9 research outputs found

    Proceedings of the NASA Conference on Space Telerobotics, volume 4

    Get PDF
    Papers presented at the NASA Conference on Space Telerobotics are compiled. The theme of the conference was man-machine collaboration in space. The conference provided a forum for researchers and engineers to exchange ideas on the research and development required for the application of telerobotic technology to the space systems planned for the 1990's and beyond. Volume 4 contains papers related to the following subject areas: manipulator control; telemanipulation; flight experiments (systems and simulators); sensor-based planning; robot kinematics, dynamics, and control; robot task planning and assembly; and research activities at the NASA Langley Research Center

    Implementation of a force-reflecting telerobotic system with magnetically levitated master and wrist

    No full text
    Aspects of control and coordination of a new force-reflecting teleoperation system have been addressed in this thesis. A six-degree-of-freedom magnetically levitated fine-motion device is used as the teleoperation master. The slave system is a redundant coarse-fine manipulator system which consists of a conventional robot equipped with a magnetically levitated fine-motion wrist identical to the master. The environment and the human operator applied forces are measured by two six-axis force-torque sensors. Taking advantage of the Lorentz magnetic levitation technology, the system can eliminate mechanical problems such as friction and backlash, and is able to achieve high frequence response, precise positioning and excellent force-reflection quality. With using rate control for large motion and position control for small motion, the slave system can be controlled over a large workspace by the master without operator controlled indexing and without sacrificing position resolution. An overshoot problem due to time delay in the coarse manipulator position data has been solved by using decoupling coarse-fine control approach, in which the coarse manipulator is only responsible for rate control and the fine-motion wrist is responsible for position control. The system performance was quantified by performing general teleoperation tasks, such as free motion tracking, hard contact and exertion of forces. The teleoperation system has over 15Hz position bandwidth and several kHz force bandwidth. At present, the force bandwidth is limited by computation delays to a few hundredHz (this number will increase with a faster computing system).Applied Science, Faculty ofElectrical and Computer Engineering, Department ofGraduat

    ISMCR 1994: Topical Workshop on Virtual Reality. Proceedings of the Fourth International Symposium on Measurement and Control in Robotics

    Get PDF
    This symposium on measurement and control in robotics included sessions on: (1) rendering, including tactile perception and applied virtual reality; (2) applications in simulated medical procedures and telerobotics; (3) tracking sensors in a virtual environment; (4) displays for virtual reality applications; (5) sensory feedback including a virtual environment application with partial gravity simulation; and (6) applications in education, entertainment, technical writing, and animation

    The 21st Aerospace Mechanisms Symposium

    Get PDF
    During the symposium technical topics addressed included deployable structures, electromagnetic devices, tribology, actuators, latching devices, positioning mechanisms, robotic manipulators, and automated mechanisms synthesis. A summary of the 20th Aerospace Mechanisms Symposium panel discussions is included as an appendix. However, panel discussions on robotics for space and large space structures which were held are not presented herein

    Emulation of haptic feedback for manual interfaces

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1996.Includes bibliographical references (p. 329-339).by Karon E. MacLean.Ph.D

    Cumulative index to NASA Tech Briefs, 1986-1990, volumes 10-14

    Get PDF
    Tech Briefs are short announcements of new technology derived from the R&D activities of the National Aeronautics and Space Administration. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This cumulative index of Tech Briefs contains abstracts and four indexes (subject, personal author, originating center, and Tech Brief number) and covers the period 1986 to 1990. The abstract section is organized by the following subject categories: electronic components and circuits, electronic systems, physical sciences, materials, computer programs, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    NASA SBIR abstracts of 1992, phase 1 projects

    Get PDF
    The objectives of 346 projects placed under contract by the Small Business Innovation Research (SBIR) program of the National Aeronautics and Space Administration (NASA) are described. These projects were selected competitively from among proposals submitted to NASA in response to the 1992 SBIR Program Solicitation. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 346, in order of its appearance in the body of the report. Appendixes to provide additional information about the SBIR program and permit cross-reference of the 1992 Phase 1 projects by company name, location by state, principal investigator, NASA Field Center responsible for management of each project, and NASA contract number are included

    Coping with Algebraic Constraints in Power Networks

    Get PDF
    In the intuitive modelling of the power network, the generators and the loads are located at different subset of nodes. This corresponds to the so-called structure preserving model which is naturally expressed in terms of differential algebraic equations (DAE). The algebraic constraints in the structure preserving model are associated with the load dynamics. Motivated by the fact the presence of the algebraic constraints hinders the analysis and control of power networks, several aggregated models are reported in the literature where each bus of the grid is associated with certain load and generation. The advantage of these aggregated models is mainly due to the fact that they are described by ordinary differential equations (ODE) which facilitates the analysis of the network. However, the explicit relationship between the aggregated model and the original structure preserved model is often missing, which restricts the validity and applicability of the results. Aiming at simplified ODE description of the model together with respecting the heterogenous structure of the power network has endorsed the use of Kron reduced models; see e.g. [2]. In the Kron reduction method, the variables which are exclusive to the algebraic constraints are solved in terms of the rest of the variables. This results in a reduced graph, the (loopy) Laplaican matrix of which is the Schur complement of the (loopy) Laplacian matrix of the original graph. By construction, the Kron reduction technique restricts the class of the applicable load dynamics to linear loads. The algebraic constraints can also be solved in the case of frequency dependent loads where the active power drawn by each load consists of a constant term and a frequencydependent term [1],[3]. However, in the popular class of constant power loads, the algebraic constraints are “proper”, meaning that they are not explicitly solvable. In this talk, first we revisit the Kron reduction method for the linear case, where the Schur complement of the Laplacian matrix (which is again a Laplacian) naturally appears in the network dynamics. It turns out that the usual decomposition of the reduced Laplacian matrix leads to a state space realization which contains merely partial information of the original power network, and the frequency behavior of the loads is not visible. As a remedy for this problem, we introduce a new matrix, namely the projected pseudo incidence matrix, which yields a novel decomposition of the reduced Laplacian. Then, we derive reduced order models capturing the behavior of the original structure preserved model. Next, we turn our attention to the nonlinear case where the algebraic constraints are not readily solvable. Again by the use of the projected pseudo incidence matrix, we propose explicit reduced models expressed in terms of ordinary differential equations. We identify the loads embedded in the proposed reduced network by unveiling the conserved quantity of the system

    Proceedings of the 6th Annual Summer Conference: NASA/USRA University Advanced Design Program

    Get PDF
    The NASA/USRA University Advanced Design Program is a unique program that brings together NASA engineers, students, and faculty from United States engineering schools by integrating current and future NASA space/aeronautics engineering design projects into the university curriculum. The Program was conceived in the fall of 1984 as a pilot project to foster engineering design education in the universities and to supplement NASA's in-house efforts in advanced planning for space and aeronautics design. Nine universities and five NASA centers participated in the first year of the pilot project. The study topics cover a broad range of potential space and aeronautics projects that could be undertaken during a 20 to 30 year period beginning with the deployment of the Space Station Freedom scheduled for the mid-1990s. Both manned and unmanned endeavors are embraced, and the systems approach to the design problem is emphasized
    corecore