311 research outputs found

    Investigation on iterative multiuser detection physical layer network coding in two-way relay free-space optical links with turbulences and pointing errors

    Get PDF
    Physical layer network coding (PNC) improves the throughput in wireless networks by enabling two nodes to exchange information using a minimum number of time slots. The PNC technique is proposed for two-way relay channel free space optical (TWR-FSO) communications with the aim of maximizing the utilization of network resources. The multipair TWR-FSO is considered in this paper, where a single antenna on each pair seeks to communicate via a common receiver aperture at the relay. Therefore, chip interleaving is adopted as a technique to separate the different transmitted signals at the relay node to perform PNC mapping. Accordingly, this scheme relies on the iterative multiuser technique for detection of users at the receiver. The bit error rate (BER) performance of the proposed system is examined under the combined influences of atmospheric loss, turbulence-induced channel fading, and pointing errors (PEs). By adopting the joint PNC mapping with interleaving and multiuser detection techniques, the BER results show that the proposed scheme can achieve a significant performance improvement against the degrading effects of turbulences and PEs. It is also demonstrated that a larger number of simultaneous users can be supported with this new scheme in establishing a communication link between multiple pairs of nodes in two time slots, thereby improving the channel capacity

    Misalignment fading effects on the ACC performance of relay-assisted MIMO/FSO systems over atmospheric turbulence channels

    Get PDF
    The continuous development of internet of things (IoT) technology enables many devices to be interconnected through the external environment. Meanwhile, 5G technology provides an enhanced quality of services with high data transmission rates, requiring IoT implementation in the 5G architecture. Free-space optical communication (FSO) is considered a promising technique that can provide high-speed communication links, so FSO is an optimal choice for wireless networks to fulfill the full potential of 5G technology, providing speeds of 100 Gb/s or more. By implementing 5G features in IoT, IoT coverage and performance will be enhanced by using FSO models. Therefore, the paper proposed and investigated the multiple-input and multiple-output/free-space optical communication (MIMO/FSO) model using subcarrier quadrature amplitude modulation (SC-QAM) and relay stations over atmospheric turbulence channels by log-normal and gamma-gamma distribution under different turbulence conditions. The performance is examined based on the average channel capacity (ACC), which is expressed in terms of average spectral efficiency (ASE) parameters while changing the different parameters of the model. The mathematical formulas of ACC for atmospheric turbulence cases are calculated and discussed the influence of turbulence strength, the different number of relay stations, misalignment effects, and different MIMO configurations
    corecore