4,860 research outputs found

    Boosted Random ferns for object detection

    Get PDF
    © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In this paper we introduce the Boosted Random Ferns (BRFs) to rapidly build discriminative classifiers for learning and detecting object categories. At the core of our approach we use standard random ferns, but we introduce four main innovations that let us bring ferns from an instance to a category level, and still retain efficiency. First, we define binary features on the histogram of oriented gradients-domain (as opposed to intensity-), allowing for a better representation of intra-class variability. Second, both the positions where ferns are evaluated within the sliding window, and the location of the binary features for each fern are not chosen completely at random, but instead we use a boosting strategy to pick the most discriminative combination of them. This is further enhanced by our third contribution, that is to adapt the boosting strategy to enable sharing of binary features among different ferns, yielding high recognition rates at a low computational cost. And finally, we show that training can be performed online, for sequentially arriving images. Overall, the resulting classifier can be very efficiently trained, densely evaluated for all image locations in about 0.1 seconds, and provides detection rates similar to competing approaches that require expensive and significantly slower processing times. We demonstrate the effectiveness of our approach by thorough experimentation in publicly available datasets in which we compare against state-of-the-art, and for tasks of both 2D detection and 3D multi-view estimation.Peer ReviewedPostprint (author's final draft

    No Spare Parts: Sharing Part Detectors for Image Categorization

    Get PDF
    This work aims for image categorization using a representation of distinctive parts. Different from existing part-based work, we argue that parts are naturally shared between image categories and should be modeled as such. We motivate our approach with a quantitative and qualitative analysis by backtracking where selected parts come from. Our analysis shows that in addition to the category parts defining the class, the parts coming from the background context and parts from other image categories improve categorization performance. Part selection should not be done separately for each category, but instead be shared and optimized over all categories. To incorporate part sharing between categories, we present an algorithm based on AdaBoost to jointly optimize part sharing and selection, as well as fusion with the global image representation. We achieve results competitive to the state-of-the-art on object, scene, and action categories, further improving over deep convolutional neural networks

    CRF Learning with CNN Features for Image Segmentation

    Full text link
    Conditional Random Rields (CRF) have been widely applied in image segmentations. While most studies rely on hand-crafted features, we here propose to exploit a pre-trained large convolutional neural network (CNN) to generate deep features for CRF learning. The deep CNN is trained on the ImageNet dataset and transferred to image segmentations here for constructing potentials of superpixels. Then the CRF parameters are learnt using a structured support vector machine (SSVM). To fully exploit context information in inference, we construct spatially related co-occurrence pairwise potentials and incorporate them into the energy function. This prefers labelling of object pairs that frequently co-occur in a certain spatial layout and at the same time avoids implausible labellings during the inference. Extensive experiments on binary and multi-class segmentation benchmarks demonstrate the promise of the proposed method. We thus provide new baselines for the segmentation performance on the Weizmann horse, Graz-02, MSRC-21, Stanford Background and PASCAL VOC 2011 datasets
    • …
    corecore