14,828 research outputs found

    Codes for Simultaneous Transmission of Quantum and Classical Information

    Full text link
    We consider the characterization as well as the construction of quantum codes that allow to transmit both quantum and classical information, which we refer to as `hybrid codes'. We construct hybrid codes [ ⁣[n,k:m,d] ⁣]q[\![n,k{: }m,d]\!]_q with length nn and distance dd, that simultaneously transmit kk qudits and mm symbols from a classical alphabet of size qq. Many good codes such as [ ⁣[7,1:1,3] ⁣]2[\![7,1{: }1,3]\!]_2, [ ⁣[9,2:2,3] ⁣]2[\![9,2{: }2,3]\!]_2, [ ⁣[10,3:2,3] ⁣]2[\![10,3{: }2,3]\!]_2, [ ⁣[11,4:2,3] ⁣]2[\![11,4{: }2,3]\!]_2, [ ⁣[11,1:2,4] ⁣]2[\![11,1{: }2,4]\!]_2, [ ⁣[13,1:4,4] ⁣]2[\![13,1{: }4,4]\!]_2, [ ⁣[13,1:1,5] ⁣]2[\![13,1{: }1,5]\!]_2, [ ⁣[14,1:2,5] ⁣]2[\![14,1{: }2,5]\!]_2, [ ⁣[15,1:3,5] ⁣]2[\![15,1{: }3,5]\!]_2, [ ⁣[19,9:1,4] ⁣]2[\![19,9{: }1,4]\!]_2, [ ⁣[20,9:2,4] ⁣]2[\![20,9{: }2,4]\!]_2, [ ⁣[21,9:3,4] ⁣]2[\![21,9{: }3,4]\!]_2, [ ⁣[22,9:4,4] ⁣]2[\![22,9{: }4,4]\!]_2 have been found. All these codes have better parameters than hybrid codes obtained from the best known stabilizer quantum codes.Comment: 6 page

    Quantum and Classical Message Identification via Quantum Channels

    Full text link
    We discuss concepts of message identification in the sense of Ahlswede and Dueck via general quantum channels, extending investigations for classical channels, initial work for classical-quantum (cq) channels and "quantum fingerprinting". We show that the identification capacity of a discrete memoryless quantum channel for classical information can be larger than that for transmission; this is in contrast to all previously considered models, where it turns out to equal the common randomness capacity (equals transmission capacity in our case): in particular, for a noiseless qubit, we show the identification capacity to be 2, while transmission and common randomness capacity are 1. Then we turn to a natural concept of identification of quantum messages (i.e. a notion of "fingerprint" for quantum states). This is much closer to quantum information transmission than its classical counterpart (for one thing, the code length grows only exponentially, compared to double exponentially for classical identification). Indeed, we show how the problem exhibits a nice connection to visible quantum coding. Astonishingly, for the noiseless qubit channel this capacity turns out to be 2: in other words, one can compress two qubits into one and this is optimal. In general however, we conjecture quantum identification capacity to be different from classical identification capacity.Comment: 18 pages, requires Rinton-P9x6.cls. On the occasion of Alexander Holevo's 60th birthday. Version 2 has a few theorems knocked off: Y Steinberg has pointed out a crucial error in my statements on simultaneous ID codes. They are all gone and replaced by a speculative remark. The central results of the paper are all unharmed. In v3: proof of Proposition 17 corrected, without change of its statemen

    Quantum linear network coding as one-way quantum computation

    Get PDF
    Network coding is a technique to maximize communication rates within a network, in communication protocols for simultaneous multi-party transmission of information. Linear network codes are examples of such protocols in which the local computations performed at the nodes in the network are limited to linear transformations of their input data (represented as elements of a ring, such as the integers modulo 2). The quantum linear network coding protocols of Kobayashi et al [arXiv:0908.1457 and arXiv:1012.4583] coherently simulate classical linear network codes, using supplemental classical communication. We demonstrate that these protocols correspond in a natural way to measurement-based quantum computations with graph states over over qudits [arXiv:quant-ph/0301052, arXiv:quant-ph/0603226, and arXiv:0704.1263] having a structure directly related to the network.Comment: 17 pages, 6 figures. Updated to correct an incorrect (albeit hilarious) reference in the arXiv version of the abstrac

    Hybrid Codes

    Full text link
    A hybrid code can simultaneously encode classical and quantum information into quantum digits such that the information is protected against errors when transmitted through a quantum channel. It is shown that a hybrid code has the remarkable feature that it can detect more errors than a comparable quantum code that is able to encode the classical and quantum information. Weight enumerators are introduced for hybrid codes that allow to characterize the minimum distance of hybrid codes. Surprisingly, the weight enumerators for hybrid codes do not obey the usual MacWilliams identity.Comment: 5 page

    Capacity Theorems for Quantum Multiple Access Channels

    Full text link
    We consider quantum channels with two senders and one receiver. For an arbitrary such channel, we give multi-letter characterizations of two different two-dimensional capacity regions. The first region characterizes the rates at which it is possible for one sender to send classical information while the other sends quantum information. The second region gives the rates at which each sender can send quantum information. We give an example of a channel for which each region has a single-letter description, concluding with a characterization of the rates at which each user can simultaneously send classical and quantum information.Comment: 5 pages. Conference version of quant-ph/0501045, to appear in the proceedings of the IEEE International Symposium on Information Theory, Adelaide, Australia, 200

    Identification via Quantum Channels in the Presence of Prior Correlation and Feedback

    Full text link
    Continuing our earlier work (quant-ph/0401060), we give two alternative proofs of the result that a noiseless qubit channel has identification capacity 2: the first is direct by a "maximal code with random extension" argument, the second is by showing that 1 bit of entanglement (which can be generated by transmitting 1 qubit) and negligible (quantum) communication has identification capacity 2. This generalises a random hashing construction of Ahlswede and Dueck: that 1 shared random bit together with negligible communication has identification capacity 1. We then apply these results to prove capacity formulas for various quantum feedback channels: passive classical feedback for quantum-classical channels, a feedback model for classical-quantum channels, and "coherent feedback" for general channels.Comment: 19 pages. Requires Rinton-P9x6.cls. v2 has some minor errors/typoes corrected and the claims of remark 22 toned down (proofs are not so easy after all). v3 has references to simultaneous ID coding removed: there were necessary changes in quant-ph/0401060. v4 (final form) has minor correction
    corecore