1,100 research outputs found

    Digital Factory – Theory and Practice

    Get PDF

    Leveraging Conflicting Constraints in Solving Vehicle Routing Problems

    Get PDF
    The Conflict-Free Electric Vehicle Routing Problem (CF-EVRP) is a combinatorial optimization problem of designing routes for vehicles to visit customers such that a cost function, typically the number of vehicles or the total travelled distance, is minimized. The CF-EVRP involves constraints such as time windows on the delivery to the customers, limited operating range of the vehicles, and limited capacity on the number of vehicles that a road segment can simultaneously accommodate.In previous work, the compositional algorithm ComSat was introduced and that solves the CF-EVRP by breaking it down into sub-problems and iteratively solve them to build an overall solution.Though ComSat showed good performance in general, some problems took significant time to solve due to the high number of iterations required to find solutions that satisfy the road segments\u27 capacity constraints. The bottleneck is the Paths Changing Problem, i.e., the sub-problem of finding a new set of shortest paths to connect a subset of the customers, disregarding previously found shortest paths. This paper presents an improved version of the PathsChanger function to solve the Paths Changing Problem that exploits the unsatisfiable core, i.e., information on which constraints conflict, to guide the search for feasible solutions. Experiments show faster convergence to feasible solutions compared to the previous version of PathsChanger

    Special Session on Industry 4.0

    Get PDF
    No abstract available

    An efficient genetic algorithm for large-scale planning of robust industrial wireless networks

    Get PDF
    An industrial indoor environment is harsh for wireless communications compared to an office environment, because the prevalent metal easily causes shadowing effects and affects the availability of an industrial wireless local area network (IWLAN). On the one hand, it is costly, time-consuming, and ineffective to perform trial-and-error manual deployment of wireless nodes. On the other hand, the existing wireless planning tools only focus on office environments such that it is hard to plan IWLANs due to the larger problem size and the deployed IWLANs are vulnerable to prevalent shadowing effects in harsh industrial indoor environments. To fill this gap, this paper proposes an overdimensioning model and a genetic algorithm based over-dimensioning (GAOD) algorithm for deploying large-scale robust IWLANs. As a progress beyond the state-of-the-art wireless planning, two full coverage layers are created. The second coverage layer serves as redundancy in case of shadowing. Meanwhile, the deployment cost is reduced by minimizing the number of access points (APs); the hard constraint of minimal inter-AP spatial paration avoids multiple APs covering the same area to be simultaneously shadowed by the same obstacle. The computation time and occupied memory are dedicatedly considered in the design of GAOD for large-scale optimization. A greedy heuristic based over-dimensioning (GHOD) algorithm and a random OD algorithm are taken as benchmarks. In two vehicle manufacturers with a small and large indoor environment, GAOD outperformed GHOD with up to 20% less APs, while GHOD outputted up to 25% less APs than a random OD algorithm. Furthermore, the effectiveness of this model and GAOD was experimentally validated with a real deployment system

    A hormone regulation based approach for distributed and on-line scheduling of machines and automated guided vehicles

    Full text link
    [EN] With the continuous innovation of technology, automated guided vehicles are playing an increasingly important role on manufacturing systems. Both the scheduling of operations on machines as well as the scheduling of automated guided vehicles are essential factors contributing to the efficiency of the overall manufacturing systems. In this article, a hormone regulationÂżbased approach for on-line scheduling of machines and automated guided vehicles within a distributed system is proposed. In a real-time environment, the proposed approach assigns emergent tasks and generates feasible schedules implementing a task allocation approach based on hormonal regulation mechanism. This approach is tested on two scheduling problems in literatures. The results from the evaluation show that the proposed approach improves the scheduling quality compared with state-of-the-art on-line and off-line approaches.The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This research was sponsored by the National Natural Science Foundation of China (NSFC) under grant nos 51175262 and 51575264 and the Jiangsu Province Science Foundation for Excellent Youths under grant no. BK2012032. This research was also sponsored by the CASES project which was supported by a Marie Curie International Research Staff Exchange Scheme Fellowship within the 7th European Community Framework Programme under grant agreement no. 294931.Zheng, K.; Tang, D.; Giret Boggino, AS.; Salido, MA.; Sang, Z. (2016). A hormone regulation based approach for distributed and on-line scheduling of machines and automated guided vehicles. Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture. 232(1):99-113. https://doi.org/10.1177/0954405416662078S99113232

    Towards AGV Optimization using ROS and Stage Simulator

    Get PDF
    Autonomous Guided Vehicles (AGV) are currently being used in industry to move materials efficiently. Simulators may be used to help calculate the right number of AGVs needed for a particular task and also which types better suit the necessity of a company. This paper analyzes the characteristics of many of the most used simulators and focus on evaluating an environment using Stage and Robot Operating System (ROS), to find experimentally if one AGV may complete a specific task taking into account eventual path blockages by random events.info:eu-repo/semantics/publishedVersio
    • …
    corecore