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a b s t r a c t

Convolutional Neural Networks (CNNs) require large image corpora to be trained on classification tasks.
The variation in image resolutions, sizes of objects and patterns depicted, and image scales, hampers
CNN training and performance, because the task-relevant information varies over spatial scales. Previous
work attempting to deal with such scale variations focused on encouraging scale-invariant CNN re-
presentations. However, scale-invariant representations are incomplete representations of images, be-
cause images contain scale-variant information as well. This paper addresses the combined development
of scale-invariant and scale-variant representations. We propose a multi-scale CNN method to encourage
the recognition of both types of features and evaluate it on a challenging image classification task in-
volving task-relevant characteristics at multiple scales. The results show that our multi-scale CNN out-
performs single-scale CNN. This leads to the conclusion that encouraging the combined development of a
scale-invariant and scale-variant representation in CNNs is beneficial to image recognition performance.
& 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Convolutional Neural Networks (CNNs) have drastically chan-
ged the computer vision landscape by considerably improving the
performance on most image benchmarks [1,2]. A key characteristic
of CNNs is that the deep(-based) representation, used to perform
the classification, is generated from the data, rather than being
engineered. The deep representation determines the type of visual
features that are used for classification. In the initial layers of the
CNN, the visual features correspond to oriented edges or colour
transitions. In higher layers, the visual features are typically more
complex (e.g., conjunctions of edges or shapes). Finding the ap-
propriate representation for the task at hand requires presenting
the CNN with many instances of a visual entity (object or pattern)
in all its natural variations, so that the deep representation cap-
tures most naturally occurring appearances of the entity.

Three main sources of natural variation are the location, the
viewpoint, and the size of an object or pattern. Variations in lo-
cation are dealt with very well by a CNN [3], which follows
naturally from the weight sharing employed in the convolution
layers [4]. CNNs can also handle variations in viewpoint by
creating filters that respond to viewpoint-invariant features [5].
Size variations pose a particular challenge in CNNs [6], especially
r Ltd. This is an open access article

.edu (N. van Noord),
when dealing with image corpora containing images of varying
resolutions and depicting objects and patterns at different sizes
and scales, as a result of varying distances from the camera and
blurring by optical imperfections, respectively. This leads to var-
iations in image resolution, object size, and image scale, which are
two different properties of images. The relations between image
resolution, object size, and image scale is formalized in digital
image analysis using Fourier theory [7]. Spatial frequencies are a
central concept in the Fourier approach to image processing.
Spatial frequencies are the two-dimensional analog of frequencies
in signal processing. The fine details of an image are captured by
high spatial frequencies, whereas the coarse visual structures are
captured by low spatial frequencies. In what follows, we provide a
brief intuitive discussion of the relation between resolution and
scale, without resorting to mathematical formulations.

1.1. Image resolution, object size, and image scale

Given an image its resolution can be expressed in terms of the
number of pixels (i.e., the number of samples taken from the visual
source); low resolution images have fewer pixels than high re-
solution images. The scale of an image refers to its spatial fre-
quency content. Fine scale images contain the range from high
spatial frequencies (associated with small visual structures) down
to low spatial frequencies (with large visual structures). Coarse
scale images contain low spatial frequencies only. The operation of
spatial smoothing (or blurring) of an image corresponds to the
operation of a low-pass filter: high spatial frequencies are
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Illustration of aliasing. (a) Image of a chessboard. (b) Reproductions of the chessboard with an image of insufficient resolution (6�6 pixels). The reproduction is
obtained by applying bicubic interpolation. (c) The space spanned by image resolution and image scale. Images defined by resolution-scale combinations in the shaded area
suffer from aliasing. See text for details.
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removed and low spatial frequencies are retained. So, spatial
smoothing a fine scale image yields a coarser scale image.

The relation between the resolution and the scale of an image
follows from the observation that in order to represent visual
details, an image should have a resolution that is sufficiently high
to accommodate the representation of the details. For instance, we
consider the chessboard pattern shown in Fig. 1a. Fig. 1b shows a
6�6 pixel reproduction of the chessboard pattern. The resolution
of the reproduction is insufficient to represent the fine structure of
the chessboard pattern. The distortion of an original image due to
insufficient resolution (or sampling) is called aliasing [7].

As this example illustrates, image resolution imposes a limit to
the scale at which visual structure can be represented. Fig. 1c
displays the space spanned by resolution (horizontal axis) and
scale (vertical axis). The limit is represented by separation of the
shaded and unshaded regions. Any image combining a scale and
resolution in the shaded area suffers from aliasing. The sharpest
images are located at the shaded-unshaded boundary. Blurring an
image corresponds to a vertical downward movement into the
unshaded region
Fig. 2. Artwork ‘Hoefsmid bij ee
Having discussed the relation between resolution and scale, we
now turn to the discussion of the relation of object size to re-
solution and scale. Real-world images with a given scale and re-
solution contain objects and structures at a range of sizes [8], for
example, the image of the artwork shown in Fig. 2, depicts large-
sized objects (people and animals) and small-sized objects (hairs
and branches). In addition, it may contain visual texture associated
with the paper it was printed on and with the tools that were used
to create the artwork. Importantly, the same object may appear at
different sizes. For instance, in the artwork shown there persons
depicted at different sizes. The three persons in the middle are
much larger in size than the one at the lower right corner. The
relation between image resolution and object size is that the re-
solution puts a lower bound on the size of objects that can be
represented in the image. If the resolution is too low, the smaller
objects cannot be distinguished anymore. Similarly, the relation
between image scale and object size is that if the scale becomes
too coarse, the smaller objects cannot be distinguished anymore.
Image smoothing removes the high-spatial frequencies associated
with the visual characteristics of small objects.
n ezel’ by Jan de Visscher.
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1.2. Scale-variant and scale-invariant image representations

Training CNNs on large image collections that often exhibit
variations in image resolution, depicted object sizes, and image
scale, is a challenge. The convolutional filters, which are auto-
matically tuned during the CNN training procedure, have to deal
with these variations. Supported by the acquired filters the CNN
should ignore task-irrelevant variations in image resolution, object
size, and image scale and take into account task-relevant features
at a specific scale. The filters providing such support are referred to
as scale-invariant and scale-variant filters, respectively [9].

The importance of scale-variance was previously highlighted by
Gluckman [9] and Park et al. [10], albeit for two different reasons.
The first reason put forward by Gluckman arises from the ob-
servation that images are only partially described by scale in-
variance [9]. When decomposing an image into its scale-invariant
components, by means of a scale-invariant pyramid, and subse-
quently reconstructing the image based on the scale-invariant
components the result does not fully match the initial image, and
the statistics of the resulting image do not match those of natural
images. For training a CNN this means that when forcing the filters
to be scale-invariant we might miss image structure which is re-
levant to the task. Gluckman demonstrated this, by means of his
proposed space-variant image pyramids, which separate scale-
specific from scale-invariant information in [9] and found that
object recognition benefited from scale-variant information.

The second reason was presented by Park et al. in [10], where
they argue that the need for scale-variance emerges from the limit
imposed by image resolution, stating that “Recognizing a 3-pixel
tall object is fundamentally harder than recognizing a 300-pixel
object or a 3000-pixel object.” [10, p. 2]. While recognising very
large objects comes with it own challenges, it is obvious that the
recognition task can be very different depending on the resolution
of the image. Moreover, the observation that recognition changes
based on the resolution ties in with the previously observed in-
teraction between resolution and scale: as a reduction in resolu-
tion also changes the scale. Park et al. identify that most multi-
scale models ignore that most naturally occurring variation in
scale, within images, occurs jointly with variation in resolution, i.e.
objects further away from the camera are represented at a lower
scale and at a lower resolution. As such they implement a multi-
resolution model and demonstrate that explicitly incorporating
scale-variance boosts performance.

Inspired by these earlier studies, we propose a multi-scale CNN
which explicitly deals with variation in resolution, object size and
image scale, by encouraging the development of filters which are
scale-variant, while constructing a representation that is scale-
invariant.

The remainder of this paper is organised as follows. Section 2
contains an overview of previous work that deals with scale var-
iation for learning deep image representations. In Section 3 we
provide a detailed presentation of our multi-scale CNN for scale-
invariant and scale-variant filters. Section 4 outlines the task used
for evaluating the performance of the multi-scale CNN. In Section
5 the experimental setup is described, including the dataset and
the experimental method. In Section 6 the results of the experi-
ments are presented. We discuss the implications of using multi-
scale CNNs in Section 7. Finally, Section 8 concludes by stating that
combining scale-variant and scale-invariant features contributes
to image classification performance.
2. Previous work

In this paper, we examine learning deep image representations
that incorporate scale-variant and/or scale-invariant visual
features by means of CNNs. Scale variation in images and its im-
pact on computer vision algorithms is a widely studied problem
[8,11], where invariance is often regarded as a key property of a
representation [12]. It has been shown that under certain condi-
tions CNN will develop scale-invariant filters [13]. Additionally,
various authors have investigated explicitly incorporating scale-
invariance in deep representations learnt by CNN [14,6,3,15,16].
While these approaches successfully deal with scale-invariance
they forgo the problem of recognising scale-variant features at
multiple scales [10].

Standard CNN trained without any data augmentation will de-
velop representations which are scale-variant. As such it is only
capable of recognising the features it was trained on, at the scale it
was trained on, such a CNN cannot deal with scale-variant features
at different scales. A straightforward solution to this limitation is
to expose the CNN to multiple scales during training, this approach
is typically referred to as scale jittering [17–19]. It is commonly
used as a data augmentation approach to increase the amount of
training dataset, and as a consequence reduce overfitting. Ad-
ditionally, it has been shown that scale jittering improves classi-
fication performance [18]. While part of the improved perfor-
mance is due to the increase in training data and reduced over-
fitting, scale jittering also allows the CNN to learn to recognise
more scale-variant features, and potentially develop scale-in-
variant filters. Scale-invariant filters might emerge from the CNN
being exposed to scale variants of the same feature. However,
standard CNN typically do not develop scale-invariant filters [13],
and instead will require more filters to deal with the scaled var-
iants of the same feature [6], in addition to the filters needed to
capture scale-variant features. A consequence of this increase in
parameters, which increases further when more scale variation is
introduced, is that the CNN becomes more prone to overfit and
training the network becomes more difficult in general. In practice
this limits scale-jittering to small scale variations. Moreover, scale-
jittering is typically implemented as jittering the resolution, rather
than explicitly changing the scale, which potentially means that
jittered versions are actually of the same scale.

One approach that is able to deal with larger scale variations,
while offering many of the same benefits as scale jittering is multi-
scale training [20]. Multi-scale training consists of training sepa-
rate CNN on fixed size crops of resized versions of the same image.
At test time the softmax class posteriors of these CNN are averaged
into a single prediction, taking advantage of the information from
different scales and model averaging [21], resulting in improved
performance over single scale classification. However, because the
work by Wu et al. [20] is applied to datasets with a limited image
resolution, they only explore the setting in which multi-scale
training is applied for a relatively small variation in scales, and
only two scales. Moreover, as dealing with scale variation is not an
explicit aim of their work they do not analyse the impact of
dealing with multiple scales, beyond that it increases their per-
formance. Finally, because of the limited range of scales they ex-
plored they do not deal with aliasing due to resizing. Aliasing is
harmful for any multi-scale approach as it produces visual artifacts
which would not occur in natural images of the reduced scale,
while potentially obfuscating relevant visual structure at that
scale.

In this work we aim to explicitly learn scale-variant features for
large variations in scale, and make the following three contribu-
tions: (1) we present a modified version of multi-scale training
that explicitly creates multiple scales, reducing aliasing due to
resizing, allowing us to compare larger scale differences while
reducing redundancy between scales. (2) We introduce a novel
dataset of high resolution images that allows us to explore the
effects of larger scale variations. (3) We perform an in-depth
analysis of the results and compare different scale combinations in
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order to increase our understanding of the influence of scale-
variation on the classification performance.
3. Multi-scale Convolutional Neural Network

In this Section we present the multi-scale CNN by explaining
how a standard (single-scale) CNN performs a spatial decom-
position of images. Subsequently, we motivate the architecture of
the multi-scale CNN in terms of the scale-dependency of the
decomposition.

CNNs perform a stage-wise spatial decomposition of the input,
for an image of a face this is typically described in terms of pixels
which combine into edges, which combine into contours, into
simple parts of faces, and finally into entire faces. This is achieved
by repeating alternating convolution and pooling operations
across stages. At the first stage, in the convolution operation, the
image is transformed by a set of several (learned) filters with a
limited spatial extent (typically a small sub-region of the image).
After which the pooling operation reduces the dimensionality of
the convolution. At each subsequent convolution-pooling stage,
the output of the previous stage is convolved by another set of
(learned) filters and subsequently pooled [4]. As a consequence,
both the complexity of the composite transformation and the
image area covered increases with each stage [22]. Therefore, re-
latively simple visual patterns with a small spatial extent are
processed at the early stages, whereas more complex visual pat-
terns with a large spatial extent are processed at the later stages
[4,6]. This dependency closely ties the representation and re-
cognition of a visual pattern to its spatial extent, and thus to a
specific stage in the network [23,24].

The strength of this dependency is determined by the network
architecture in which the amount of subsampling (e.g., via strided
operations or pooling) is specified, this also determines the size of
the spatial output of the network. In the case of a simple two layer
network with 2�2 filters as in Fig. 3, the network produces a
single spatial output per 4�4 region in the input. Whereas in a
deeper network (containing strided and pooling operations such
as in [1]) a single output can describe a 64�64 pixel region of the
input. Because the amount of subsampling is determined by the
network architecture, the size of the output, or spatial output map,
scales with the size of the input. Due to the scaling the relative
portion of the input described by a single output node decreases: a
4�4 pixels image can be described with 4 non-overlapping 2�2
filters, where each filter describes one-fourth of the image. Yet for
an 8�8 image it would require 16 identically sized filters to cover
the input, reducing the portion of the image described by each
filter to one-sixteenth. The reduction in relative proportion de-
scribed by a single output strongly influences the characteristics of
the filters in the network. Filters that describe one-sixteenth of a
portrait picture might only correspond to a part of a nose, or an
ear, whereas filters that cover one-fourth of the picture might
correspond to an entire cheek, chin, or forehead. For artist attri-
bution this means that a network with filters that cover relatively
small parts of the input are suitable to describe the fine
Fig. 3. A 2�2 filter applied to the output of 4 filters of the same size in a lower
layer corresponds to a 4�4 region in the input image.
characteristics but cannot describe the composition or icono-
graphy of the artwork. As such the network architecture should be
chosen in concurrence with the resolution of the input.

Because training CNNs on an image dataset results in a hier-
archy of feature representations with increasing spatial extent, a
network capable of analysing the entire range from fine to coarse
visual characteristics in an image requires many stages in order to
capture all the intermediate scales. Moreover, as to not discard
information by subsampling between stages, the subsampling has
to be performed gradually. Gradual subsampling is performed by
having a very deep network with many stages, each subsampling a
little. The complexity and the number of parameters in a network
is determined by the number of layers and the number of para-
meters per layer, as such, increasing the number of layers increases
the complexity of the network. A more complex network requires
more training data, which despite the increasing availability of
images of artworks is still lacking. Moreover, the computational
demand of the network increases strongly with the complexity of
the network, making it infeasible to train a sufficiently complex
network [25]. An alternative to increasing the complexity of an
individual CNN is to distribute the task over specialised CNNs and
combining the resulting predictions into a single one. The biolo-
gically motivated multi-column CNN architecture [26] is an ex-
ample of such an approach.

The multi-scale CNN presented in this paper is based on a
multi-scale image representation, whereby a separate CNN is as-
sociated with each scale. This allows the scale-specific CNNs to
develop both scale-variant and scale-invariant features. The multi-
scale representation is created using a Gaussian pyramid [27]. The
bottom level of the pyramid corresponds to the input image,
subsequent levels contain smoothed (and down-sampled) ver-
sions of the previous levels. A visual representation of the model
architecture is shown in Fig. 4. Note that down-sampling is not
necessary to create the higher pyramid levels, and that it is pos-
sible to fix the resolution and only change the scale. However,
smoothing results in a redundancy between neighbouring pixels,
as they convey the same information.
4. Image classification task

The proposed multi-scale CNN will be evaluated on a task in-
volving a large data set of images of artworks that are hetero-
geneous in scale and resolution. In our previous work, we have
applied a single CNN to a comparable dataset to study computa-
tional artist attribution (where the task was to determine who
authored a given artwork) [28]. For artist attribution there is often
insufficient information on a single scale to distinguish between
very similar artists. For instance, the works of two different artists
Fig. 4. Visual representation of the model architecture.



Table 1
CNN architecture of single-scale networks as used in this paper. convn denote
convolutional layers. During training a 224�224 pixels crop is used, the testing is
performed on the entire input image (which shortest side is in the range of 256 up
to 2048 pixels).

Layer Filters Size, stride, pad Description

Training data – 224�224, –, – RGB image crop
Testing data – Entire image, –, – Full RGB image
conv1.1 96 11�11, 4, 0 ReLU
conv1.2 96 1�1, 1, 0 ReLU
conv1.3 96 3�3, 2, 1 ReLU

conv2.1 256 5�5, 1, 2 ReLU
conv2.2 256 1�1, 1, 0 ReLU
conv2.3 256 3�3, 2, 0 ReLU

conv3.1 384 3�3, 1, 1 ReLU
conv3.2 384 1�1, 1, 0 ReLU
conv3.3 384 3�3, 2, 0 ReLU þ Dropout (50%)

conv4 1024 1�1, 1, 0 ReLU
conv5 1024 1�1, 1, 0 ReLU
conv6 210 1�1, 1, 0 ReLU

global-pool – – Global average
softmax – – Softmax layer
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who use very similar materials to create artworks depicting dif-
ferent scenes might be indistinguishable when considering the
very fine details only. Alternatively, when artists create artworks
depicting a similar scene using different materials, these may be
indistinguishable at a coarse spatial scale. Hence, successful artist
attribution requires scale-variant features in addition to scale-in-
variant features.

Artist attribution is typically performed by combining current
knowledge on the artist's practices, technical data, and a visual
assessment of the artwork as to establish its origin and value from
an economical and historical perspective [29]. In recent years it
has been shown that this visual assessment can be performed
computationally and can lead to promising results on artist attri-
bution image classification tasks [30,29,31–34]. The increased
availability of visual data from the vast digital libraries of mu-
seums and the challenges associated with the unique nature of
artworks has led to an interest in this domain by researchers from
a large diversity of fields. This diversity has resulted in a great
many different approaches and techniques aimed at tackling the
problem of visual artist attribution. The visual assessment of art-
works by art experts generally focuses on textural characteristics
of the surface (e.g., the canvas) or on the application method (e.g.,
brushstrokes) [35], this in turn has shaped many of the compu-
tational approaches to visual artwork assessment (e.g., [29,36,33]).

More recently it has been shown that general purpose com-
puter vision approaches can be used for the visual assessment of
artworks, specifically SIFT features [37] and deep-based re-
presentations as learned by a CNN for a general object recognition
task (i.e., ImageNet) [38,39] can be used to perform image classi-
fication tasks on artworks. This development is a deviation from
the practice as performed by art experts, with the focus shifted
from small datasets of a few artists with high resolution images
(5–10 pixels per mm) to large datasets with many artists and lower
resolution images (0.5–2 pixels per mm). By using images of a
lower resolution the amount of details related to the artist's spe-
cific style in terms of application method (e.g., brushstrokes) and
material choices (e.g., type of canvas or paper) become less ap-
parent, which shifts the focus to coarser image structures and
shapes. However, using a multi-scale approach to artist attribution
it is possible to use information from different scales, learning
features appropriate from both coarse and fine details.
1 The dataset is available at https://auburn.uvt.nl/.
5. Experimental setup

This section describes the setup of the artist attribution ex-
periment. The setup consists of a specification of the CNN archi-
tecture, the dataset, the evaluation, and the training parameters.

5.1. Multi-scale CNN architecture

The multi-scale CNN architecture used in this work is essen-
tially an ensemble of single-scale CNN, where the single-scale CNN
matches the architecture of the previously proven ImageNet
model described in [40]. We made two minor modifications to the
architecture described in [40] in that we (1) replaced the final
6�6 average pooling layer with a global average pooling layer
which averages the final feature map regardless of its spatial size,
and (2) reduce the number of outputs of the softmax layer to 210
to match the number of classes in our dataset. A detailed specifi-
cation of the single-scale CNN architecture can be found in Table 1,
where conv-n denotes a convolutional layer with f filters with a
size ranging from 11�11 to 1�1. The stride indicates the step size
of the convolution in pixels, and the padding indicates how much
zero padding is performed before the convolution is applied.

The single-scale CNN architecture used is fully-convolutional,
which means that except for the final global average pooling layer
it consists solely of convolutional layers. Rather than having max
or average pooling layers in the network a convolutional layer
with a stride greater than 1 (typically 2) is used. This convolutional
layer effectively performs the pooling, but combines it with an
additional (learnt) non-linear transformation. A fully convolutional
architecture has two main benefits for the work described in this
paper: (1) unlike traditional CNN, a fully-convolutional CNN places
no restrictions on the input in terms of resolution; the same ar-
chitecture can be used for varying resolutions, and (2) it can be
trained on patches and evaluated on whole images, which makes
training more efficient and evaluation more accurate.

Additionally, this architecture has been shown to work well with
Guided Backpropagation (GB) [40]. GB is an approach (akin to ‘de-
convolution’ [41]) that makes it possible to visualise what the net-
work has learnt, or which parts of an input image are most char-
acteristic of a certain artist. GB consists of performing a backward
pass through the network and computing the gradient w.r.t. an input
image. In order to visualise which parts of an image are characteristic
of an artist, the activations of the softmax class posterior layer are all
set to zero, except the activation for the artist of interest, and sub-
sequently the gradient w.r.t. an input image will activate strongest in
the areas characteristic of that artist.

Our multi-scale is constructed as an ensemble, or multi-column
[21], architecture, in which the softmax class-posteriors of the single-
scale CNN are averaged and used as the final predictions for evalua-
tion, the evaluation procedure is further described in Section 5.4.

5.2. Dataset

The dataset1 consists of 58,630 digital photographic reproduc-
tions of print artworks by 210 artists retrieved from the collection of
the Rijksmuseum, the Netherlands State Museum. These artworks
were chosen based on the following four criteria: (1) only printworks
made on paper, (2) by a single artist, (3) public domain, and (4) at
least 96 images by the same artist match these criteria. This ensured
that there were sufficient images available from each artist to learn to
recognise their work, and excluded any artworks which are visually
distinctive due to the material choices (e.g., porcelain). An example of
a print from the Rijksmuseum collection is shown in Fig. 5.

https://auburn.uvt.nl/


Fig. 5. Digital photographic reproduction of ‘Kop van een koe met touw om de ho-
rens’ by Jacobus Cornelis Gaal. Fig. 6. Scatter plot of physical dimensions of the artworks in the test set in milli-

meters; each point represents an artwork, its colour indicating the density in the
area around it. The scatter plot shows that there are two predominant shapes of
artworks: square artworks and rectangular artworks (width slightly greater than
height). The majority of the artworks cluster around a size of ×250 250 mm. (For
interpretation of the references to colour in this figure caption, the reader is re-
ferred to the web version of this paper.)
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For many types of artworks there is a large degree of variation
in their physical size: there are paintings of several meters in
width or height, and paintings which are only tens of centimeters
in width or height. Moreover, for such artworks there is a large
degree of variation in the ratio of pixels per mm and as such the
dimension of the reproductions in pixels. Yet, this makes it very
appealing to work with print artworks, as they are much more
uniform in terms of physical size as for example paintings. While
there is still some variation in physical size for print artworks, as
shown in Fig. 6. Previous approaches have dealt with such varia-
tions by resizing all images to a single size, which confounds im-
age resolution with physical resolution.

Normalising the images to obtain fixed pixel to mm ratios
would result in a loss of visual detail. Given that our aim is to have
our multi-scale CNN develop both scale-invariant and scale-var-
iant filters, we take the variation in scales and resolutions for
granted.

A four-level Gaussian (low-pass) pyramid is created following
the standard procedure for creating Gaussian Pyramids described
in [27,42]. Initially all images are resized so that the shortest side
(height or width) is 2048 pixels, as to preserve the aspect ratio,
creating the first pyramid level. From this first level the sub-
sequent pyramid level is created by smoothing the previous level,
and down-sampling by removing every other pixel column and
row (effectively reducing the image size by a factor two). This
smoothing and down-sampling step is repeated, every time taking
the previous level as the starting point, to create the remaining
two pyramid levels. The smoothing steps were performed by re-
cursively convolving the images with the Gaussian kernel G, which
is defined as:

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=G
1

256

1 4 6 4 1
4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1

.

The resulting Gaussian pyramid consists of four levels of images
with the shortest side being 256, 512, 1024, and 2048 pixels for
each level respectively.
The dataset is divided into a training (70%), validation (10%),

and test set (20%). The training set is used to train the network, the
validation set is used to optimise the hyperparameters, and the
evaluation set is used to estimate the prediction performance. All
results reported in this paper are based on the test set.

5.3. Training parameters

All networks were trained using an effective training procedure
(cf. [1]), with the values of the learning rate, momentum, and
weight decay hyperparameters being 10�2, 0.9, and · −5 10 4 re-
spectively. Whenever the error on the validation set stopped de-
creasing the learning rate was decreased by a factor 10.

5.4. Evaluation

The evaluation is performed on entire images. The fully-con-
volutional nature of the multi-scale CNN makes it unnecessary to
perform cropping. The scale-specific prediction for an image is the
average over the spatial output map, resulting in a single scale-
specific prediction for the entire image. The performance on all
experiments is reported using the Mean Class Accuracy (MCA),
which is the average of the accuracy scores obtained per artist. We
report the MCA because it is not sensitive to unbalanced classes
and it allows for a comparison of the results with those reported in
[37,28]. The MCA is equal to the mean of the per class precision, as
such we also report the mean of the per class recall, and the
harmonic mean of these mean precision and mean recall mea-
sures, also known as the F-score.

Additionally, we compare our results to those obtained by per-
forming multi-scale training as described in [20]. We implemented
multi-scale training using the same CNN architecture as used pre-
viously, and only varied the input data. Rather than blurring the



Table 3
Mean Class Accuracies for all possible scale combinations obtained with our ap-
proach, a ‘þ ’ indicates inclusion of the scale. In bold are the combinations which
lead to the best combined performance in each block. The best overall score is
underlined.

256 512 1024 2048 MCA Mean recall F-Score

þ 70.36 65.03 67.59
þ 75.69 69.7 72.57

þ 67.96 44.08 53.48
þ 62.03 38.54 47.55

þ þ 78.06 71.61 74.69
þ þ 75.92 67.65 71.54
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images before subsampling the images, we follow [20] and directly
subsample the images, as such the scales do not form a Gaussian
Pyramid. Because the highest scale is not blurred in either case
these results are identical, and are produced by the same network.

Furthermore, we report the pair-wise correlations between the
Class Accuracy (CA) for each artist for the four different scales for
both approaches. The pair-wise correlations between scales indicates
the similarity of the performance for individual artists at those two
scales. A high correlation indicates that the attributions of an artist
are largely the same at both scales, whereas a low correlation in-
dicates that the artworks of an artists are classified differently at the
two scales which suggests the relevance of scale-specific information.
þ þ 76.24 67.92 71.84
þ þ 79.15 67.71 72.98
þ þ 80.21 68.11 73.66

þ þ 71.41 45.4 55.51

þ þ þ 80.15 72.14 75.94
þ þ þ 80.87 72.47 76.44
þ þ þ 79.27 68.89 73.72

þ þ þ 80.95 65.9 72.66

þ þ þ þ 82.12 72.5 77.01

Table 4
Mean Class Accuracies, Mean recall and F-score for the four individual scales and
the ensemble of four scales using multi-scale training [20].

Scale MCA Mean recall F-Score

256 70.56 65.74 68.07
512 73.5 68.36 70.84
1024 65.63 57.96 61.56
2048 62.03 38.54 47.55
Ensemble 79.98 73.02 76.34

Table 5
Correlations between results per artist for each image scale.

256 512 1024 2048

256 1.00 0.56 0.27 0.18
512 0.56 1.00 0.44 0.29
1024 0.27 0.44 1.00 0.54
2048 0.18 0.29 0.54 1.00

Table 6
Correlations between results per artist for each image scale using multi-scale
training [20].

256 512 1024 2048

256 1.00 0.60 0.33 0.26
512 0.60 1.00 0.52 0.35
1024 0.33 0.52 1.00 0.40
2048 0.26 0.35 0.40 1.00
6. Results

The results of each individual scale-specific CNN of the multi-scale
CNN and the ensemble averages are reported in Table 2. The best-
performing single scale is 512. The ensemble-averaged score of the
multi-scale CNN outperforms each individual scale by far. As is evident
from Table 3, no combination of three or fewer scales outperforms the
multi-scale (four-scale) CNN. We report the results obtained by multi-
scale training [20] in Table 4. The results of all possible combinations of
these results are reported in Appendix Appendix A.

The MCA and mean recall obtained for the resolutions greater
than 512 decrease, this suggests that there is a ceiling in perfor-
mance and that further increasing the resolutionwould not help to
improve the performance. Yet, combining the predictions from
each scale in an ensemble results in a boost in performance. The
pair-wise correlations between scales as reported in Table 5 show
larger correlations for adjacent scales than for non-adjacent scales.
This pattern of correlations agrees with the causal connection of
adjacent scales. Additionally, we also report the correlations be-
tween the scales using multi-scale training (c.f. [20]) in Table 6. We
note that in general the correlations in the latter case are stronger
than the former, which shows that there is a greater performance
difference across artists between scales for our approach, which
indicates that the single-scale CNN for our approach learn a
greater variety of scale-variant features.

To provide some insight on artist-specific relevance of the four
different scales, Table 7 lists the top five artists with the least and
most variation between scales as determined by the standard de-
viation of their MCA across scales. From this table it can be observed
that there is a large variation between artists in terms of which scales
work well, where for some artists performance is highly scale-spe-
cific (a perfect performance is achieved on one scale and a com-
pletely flawed performance on another), and for others performance
does not depend on scale (the performance is stable across scales).

To illustrate the effect of resolution on the automatic detection
of artist-specific features, Guided Backpropagation [40] was used
to create visualisations of the artwork ‘Hoefsmid bij een ezel’ by Jan
de Visscher at the four scales. Fig. 7 shows the results of applying
Guided Backpropagation to the art work. The visualisations show
the areas in the input image that the network considers char-
acteristic of Jan de Visscher for that scale. A clear shift to finer
Table 2
Mean Class Accuracies, Mean recall and F-score for the four individual scales and
the ensemble of four scales for our approach.

Scale MCA Mean recall F-Score

256 70.36 65.03 67.59
512 75.69 69.70 72.57
1024 67.69 44.08 53.48
2048 62.03 38.54 47.55
Ensemble 82.11 72.50 77.01
details is observed when moving to higher resolutions.
As the multi-scale CNN produces a prediction vector for each

image we are able to calculate the similarity of the artworks in
terms of the distance in a high-dimensional space. Using t-SNE
[43] we visualise these distances in a two-dimensional space in
Fig. 8, the spatial distance indicates the similarity between images
at determined by the ensemble. The t-SNE visualisation of the
distances shows a clear clustering of similar artworks, in terms of
shape, colour, and content.

From these visualisations we can observe that the multi-scale
representation is able to express the similarities between artworks in
terms of both fine and coarse characteristics. Moreover, multi-scale
representation makes it possible to express the similarity between



Table 7
Overview of artists with the least and most variation between scales, and their
MCA per scale.

Artist 256 512 1024 2048

Top five artists with least variation between scales
Johannes Janson 66.67 65.12 67.74 65.22
Pieter de Mare 80.0 82.67 86.0 81.25
Jacobus Ludovicus Cornet 73.53 76.47 73.33 79.17
Cornelis van Dalen (II) 100.0 94.44 100.0 100.0
Lucas Vorsterman (I) 85.42 89.8 83.67 88.57

Top five artists with most variation between scales
Joannes van Doetechum (I) 100.0 100.0 0.0 0.0
Totoya Hokkei 100.0 0.0 0.0 0.0
Gerrit Groenewegen 88.89 100.0 100.0 0.0
Abraham Genoels 86.67 64.29 0.0 0.0
Charles Meryon 64.0 86.67 100.0 0.0
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artworks which are only similar on some scales (i.e., if only the fine,
or only the coarse characteristics are similar), as shown in Fig. 8.
7. Discussion

In this work we explored the effect of incorporating scale-var-
iance, as put forward by Gluckman [9], in CNN and how it can be
used to learn deep image representations that deal well with var-
iations in image resolution, object size, and image scale. The main
idea behind scale-variance is that decomposing an image in scale-
invariant components results in an incomplete representation of
the image, as a part of the image structure is not scale-invariant. As
stated in Section 1 Gluckman showed that image classification
performance can be improved by using the scale variant image
structure. This means that a good multi-scale image representations
is capable of capturing both the task-relevant scale-variant and
scale-invariant image structure. To this end we presented an ap-
proach for learning scale-variant and scale-invariant representa-
tions by means of an ensemble of scale-specific CNN. By allowing
each scale-specific CNN to learn the features which are relevant for
the task at that scale, regardless whether they are scale-invariant or
not, we are able to construct a multi-scale representation that
Fig. 7. Visualisations of the activations for the artwork ‘Hoefsmid bij een ezel’ by Jan de Vi
for correctly identifying the artist, the colours have been contrast enhanced for increase
reader is referred to the web version of this paper.)
captures both scale-variant and scale-invariant image features.
We demonstrated the effectiveness of our multi-scale CNN ap-

proach on an artist attribution task, onwhich it outperformed a single-
scale CNN and was superior to the state-of-the-art performance on the
attribution task. Furthermore, we show that the best performance is
achieved by combining all scales, exploiting the fact that scale-specific
attribution performance varies greatly for different artists.

Is a multi-scale approach really necessary? Our approach re-
quires multiple scale-specific CNNs, which may be combined into a
single more sophisticated CNN which acquires coarse- to fine-
grained features, using high resolution images. However, such a
network would have to be significantly deeper and more complex
than the network used in this paper. Which would increase the
computational cost for training and the amount of training data that
is needed beyond what is practically feasible at this time. Therefore,
we cannot rule out that a single sophisticated CNN may obtain a
similar performance as our multi-scale CNN. Moreover, we suspect
that such a network will struggle with coarse characteristics which
are very dissimilar when observed at a fine scale, but very similar
on a coarse scale, as the coarse scale analysis is conditioned on the
fine scale analysis. Therefore, we expect that a single very complex
CNN will not work as well as our multi-scale CNN.

Additionally, we compared our approach to Multi-scale training
[20] and showed that construction a Gaussian Pyramid of the in-
put increases performance and decreases the correlations between
scales. While constructing the Gaussian Pyramid increases the
computational load slightly, we believe that the reduced correla-
tions between scales implies that our approach is better at cap-
turing the scale variant characteristics, and is subsequently able to
leverage these for increased performance.

Compared to previously proposed CNN architectures that deal
with scale-variation, our approach requires many more model
parameters, as the parameters are not shared between the single-
scale CNN. However, we consider this a key attribute of the ap-
proach as it enables the model to learn scale-variant features, and
moreover, because the parameters are not shared the models can
be trained independently and in parallel. Despite this, a potential
downside of our approach is that we do not explicitly learn scale-
invariant features, while they might implicitly emerge from the
training procedure, future work on how to explicitly learn scale-
sscher at four scales. The activation shows the importance of the highlighted regions
d visibility. (For interpretation of the references to colour in this figure caption, the



Fig. 8. t-SNE plot of all artworks in the test set where spatial distance indicates the similarity as observed by the network. Zoomed excerpts shown of outlined areas,
illustrating examples of highly similar clusters.
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variant and scale-invariant features is needed.
We expect that the use of multi-scale CNNs will improve per-

formances on image recognition tasks that involve images with
both fine and coarse-grained task-relevant details. Examples of
such tasks are scene classification, aerial image analysis, and bio-
medical image analysis.
Table A1
Mean Class Accuracies for all possible scale combinations using the Mean-scale
training procedure described in [20], a ‘þ ’ indicates inclusion of the scale. In bold
are the combinations which lead to the best combined performance in each block.
The best overall score is underlined.

256 512 1024 2048 MCA Mean recall F-Score

þ 70.56 65.74 68.07
þ 73.5 68.36 70.84

þ 65.63 57.96 61.56
þ 62.03 38.54 47.55

þ þ 75.93 71.02 73.4
þ þ 75.13 70.2 72.58
þ þ 75.68 68.08 71.68

þ þ 74.8 68.51 71.51
8. Conclusion

There is a vast amount visual information to be gleaned from
multi-scale images in which both the coarse and the fine grained
details are represented. However, capturing all of this visual in-
formation in a deep image representation is non trivial. In this
paper we proposed an approach for learning scale-variant and
scale-invariant representations from high-resolution images. By
means of a multi-scale CNN architecture consisting of multiple
single-scale CNN, we exploit the strength of CNN in learning scale-
variant representations, and combine these over multiple scales to
encourage scale-invariance and improve performance. We de-
monstrate this by analysing the large amount of available details in
multi-scale images for a computational artist attribution task,
improving on the current state-of-the-art.

Moreover, we found that the representations at the various
scales differ both in performance and in image structure learnt,
and that they are complementary: averaging the class posteriors
across all scales leads to optimal performance. We conclude by
stating that encouraging the combined development of scale-in-
variant and scale-variant representations in CNNs is beneficial to
image recognition performance for tasks involving image structure
at varying scales and resolutions and merits further exploration.
þ þ 77.8 66.2 71.53
þ þ 68.7 54.69 60.9

þ þ þ 78.21 72.94 75.48
þ þ þ 79.16 71.95 75.38
þ þ þ 77.72 70.54 73.95

þ þ þ 77.04 66.65 71.47

þ þ þ þ 79.98 73.02 76.34
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