12,900 research outputs found

    The iMaterialist Fashion Attribute Dataset

    Full text link
    Large-scale image databases such as ImageNet have significantly advanced image classification and other visual recognition tasks. However much of these datasets are constructed only for single-label and coarse object-level classification. For real-world applications, multiple labels and fine-grained categories are often needed, yet very few such datasets exist publicly, especially those of large-scale and high quality. In this work, we contribute to the community a new dataset called iMaterialist Fashion Attribute (iFashion-Attribute) to address this problem in the fashion domain. The dataset is constructed from over one million fashion images with a label space that includes 8 groups of 228 fine-grained attributes in total. Each image is annotated by experts with multiple, high-quality fashion attributes. The result is the first known million-scale multi-label and fine-grained image dataset. We conduct extensive experiments and provide baseline results with modern deep Convolutional Neural Networks (CNNs). Additionally, we demonstrate models pre-trained on iFashion-Attribute achieve superior transfer learning performance on fashion related tasks compared with pre-training from ImageNet or other fashion datasets. Data is available at: https://github.com/visipedia/imat_fashion_com

    Learning scale-variant and scale-invariant features for deep image classification

    Get PDF
    Convolutional Neural Networks (CNNs) require large image corpora to be trained on classification tasks. The variation in image resolutions, sizes of objects and patterns depicted, and image scales, hampers CNN training and performance, because the task-relevant information varies over spatial scales. Previous work attempting to deal with such scale variations focused on encouraging scale-invariant CNN representations. However, scale-invariant representations are incomplete representations of images, because images contain scale-variant information as well. This paper addresses the combined development of scale-invariant and scale-variant representations. We propose a multi- scale CNN method to encourage the recognition of both types of features and evaluate it on a challenging image classification task involving task-relevant characteristics at multiple scales. The results show that our multi-scale CNN outperforms single-scale CNN. This leads to the conclusion that encouraging the combined development of a scale-invariant and scale-variant representation in CNNs is beneficial to image recognition performance

    DISC: Deep Image Saliency Computing via Progressive Representation Learning

    Full text link
    Salient object detection increasingly receives attention as an important component or step in several pattern recognition and image processing tasks. Although a variety of powerful saliency models have been intensively proposed, they usually involve heavy feature (or model) engineering based on priors (or assumptions) about the properties of objects and backgrounds. Inspired by the effectiveness of recently developed feature learning, we provide a novel Deep Image Saliency Computing (DISC) framework for fine-grained image saliency computing. In particular, we model the image saliency from both the coarse- and fine-level observations, and utilize the deep convolutional neural network (CNN) to learn the saliency representation in a progressive manner. Specifically, our saliency model is built upon two stacked CNNs. The first CNN generates a coarse-level saliency map by taking the overall image as the input, roughly identifying saliency regions in the global context. Furthermore, we integrate superpixel-based local context information in the first CNN to refine the coarse-level saliency map. Guided by the coarse saliency map, the second CNN focuses on the local context to produce fine-grained and accurate saliency map while preserving object details. For a testing image, the two CNNs collaboratively conduct the saliency computing in one shot. Our DISC framework is capable of uniformly highlighting the objects-of-interest from complex background while preserving well object details. Extensive experiments on several standard benchmarks suggest that DISC outperforms other state-of-the-art methods and it also generalizes well across datasets without additional training. The executable version of DISC is available online: http://vision.sysu.edu.cn/projects/DISC.Comment: This manuscript is the accepted version for IEEE Transactions on Neural Networks and Learning Systems (T-NNLS), 201

    Attention Gated Networks: Learning to Leverage Salient Regions in Medical Images

    Get PDF
    We propose a novel attention gate (AG) model for medical image analysis that automatically learns to focus on target structures of varying shapes and sizes. Models trained with AGs implicitly learn to suppress irrelevant regions in an input image while highlighting salient features useful for a specific task. This enables us to eliminate the necessity of using explicit external tissue/organ localisation modules when using convolutional neural networks (CNNs). AGs can be easily integrated into standard CNN models such as VGG or U-Net architectures with minimal computational overhead while increasing the model sensitivity and prediction accuracy. The proposed AG models are evaluated on a variety of tasks, including medical image classification and segmentation. For classification, we demonstrate the use case of AGs in scan plane detection for fetal ultrasound screening. We show that the proposed attention mechanism can provide efficient object localisation while improving the overall prediction performance by reducing false positives. For segmentation, the proposed architecture is evaluated on two large 3D CT abdominal datasets with manual annotations for multiple organs. Experimental results show that AG models consistently improve the prediction performance of the base architectures across different datasets and training sizes while preserving computational efficiency. Moreover, AGs guide the model activations to be focused around salient regions, which provides better insights into how model predictions are made. The source code for the proposed AG models is publicly available.Comment: Accepted for Medical Image Analysis (Special Issue on Medical Imaging with Deep Learning). arXiv admin note: substantial text overlap with arXiv:1804.03999, arXiv:1804.0533
    • …
    corecore