20,075 research outputs found

    Generative deep fields : arbitrarily sized, random synthetic astronomical images through deep learning

    Get PDF
    © 2019 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society.Generative Adversarial Networks (GANs) are a class of artificial neural network that can produce realistic, but artificial, images that resemble those in a training set. In typical GAN architectures these images are small, but a variant known as Spatial-GANs (SGANs) can generate arbitrarily large images, provided training images exhibit some level of periodicity. Deep extragalactic imaging surveys meet this criteria due to the cosmological tenet of isotropy. Here we train an SGAN to generate images resembling the iconic Hubble Space Telescope eXtreme Deep Field (XDF). We show that the properties of 'galaxies' in generated images have a high level of fidelity with galaxies in the real XDF in terms of abundance, morphology, magnitude distributions and colours. As a demonstration we have generated a 7.6-billion pixel 'generative deep field' spanning 1.45 degrees. The technique can be generalised to any appropriate imaging training set, offering a new purely data-driven approach for producing realistic mock surveys and synthetic data at scale, in astrophysics and beyond.Peer reviewe

    TextGAIL: Generative Adversarial Imitation Learning for Text Generation

    Full text link
    Generative Adversarial Networks (GANs) for text generation have recently received many criticisms, as they perform worse than their MLE counterparts. We suspect previous text GANs' inferior performance is due to the lack of a reliable guiding signal in their discriminators. To address this problem, we propose a generative adversarial imitation learning framework for text generation that uses large pre-trained language models to provide more reliable reward guidance. Our approach uses contrastive discriminator, and proximal policy optimization (PPO) to stabilize and improve text generation performance. For evaluation, we conduct experiments on a diverse set of unconditional and conditional text generation tasks. Experimental results show that TextGAIL achieves better performance in terms of both quality and diversity than the MLE baseline. We also validate our intuition that TextGAIL's discriminator demonstrates the capability of providing reasonable rewards with an additional task.Comment: AAAI 202

    Segatron: Segment-Aware Transformer for Language Modeling and Understanding

    Full text link
    Transformers are powerful for sequence modeling. Nearly all state-of-the-art language models and pre-trained language models are based on the Transformer architecture. However, it distinguishes sequential tokens only with the token position index. We hypothesize that better contextual representations can be generated from the Transformer with richer positional information. To verify this, we propose a segment-aware Transformer (Segatron), by replacing the original token position encoding with a combined position encoding of paragraph, sentence, and token. We first introduce the segment-aware mechanism to Transformer-XL, which is a popular Transformer-based language model with memory extension and relative position encoding. We find that our method can further improve the Transformer-XL base model and large model, achieving 17.1 perplexity on the WikiText-103 dataset. We further investigate the pre-training masked language modeling task with Segatron. Experimental results show that BERT pre-trained with Segatron (SegaBERT) can outperform BERT with vanilla Transformer on various NLP tasks, and outperforms RoBERTa on zero-shot sentence representation learning.Comment: Accepted by AAAI 202

    Variance Loss in Variational Autoencoders

    Get PDF
    In this article, we highlight what appears to be major issue of Variational Autoencoders, evinced from an extensive experimentation with different network architectures and datasets: the variance of generated data is significantly lower than that of training data. Since generative models are usually evaluated with metrics such as the Frechet Inception Distance (FID) that compare the distributions of (features of) real versus generated images, the variance loss typically results in degraded scores. This problem is particularly relevant in a two stage setting, where we use a second VAE to sample in the latent space of the first VAE. The minor variance creates a mismatch between the actual distribution of latent variables and those generated by the second VAE, that hinders the beneficial effects of the second stage. Renormalizing the output of the second VAE towards the expected normal spherical distribution, we obtain a sudden burst in the quality of generated samples, as also testified in terms of FID.Comment: Article accepted at the Sixth International Conference on Machine Learning, Optimization, and Data Science. July 19-23, 2020 - Certosa di Pontignano, Siena, Ital
    corecore