of R2 that was left out of the sum. Finally, ifw1, w2 = 0 then k = j = 2n−2(n− 1), wt(w) = 2(2n−1−m)(n− 1) > 2(n− 1)
ifm < 2n−1 − 1. Ifm = 2n−1 − 1 thenw is the row of R3 that was omitted from the sum, and ifm = 2n−1, thenw = 0. This
completes all cases and the induction.
For the statement about the dual codes, that the minimumweight is at most 4 follows from Lemma 4. For p = 2, for any

x ∈ Rn, the set {[[x, x + e1], [x, x + e2]], [[x, x + e1], [x, x + e3]], [[x, x + e2], [x, x + e3]]} forms the support of a word of
weight 3 in the dual code.
The statement about the automorphism group of the code follows from Whitney’s Theorem (see Section 3), Lemma 1,

and the proof of the similar statement in Proposition 1. �

Note. We will not consider here the general case of an incidence matrix Ln(m) for L(H(n,m)) for m ≥ 3, although all
indications (for example, with Magma) are that similar results hold.

8. Codes from an incidence matrix for L2(H(n, 2))

Recall that we write Jn(m) for a 12m
n(m− 1)n((m− 1)n− 1)× 1

2m
n(m− 1)n((m− 1)n− 1)(2(m− 1)n− 3) incidence

matrix for L(L(H(n,m))) = L2(H(n,m)). We restrict our attention tom = 2, i.e. we consider the graph L(L(H(n, 2))). We let
Jn(2) be an incidence matrix for this graph, using the same ordering for the rows as for the columns of Ln(2), and ordering
the columns using the same algorithm as we used for Ln(2). Then, from Example 1, L2(H(n, 2)) has valency 4n− 6 and Jn(2)
is 2n−1n(n− 1)× 2n−1n(n− 1)(2n− 3), of the form

Jn(2) =

 Jn−1(2) 0 X 0 0 0 0
0 Jn−1(2) 0 W 0 0 0
0 0 Y1 0 Y2 0 Y3
0 0 0 Z1 0 Z2 Z3

 , (16)

where X,W are 2n−2(n − 1)(n − 2) × 2n(n − 1)(n − 2) matrices; Y1, Z1 are 2n−1(n − 1) × 2n(n − 1)(n − 2) matrices;
Y2, Z2 are 2n−1(n − 1) × 2n−2(n − 1)2 matrices; Y3, Z3 are 2n−1(n − 1) × 2n−1(n − 1)2 matrices. Further, every column of
X, Y1, Y3, Z1, Z3,W has exactly one non-zero entry 1 in it, and every column of Y2, Z2 has two non-zero entries 1 in it; every
row of X andW has precisely four non-zero entries 1 in it; every row of Y1 and Z1 has precisely 2(n − 2) non-zero entries
1 in it; every row of Y2 and Z2 has precisely (n − 1) non-zero entries 1 in it; every row of Y3 and Z3 has precisely (n − 1)
non-zero entries 1 in it.
For example, for n = 3,

J2(2) =

1 1
1 1
1 1
1 1

 , X =

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

 ,
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Y1 =



1 1
1 1
1 1
1 1

1 1
1 1

1 1
1 1


, Y2 =



1 1
1 1
1 1

1 1
1 1

1 1
1 1

1 1


,

Y3 =



1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1


,

W =

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

 ,
and Z1, Z2, Z3 are Y1, Y2, Y3, respectively.
As in Section 7, we need to establish an induction base for our proposition, and we do this in a lemma, with notation as

given above.

Lemma 6. C2(J3(2)) = [72, 23, 6]2 and for p odd Cp(J3(2)) = [72, 24, 6]p. The vectors of weight 6 are the scalar multiples of
the rows of J3(2) for all p.
Proof. Write J3 = J3(2). We can use Magma for p = 2. For p odd, we can use Result 1 for the dimension since L(H(3, 2)) has
a path of length 5, and hence so does its line graph, by the remark in Section 5.
Label the row partitions of J3 as in Eq. (16) as Ri for i = 1, 2, 3, 4 and the column partitions as Ci for i = 1, . . . , 7. Then

w ∈ Cp(Jn) is a concatenation ofwi, i = 1, . . . , 7.
Take p to be any prime. It is easy to see that Cp(J2) has dimension 3 andminimumweight 2. Further, writing the rows of J2

as ri for 1 ≤ i ≤ 4, any three of the rows are linearly independent, andw =
∑4
i=1 αiri = (α1+α2, α1+α3, α2+α4, α3+α4) =

0 only if α1 = α4 = −α2 = −α3. Now we need to show that Cp(J3) has minimum weight 6 and that the words of weight 6
are the scalar multiples of the rows of J3.
First we take w to be a sum of k ≥ 1 non-zero scalar multiples of rows from R1. Then wt(w) = wt(w1) + 4k. If w1 = 0

then from the above discussion we must have k = 4 and thus wt(w) = 16. If w1 6= 0 then wt(w) ≥ 2 + 4k ≥ 6, with
equality only when k = 1 and we have a multiple of a row. The same argument applies to a sum of rows from R2, sinceW is
equivalent to X . Ifw is a sum of k ≥ 1 non-zero scalar multiples of rows from R3 or R4, then wt(w) = 6k ≥ 6 with equality
only if k = 1.
Now takew to be a sum of k ≥ 1 non-zero scalar multiples of rows from R1 andm ≥ 1 non-zero scalar multiples of rows

from R2. Then wt(w) = wt(w1) + wt(w2) + 4k + 4m > 6. If w is a sum of k ≥ 1 rows from R1 and m ≥ 1 rows from R3,
then wt(w) = wt(w1) + wt(w3) + 4m. If w1 = 0 then k = 4 and wt(w) = wt(w3) + 4m > 6 if m ≥ 2. If m = 1 then
wt(w3) ≥ 14 sincew3 = x+ βywhere x has weight 16, and y is a row of Y1 and has weight 2. Rows from R2 and R4 behave
similarly. Ifw is a sum of k ≥ 1 rows from R1 andm ≥ 1 rows from R4, then wt(w) = wt(w1)+4k+6m ≥ 10, and similarly
for R2 and R3. For k from R3 andm from R4, wt(w) = 4k+ 4m+wt(w7) > 6.
Next take w to be a sum of k ≥ 1 non-zero scalar multiples of rows from R1, m ≥ 1 from R2 and ` ≥ 1 from R3. Then

wt(w) = wt(w1) + wt(w2) + wt(w3) + 4m + 4` > 6. If w is a sum of k ≥ 1 from R1, m ≥ 1 from R3 and ` ≥ 1 from R4,
then wt(w) = wt(w1) + wt(w3) + 2m + 4` + wt(w7) ≥ 6 with equality only if m = ` = 1, w1 = w3 = w7 = 0. But
w1 = 0 implies k = 4 and then, as before, wt(w3) ≥ 14, which is impossible. This covers all choices of three blocks of rows,
due to the symmetry of the matrix.
Finally, if w is a sum of non-zero scalar multiples of k ≥ 1 rows from R1,m ≥ 1 from R2, ` ≥ 1 from R3, and r ≥ 1 from

R4, then wt(w) = wt(w1) + wt(w2) + wt(w3) + wt(w4) + 2` + 2r + wt(w7) > 6 if both w1, w2 6= 0. If w1 6= 0 and
w2 = 0 then m = 4, and wt(w) > 6 unless r = ` = 1, in which case wt(w4) > 14 which is not possible. If w1, w2 = 0,
then k = m = 4 so wt(w) > 6 if both r, ` ≥ 2. So suppose r = 1. Then wt(w4) ≥ 14 again, so we have a contradiction. This
completes the proof. �

Proposition 6. For n ≥ 2, let Jn(2) be a 2n−1n(n−1)×2n−1n(n−1)(2n−3) incidencematrix for L(L(H(n, 2))) = L2(H(n, 2)).
For n ≥ 3,
• C2(Jn(2)) = [2n−1n(n− 1)(2n− 3), 2n−1n(n− 1)− 1, 2(2n− 3)]2;
• Cp(Jn(2)) = [2n−1n(n− 1)(2n− 3), 2n−1n(n− 1), 2(2n− 3)]p for p odd.
For n ≥ 3 and all p the minimum words are the scalar multiples of the rows of Jn(2), and Aut(Cp(Jn(2))) = S2 o Sn.
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Proof. We write Jn = Jn(2). Much of the proof of this mirrors that of Proposition 5.
Weproceedby induction, sincewehave an inductionbase fromLemma6. The statement about the dimensionof the codes

follows immediately. For the minimumweight, we need to separate our proofs for p odd or p = 2, since the submatrix Jn−1
can give wt(w1) = 0 when taking a collection of rows from R1 in the case p = 2 but not in the case p odd.
Case (i): p odd
Take p odd and assumewe have the result for n−1 ≥ 3. Letw ∈ Cp(Jn). We assume that theminimumweight of Cp(Jn−1)

is 4n− 10 and the words of this weight are multiples of the rows of Jn−1.
First we take w to be a sum of k ≥ 1 non-zero scalar multiples of rows from R1. Then wt(w) = wt(w1) + 4k ≥

4n−10+4k ≥ 4n−6with equality only if k = 1. The same argument applies to a sumof rows from R2, sinceW is equivalent
to X . Ifw is a sum of k ≥ 1 non-zero scalar multiples of rows from R3 or R4, then wt(w) = (2(n− 2)+ 2(n− 1))k ≥ 4n− 6
with equality only if k = 1.
Now takew to be a sum of k ≥ 1 non-zero scalar multiples of rows from R1 andm ≥ 1 non-zero scalar multiples of rows

from R3. Then wt(w) = wt(w1) + wt(w3) + 2m(n − 1) ≥ 4n − 10 + 2(n − 1) > 4n − 6 for n > 3. Rows from R2 and R4
behave similarly. If w is a sum of k ≥ 1 non-zero scalar multiples of rows from R1 and m ≥ 1 non-zero scalar multiples of
rows from R4, then wt(w) = wt(w1)+ 4k+ m(4n− 6) > 4n− 6, and similarly for R2 and R3. For k ≥ 1 rows from R1 and
m ≥ 1 from R2 we have wt(w) = wt(w1)+ wt(w2)+ 4k+ 4m ≥ 2(4n− 10)+ 4(k+ m) > 4n− 6; for k from R3 and m
from R4, wt(w) = (2(n− 2)+ (n− 1))k+ (2(n− 2)+ (n− 1))m+wt(w7) ≥ 6n− 10 > 4n− 6 for n > 2.
Next take w to be a sum of k ≥ 1 non-zero scalar multiples of rows from R1, m ≥ 1 from R3 and ` ≥ 1 from R4.

Then wt(w) = wt(w1) + wt(w3) + (n − 1)m + (3n − 5)` + wt(w7) ≥ 4n − 10 + (n − 1) + (3n − 5) > 4n − 6
for n ≥ 3. If w is a sum of non-zero scalar multiples of k ≥ 1 rows from R1, ` ≥ 1 from R2, and m ≥ 1 from R3, then
wt(w) = wt(w1)+wt(w2)+wt(w3)+ (2n− 2)m+ 4` ≥ 2(4n− 10)+ 2n− 2 > 4n− 6 for n > 3.
Finally, if w is a sum of k ≥ 1 non-zero scalar multiples of rows from R1,m ≥ 1 from R2, ` ≥ 1 from R3, and r ≥ 1 from

R4, then wt(w) = wt(w1)+wt(w2)+wt(w3)+wt(w4)+ (n−1)`+ (n−1)r+wt(w7) ≥ 2(4n−10)+2(n−1) > 4n−6
for n > 3. This completes the proof for p odd.
Case (ii): p = 2
For p = 2 the argument needs to include the possibility that w1 or w2 is 0, in which case w3 or w4 is the all-one vector

of length 2n(n− 1)(n− 2) > 4n− 6 for n ≥ 3. Again this only happens if all the rows from R1 or R2 are taken. Assume we
have the result for n− 1 ≥ 3. Letw ∈ C2(Jn). We assume that the minimumweight of C2(Jn−1) is 4n− 10 and the words of
this weight are multiples of the rows of Jn−1. Note that Jn−1 has 2n−2(n− 1)(n− 2) rows and that the number of columns of
X is 2n(n− 1)(n− 2) > 4n− 6 for n ≥ 3.
First we take w to be a sum of k ≥ 1 non-zero scalar multiples of rows from R1. Then wt(w) = wt(w1) + 4k ≥

4n − 10 + 4k ≥ 4n − 6 with equality only if k = 1, unless w1 = 0, in which case k = 2n−2(n − 1)(n − 2). Then
wt(w) = 2n(n− 1)(n− 2) > 4n− 6 for n ≥ 3. The same argument applies to a sum of rows from R2, sinceW is equivalent
to X . Ifw is a sum of k ≥ 1 non-zero scalar multiples of rows from R3 or R4, then wt(w) = (2(n− 2)+ 2(n− 1))k ≥ 4n− 6
with equality only if k = 1.
If w is a sum of k ≥ 1 non-zero scalar multiples of rows from R1 and m ≥ 1 non-zero scalar multiples of rows

from R3 then wt(w) = wt(w1) + wt(w3) + 2m(n − 1) ≥ 4n − 10 + 2(n − 1) > 4n − 6 for n > 3 if w1 6= 0.
If w1 = 0 then k = 2n−2(n − 1)(n − 2), and if m ≥ 2 then wt(w) ≥ 4(n − 1) > 4n − 6. Thus m = 1 and
wt(w3) = 2n(n − 1)(n − 2) − 2(n − 2), so wt(w) = 2n(n − 1)(n − 2) − 2(n − 2) + 2(n − 1) > 4n − 6 for n ≥ 3.
Ifw is a sum of k ≥ 1 non-zero scalar multiples of rows from R1 andm ≥ 1 non-zero scalar multiples of rows from R4, then
wt(w) = wt(w1)+ 4k+ m(4n− 6) > 4n− 6, and similarly for R2 and R3. For k ≥ 1 rows from R1 and m ≥ 1 from R2 we
have wt(w) = wt(w1) + wt(w2) + 4k + 4m ≥ 2(4n − 10) + 4(k + m) > 4n − 6 if w1, w2 6= 0, and, should one of these
be 0, thenw3 orw4 is the all-one vector and, by the observation above, wt(w) > 4n− 6. For k ≥ 1 from R3 andm ≥ 1 from
R4, wt(w) = (2(n− 2)+ (n− 1))k+ (2(n− 2)+ (n− 1))k+wt(w7) ≥ 6n− 10 > 4n− 6 for n > 2.
If w is a sum of k ≥ 1 non-zero scalar multiples of rows from R1, ` ≥ 1 from R2 and m ≥ 1 from R3, then

wt(w) = wt(w1)+wt(w2)+wt(w3)+(2n−2)m+4` ≥ 2(4n−10)+2n−2 > 4n−6 for n > 3 ifw1, w2 6= 0. Ifm ≥ 2 then
wt(w) > 4n−6, som = 1, and ifw1 = 0 thenwt(w) ≥ wt(w3) = 2n(n−1)(n−2)−2(n−2) > 4n−6, and ifw2 = 0 then
` = 2n−2(n− 1)(n− 2) and wt(w) ≥ 4` > 4n− 6. Ifw is a sum of k ≥ 1 non-zero scalar multiples of rows from R1,m ≥ 1
from R3 and ` ≥ 1 from R4, thenwt(w) = wt(w1)+wt(w3)+(n−1)m+(3n−5)`+wt(w7) > 4n−6 unlessm = ` = 1, in
which casewt(w) ≥ 4n−10+(n−1)+(3n−5) ifw1 6= 0, and ifw1 = 0, thenwt(w3) = 2n(n−1)(n−2)−2(n−2) > 4n−6
for n ≥ 3.
Finally, if w is a sum of k ≥ 1 non-zero scalar multiples of rows from R1, r ≥ 1 from R2,m ≥ 1 from R3, and ` ≥ 1 from

R4, then wt(w) = wt(w1)+wt(w2)+wt(w3)+wt(w4)+ (n−1)m+ (n−1)`+wt(w7) ≥ 2(4n−10)+2(n−1) > 4n−6
for n > 3 if w1, w2 6= 0. If m + ` ≥ 4 then wt(w) > 4n − 6, so take 2 ≤ m + ` ≤ 3. If w1 = 0 then
wt(w3) = 2n(n − 1)(n − 2) − 2m(n − 2) ≥ 2n(n − 1)(n − 2) − 4(n − 2) > 4n − 6 for n ≥ 3. Similarly if w2 = 0.
This completes the proof.
The statement about the automorphism group of the code follows from Whitney’s Theorem (see Section 3), Lemma 1,

and the proof of the similar statement in Proposition 1. �

Note. All indications are that the codes from the incidencematrices Jn(m) of L2(H(n,m)) form ≥ 3 follow the same pattern,
but we have not attempted a proof, there being too many variations to consider.
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9. Permutation decoding

In [11, Lemma 7] the following was proved:

Result 2. Let C be a code with minimum distance d, I an information set, C the corresponding check set and P = I ∪ C. Let A
be an automorphism group of C, and n the maximum of |O ∩ I|/|O|, where O is a A-orbit. If s = min

(⌈ 1
n

⌉
− 1,

⌊ d−1
2

⌋)
, then

A is an s-PD-set for C.

Note that this result is true for any information set. If the group A is transitive then |O| is the degree of the group and
|O ∩ I| is the dimension of the code.
If we take C = Cp(Gn(m)), the degree is 12m

n(m−1)n and the dimension ismn−1. Certainly the group Sm oSn is transitive,
and has transitive subgroups. One of the smallest order should be taken to minimize the size of the PD-set. If this is done
then Cp(Gn(m)) can be used to its full error-correction capability with this group as PD-set since in all cases s in Result 2 is⌊
(m−1)n−1

2

⌋
.

For example, if R = Zm, then if
Ta1,...,an : (x1, . . . , xn) 7→ (x1 + a1, . . . , xn + an)

mapping Znm to itself, and if, for a ∈ Z∗m, σ = (1, . . . , n) ∈ Sn, acting as a permutation matrix on Znm, then

A = {Tx | x ∈ Znm}{bσ
i
| b ∈ Z∗m, 1 ≤ i ≤ n}

is a transitive subgroup group of order mn(m − 1)n. This follows since if P = [0, ae1], Q = [x, x + bej], where a, b 6= 0,
a, b ∈ Zm, then τ = a−1bσ jTx1,...,xn will have Pτ = Q .
We takem > 2 here sincem = 2 has been covered in [6].

Proposition 7. For n ≥ 3, m ≥ 3 any transitive subgroup of Sm o Sn of degree 12m
n(m− 1)n is a PD-set for the code Cp(Gn(m)),

where C2(Gn(m)) =
[ 1
2m

n(m− 1)n,mn − 1, (m− 1)n
]
2 and Cp(Gn(m)) =

[ 1
2m

n(m− 1)n,mn, (m− 1)n
]
p for p odd, for any

information set.
Proof. We use Result 2 and the propositions and lemmas we have obtained for the dimensions of the codes and their
minimum weights. �

The proof of Theorem 1 now follows from the propositions in the preceding sections.

10. Further classes of graphs

The codes from the incidence matrices of line graphs Li(H(n,m)) for i ≥ 1 and m ≥ 3, or for i ≥ 3 and m ≥ 2, behave
similarly in all cases where we have tested them computationally. However they become too large and complicated to
handle in a manner similar to the one we have employed in this paper, so a more general approach might be needed for
these.
The definition of the Hamming graphs H(n,m) can be extended to the class of graphs Hk(n,m), for k, n,m ≥ 1, i.e.

the graphs with vertices the mnn-tuples in Rn, and adjacency defined by two vertices in Rn being adjacent if they differ
in k coordinate positions. (These are the graphs in the Hamming association scheme.) We can examine codes from an
mn × 1

2m
n(m − 1)k

( n
k

)
incidence matrix for Hk(n,m) and also the incidence matrices of their line graphs. These codes

appear to share properties similar to those we mentioned in Section 1 and that we have established here for the H(n,m).
Computations with Magma confirm this. We examine these codes in a forthcoming paper.
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