17 research outputs found

    A guide to wireless networking by light

    Get PDF
    The lack of wireless spectrum in the radio frequency bands has led to a rapid growth in research in wireless networking using light, known as LiFi (light fidelity). In this paper an overview of the subsystems, challenges and techniques required to achieve this is presented

    Bidirectional Neural Interface Circuits with On-Chip Stimulation Artifact Reduction Schemes

    Full text link
    Bidirectional neural interfaces are tools designed to “communicate” with the brain via recording and modulation of neuronal activity. The bidirectional interface systems have been adopted for many applications. Neuroscientists employ them to map neuronal circuits through precise stimulation and recording. Medical doctors deploy them as adaptable medical devices which control therapeutic stimulation parameters based on monitoring real-time neural activity. Brain-machine-interface (BMI) researchers use neural interfaces to bypass the nervous system and directly control neuroprosthetics or brain-computer-interface (BCI) spellers. In bidirectional interfaces, the implantable transducers as well as the corresponding electronic circuits and systems face several challenges. A high channel count, low power consumption, and reduced system size are desirable for potential chronic deployment and wider applicability. Moreover, a neural interface designed for robust closed-loop operation requires the mitigation of stimulation artifacts which corrupt the recorded signals. This dissertation introduces several techniques targeting low power consumption, small size, and reduction of stimulation artifacts. These techniques are implemented for extracellular electrophysiological recording and two stimulation modalities: direct current stimulation for closed-loop control of seizure detection/quench and optical stimulation for optogenetic studies. While the two modalities differ in their mechanisms, hardware implementation, and applications, they share many crucial system-level challenges. The first method aims at solving the critical issue of stimulation artifacts saturating the preamplifier in the recording front-end. To prevent saturation, a novel mixed-signal stimulation artifact cancellation circuit is devised to subtract the artifact before amplification and maintain the standard input range of a power-hungry preamplifier. Additional novel techniques have been also implemented to lower the noise and power consumption. A common average referencing (CAR) front-end circuit eliminates the cross-channel common mode noise by averaging and subtracting it in analog domain. A range-adapting SAR ADC saves additional power by eliminating unnecessary conversion cycles when the input signal is small. Measurements of an integrated circuit (IC) prototype demonstrate the attenuation of stimulation artifacts by up to 42 dB and cross-channel noise suppression by up to 39.8 dB. The power consumption per channel is maintained at 330 nW, while the area per channel is only 0.17 mm2. The second system implements a compact headstage for closed-loop optogenetic stimulation and electrophysiological recording. This design targets a miniaturized form factor, high channel count, and high-precision stimulation control suitable for rodent in-vivo optogenetic studies. Monolithically integrated optoelectrodes (which include 12 µLEDs for optical stimulation and 12 electrical recording sites) are combined with an off-the-shelf recording IC and a custom-designed high-precision LED driver. 32 recording and 12 stimulation channels can be individually accessed and controlled on a small headstage with dimensions of 2.16 x 2.38 x 0.35 cm and mass of 1.9 g. A third system prototype improves the optogenetic headstage prototype by furthering system integration and improving power efficiency facilitating wireless operation. The custom application-specific integrated circuit (ASIC) combines recording and stimulation channels with a power management unit, allowing the system to be powered by an ultra-light Li-ion battery. Additionally, the µLED drivers include a high-resolution arbitrary waveform generation mode for shaping of µLED current pulses to preemptively reduce artifacts. A prototype IC occupies 7.66 mm2, consumes 3.04 mW under typical operating conditions, and the optical pulse shaping scheme can attenuate stimulation artifacts by up to 3x with a Gaussian-rise pulse rise time under 1 ms.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147674/1/mendrela_1.pd

    Characterizing and Utilizing the Interplay between Quantum Technologies and Non-Terrestrial Networks

    Get PDF
    Quantum technologies have been widely recognized as one of the milestones towards the ongoing digital transformation, which will also trigger new disruptive innovations. Quantum technologies encompassing quantum computing, communications, and sensing offer an interesting set of advantages such as unconditional security and ultra-fast computing capabilities. However, deploying quantum services at a global scale requires circumventing the limitations due to the geographical boundaries and terrestrial obstacles, which can be adequately addressed by considering non-terrestrial networks (NTNs). In the recent few years, establishing multi-layer NTNs has been extensively studied to integrate space-airborne-terrestrial communications systems, particularly by the international standardization organizations such as the third-generation partnership project (3GPP) and the international telecommunication union (ITU), in order to support future wireless ecosystems. Indeed, amalgamating quantum technologies and NTNs will scale up the quantum communications ranges and provide unprecedented levels of security and processing solutions that are safer and faster than the traditional offerings. This paper provides some insights into the interplay between the evolving NTN architectures and quantum technologies with a particular focus on the integration challenges and their potential solutions for enhancing the quantum-NTN interoperability among various space-air-ground communications nodes. The emphasis is on how the quantum technologies can benefit from satellites and aerial platforms as an integrated network and vice versa. Moreover, a set of future research directions and new opportunities are identified

    Hybrid Free-Space Optical and Visible Light Communication Link

    Get PDF
    V součastnosti bezdrátové optické komunikace (optical wireless communication, OWC) získávají širokou pozornost jako vhodný doplněk ke komunikačním přenosům v rádiovém pásmu. OWC nabízejí několik výhod včetně větší šířky přenosového pásma, neregulovaného frekvenčního pásma či odolnosti vůči elektromagnetickému rušení. Tato práce se zabývá návrhem OWC systémů pro připojení koncových uživatelů. Samotná realizace spojení může být provedena za pomoci různých variant bezdrátových technologií, například pomocí OWC, kombinací různých OWC technologií nebo hybridním rádio-optickým spojem. Za účelem propojení tzv. poslední míle je analyzován optický bezvláknový spoj (free space optics, FSO). Tato práce se dále zabývá analýzou přenosových vlastností celo-optického více skokového spoje s důrazem na vliv atmosférických podmínek. V dnešní době mnoho uživatelů tráví čas ve vnitřních prostorech kanceláří či doma, kde komunikace ve viditelném spektru (visible light communication, VLC) poskytuje lepší přenosové parametry pokrytí než úzce směrové FSO. V rámci této práce byla odvozena a experimentálně ověřena závislost pro bitovou chybovost přesměrovaného (relaying) spoje ve VLC. Pro propojení poskytovatele datavých služeb s koncovým uživatelem může být výhodné zkombinovat více přenosových technologií. Proto je navržen a analyzovám systém pro překonání tzv. problému poslední míle a posledního metru kombinující hybridní FSO a VLC technologie.The field of optical wireless communications (OWC) has recently attracted significant attention as a complementary technology to radio frequency (RF). OWC systems offer several advantages including higher bandwidth, an unregulated spectrum, resistance to electromagnetic interference and a high order of reusability. The thesis focuses on the deployment and analyses of end-user interconnections using the OWC systems. Interconnection can be established by many wireless technologies, for instance, by a single OWC technology, a combination of OWC technologies, or by hybrid OWC/RF links. In order to establish last mile outdoor interconnection, a free-space optical (FSO) has to be investigated. In this thesis, the performance of all-optical multi-hop scenarios is analyzed under atmospheric conditions. However, nowadays, many end users spend much time in indoor environments where visible light communication (VLC) technology can provide better transmission parameters and, significantly, better coverage. An analytical description of bit error rate for relaying VLC schemes is derived and experimentally verified. Nonetheless, for the last mile, interconnection of a provider and end users (joint outdoor and indoor connection) can be advantageous when combining multiple technologies. Therefore, a hybrid FSO/VLC system is proposed and analyzed for the interconnection of the last mile and last meter bottleneck

    Nitric oxide an pH measurement with AlGaN/GaN based ISFETs

    Get PDF
    This thesis deals with the optimization of aluminum-gallium nitride/gallium nitride (AlGaN/GaN) ion sensitive field effect transistors (ISFETs), including the material parameters associated with fabrication, and the implementation of these optimized sensors for the detection of nitric oxide (NO), specifically aimed at biological detection. As the sensors will be used in fluidic environments, requirements regarding the chemical and mechanical stability of passivation can be quite demanding. It was demonstrated that polyimide exhibits the best passivation properties for these transistors in comparison to the well-known ‘hard passivation’ materials Si3N4 or SiO2. In order to employ polyimide as the insulation, a unique ECR (Electron Cyclotron Resonance) plasma process was developed to enable patterning while protecting the active sensor area of each of the AlGaN/GaN devices. This active area is the so-called two-dimensional electron gas (2DEG), which is spontaneously formed between AlGaN and GaN. The ECR plasma step delivers the essential anisotropic polyimide etching to insulate each ISFET with no measureable damage to the 2DEG. Furthermore, it was demonstrated that a contamination free surface was attained through the use of this fabrication process, providing good device functionality from the initial measurement-state of the ISFET, without the need of the additional cleaning procedures. A number of new technological processes were developed involving AlGaN/GaN ISFET gate area functionalization to enable NO measurement. A complete analysis of the sensor performance based on these functionalization methods showed tungsten trioxide and graphene functionalization techniques to be the most useful and compatible. These experiments also verify NO sensitivity in the presence of known interfering substances. Additionally, the possibility to make simultaneous pH and NO measurements was demonstrated via a suitable reduction of pH sensitivity of the functionalized transistors. Preliminary biocompatibility tests were demonstrated using L929 (mouse fibroblast) cells. Finally, a miniaturized AlGaN/GaN ISFET array was developed. A sensor size reduction and pitch size of 10 µm x 10 µm and 100 µm x 100 µm, respectively, was employed to improve precision for in vitro cell culture or tissue related experiments. With both the large-scale devices, as well as those miniaturized for the ISFET array, sensitivities of up to 57.0 mV/pH (values extremely near the theoretical Nernstian limit of 58.2 mV/pH at 20 °C) could be achieved. By combining the sensors with this achieved pH sensitivity and the NO sensors in the small-scale ISFET arrays, future work could enable simultaneous NO and pH measurement on a single chip across a local gradient in physiological applications.Diese Arbeit befasst sich mit der Optimierung von Aluminium-Gallium-Nitrid/Gallium-Nitrid (AlGaN/GaN) -Ionen-sensitiven-Feldeffekttransistoren (ISFETs), einschließlich der zur Prozessierung notwendigen Materialparameter, so wie die Implementierung dieser optimierten Sensoren zur Detektion von Stichstoffmonoxid (NO), im Speziellen für biologische Anwendungen. Durch den angestrebten Einsatz der Transistoren in Flüssigkeiten werden an die chemische und mechanische Stabilität der Passivierung hohe Anforderungen gestellt. Im Vergleich mit den bekannten 'harten' Passivierungsmaterialien wie Si3N4 oder SiO2 konnte gezeigt werden, dass Polyimid die besten Isolationseigenschaften aufweist. Um Polyimid als Passivierung einzusetzen, musste aber ein neuartiger ECR (Electron Cyclotron Resonance) Plasmaprozess entwickelt werden, der einerseits die AlGaN/GaN-Elemente strukturiert und gleichzeitig den aktiven Sensorbereich schützt. Dabei handelt es sich um das sogenannte zweidimensionale Elektronengas (2DEG), das sich spontan zwischen der AlGaN- und GaN-Schicht ausbildet. Der ECR Plasmaschritt ermöglicht das notwendige anisotrope Ätzen zur Isolierung der ISFETs gegeneinander ohne eine messbare Degeneration des 2DEG. Dieser Prozess hinterlässt eine kontaminationsfreie Oberfläche und somit sofort messbare ISFETs, was vorher benötigte Reinigungsschritte überflüssig macht. Um die Detektion von NO zu erlauben, wurde eine Reihe neuer technologischer Prozesse entwickelt, wie etwa die entsprechende Gate-Funktionalisierung der AlGaN/GaN-ISFETs. Wolframtrioxid und Graphen stellten sich bei der vollständigen Analyse des Sensorverhaltens als die Besten der untersuchten Funktionalisierungen heraus. Beim Nachweis der NO-Sensitivität gegenüber bekannten störenden Substanzen, konnte über die Verringerung der pH-Sensitivität des funktionalisierten Transistors, eine gleichzeitige Messung des pH-Wertes und NO durchgeführt werden. Mit Hilfe von L929-Zellen (Maus-Fibroblasten) wurden darüber hinaus die ersten Tests zur Biokompatibilität des Systems durchgeführt. Um die Genauigkeit für in vitro Zellkulturen oder Gewebe-basierte Experimente zu erhöhen, wurde ein miniaturisiertes AlGaN/GaN-ISFET-Array entwickelt, mit einer Miniaturisierung und einem Pitch von 10 mm x 10 mm bzw. 100 mm x 100 mm. Mit einzelnen Sensoren wie auch den miniaturisierten Arrays kann eine Sensitivität von bis zu 57.0 mV/pH (nahe am theoretischen Nernst'schen Verhalten mit 58.2 mV/pH bei 20 °C) erreicht werden. Die Kombination von miniaturisierten Arrays und der Verringerung der pH-Sensitivität könnte in zukünftigen Arbeiten eine simultane NO- sowie pH-Messung auf einem Chip über einen lokalen Gradienten physiologischer Anwendungen ermöglichen

    The Modifications of Metallic and Inorganic Materials by Using Energetic Ion/Electron Beams

    Get PDF
    This book consists of original and review papers which describe basic and applied studies for the modifications of metallic and inorganic materials by using energetic ion/electron beams. When materials are irradiated with energetic charged particles (ions /electrons), their energies are transferred to electrons and atoms in materials, and the lattice structures of the materials are largely changed to metastable or non-thermal-equilibrium states, modifying several physical properties. Such phenomena will engage the interest of researchers as a basic science, and can also be used as promising tools for adding new functionalities to existing materials and for the development of novel materials. The papers in this book cover the ion/electron-beam-induced modifications of several properties (optical, electronic, magnetic, mechanical, and chemical properties) and lattice structures. This book will, therefore, be useful for many scientists and engineers who have been involved in fundamental material science and the industrial applications of metallic and inorganic materials

    Materials Science and Technology

    Get PDF
    Materials are important to mankind because of the benefits that can be derived from the manipulation of their properties, for example electrical conductivity, dielectric constant, magnetization, optical transmittance, strength and toughness. Materials science is a broad field and can be considered to be an interdisciplinary area. Included within it are the studies of the structure and properties of any material, the creation of new types of materials, and the manipulation of a material's properties to suit the needs of a specific application. The contributors of the chapters in this book have various areas of expertise. therefore this book is interdisciplinary and is written for readers with backgrounds in physical science. The book consists of fourteen chapters that have been divided into four sections. Section one includes five chapters on advanced materials and processing. Section two includes two chapters on bio-materials which deal with the preparation and modification of new types of bio-materials. Section three consists of three chapters on nanomaterials, specifically the study of carbon nanotubes, nano-machining, and nanoparticles. Section four includes four chapters on optical materials
    corecore