1,956 research outputs found

    Socializing the Semantic Gap: A Comparative Survey on Image Tag Assignment, Refinement and Retrieval

    Get PDF
    Where previous reviews on content-based image retrieval emphasize on what can be seen in an image to bridge the semantic gap, this survey considers what people tag about an image. A comprehensive treatise of three closely linked problems, i.e., image tag assignment, refinement, and tag-based image retrieval is presented. While existing works vary in terms of their targeted tasks and methodology, they rely on the key functionality of tag relevance, i.e. estimating the relevance of a specific tag with respect to the visual content of a given image and its social context. By analyzing what information a specific method exploits to construct its tag relevance function and how such information is exploited, this paper introduces a taxonomy to structure the growing literature, understand the ingredients of the main works, clarify their connections and difference, and recognize their merits and limitations. For a head-to-head comparison between the state-of-the-art, a new experimental protocol is presented, with training sets containing 10k, 100k and 1m images and an evaluation on three test sets, contributed by various research groups. Eleven representative works are implemented and evaluated. Putting all this together, the survey aims to provide an overview of the past and foster progress for the near future.Comment: to appear in ACM Computing Survey

    Tissue-specific network-based genome wide study of amygdala imaging phenotypes to identify functional interaction modules

    Get PDF
    Motivation: Network-based genome-wide association studies (GWAS) aim to identify functional modules from biological networks that are enriched by top GWAS findings. Although gene functions are relevant to tissue context, most existing methods analyze tissue-free networks without reflecting phenotypic specificity. Results: We propose a novel module identification framework for imaging genetic studies using the tissue-specific functional interaction network. Our method includes three steps: (i) re-prioritize imaging GWAS findings by applying machine learning methods to incorporate network topological information and enhance the connectivity among top genes; (ii) detect densely connected modules based on interactions among top re-prioritized genes; and (iii) identify phenotype-relevant modules enriched by top GWAS findings. We demonstrate our method on the GWAS of [18F]FDG-PET measures in the amygdala region using the imaging genetic data from the Alzheimer's Disease Neuroimaging Initiative, and map the GWAS results onto the amygdala-specific functional interaction network. The proposed network-based GWAS method can effectively detect densely connected modules enriched by top GWAS findings. Tissue-specific functional network can provide precise context to help explore the collective effects of genes with biologically meaningful interactions specific to the studied phenotype

    Partially-supervised protein subclass discovery with simultaneous annotation of functional residues

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The study of functional subfamilies of protein domain families and the identification of the residues which determine substrate specificity is an important question in the analysis of protein domains. One way to address this question is the use of clustering methods for protein sequence data and approaches to predict functional residues based on such clusterings. The locations of putative functional residues in known protein structures provide insights into how different substrate specificities are reflected on the protein structure level.</p> <p>Results</p> <p>We have developed an extension of the <it>context-specific independence </it>mixture model clustering framework which allows for the integration of experimental data. As these are usually known only for a few proteins, our algorithm implements a partially-supervised learning approach. We discover domain subfamilies and predict functional residues for four protein domain families: phosphatases, pyridoxal dependent decarboxylases, WW and SH3 domains to demonstrate the usefulness of our approach.</p> <p>Conclusion</p> <p>The partially-supervised clustering revealed biologically meaningful subfamilies even for highly heterogeneous domains and the predicted functional residues provide insights into the basis of the different substrate specificities.</p

    Learning Hypergraph-regularized Attribute Predictors

    Full text link
    We present a novel attribute learning framework named Hypergraph-based Attribute Predictor (HAP). In HAP, a hypergraph is leveraged to depict the attribute relations in the data. Then the attribute prediction problem is casted as a regularized hypergraph cut problem in which HAP jointly learns a collection of attribute projections from the feature space to a hypergraph embedding space aligned with the attribute space. The learned projections directly act as attribute classifiers (linear and kernelized). This formulation leads to a very efficient approach. By considering our model as a multi-graph cut task, our framework can flexibly incorporate other available information, in particular class label. We apply our approach to attribute prediction, Zero-shot and NN-shot learning tasks. The results on AWA, USAA and CUB databases demonstrate the value of our methods in comparison with the state-of-the-art approaches.Comment: This is an attribute learning paper accepted by CVPR 201

    Image Understanding by Socializing the Semantic Gap

    Get PDF
    Several technological developments like the Internet, mobile devices and Social Networks have spurred the sharing of images in unprecedented volumes, making tagging and commenting a common habit. Despite the recent progress in image analysis, the problem of Semantic Gap still hinders machines in fully understand the rich semantic of a shared photo. In this book, we tackle this problem by exploiting social network contributions. A comprehensive treatise of three linked problems on image annotation is presented, with a novel experimental protocol used to test eleven state-of-the-art methods. Three novel approaches to annotate, under stand the sentiment and predict the popularity of an image are presented. We conclude with the many challenges and opportunities ahead for the multimedia community

    Active query process for digital video surveillance forensic applications

    Get PDF
    Multimedia forensics is a new emerging discipline regarding the analysis and exploitation of digital data as support for investigation to extract probative elements. Among them, visual data about people and people activities, extracted from videos in an efficient way, are becoming day by day more appealing for forensics, due to the availability of large video-surveillance footage. Thus, many research studies and prototypes investigate the analysis of soft biometrics data, such as people appearance and people trajectories. In this work, we propose new solutions for querying and retrieving visual data in an interactive and active fashion for soft biometrics in forensics. The innovative proposal joins the capability of transductive learning for semi-supervised search by similarity and a typical multimedia methodology based on user-guided relevance feedback to allow an active interaction with the visual data of people, appearance and trajectory in large surveillance areas. Approaches proposed are very general and can be exploited independently by the surveillance setting and the type of video analytic tools

    Semi-Supervised Learning for Scalable and Robust Visual Search

    Get PDF
    Unlike textual document retrieval, searching of visual data is still far from satisfactory. There exist major gaps between the available solutions and practical needs in both accuracy and computational cost. This thesis aims at the development of robust and scalable solutions for visual search and retrieval. Specifically, we investigate two classes of approaches: graph-based semi-supervised learning and hashing techniques. The graph-based approaches are used to improve accuracy, while hashing approaches are used to improve efficiency and cope with large-scale applications. A common theme shared between these two subareas of our work is the focus on semi-supervised learning paradigm, in which a small set of labeled data is complemented with large unlabeled datasets. Graph-based approaches have emerged as methods of choice for general semi-supervised tasks when no parametric information is available about the data distribution. It treats both labeled and unlabeled samples as vertices in a graph and then instantiates pairwise edges between these vertices to capture affinity between the corresponding samples. A quadratic regularization framework has been widely used for label prediction over such graphs. However, most of the existing graph-based semi-supervised learning methods are sensitive to the graph construction process and the initial labels. We propose a new bivariate graph transduction formulation and an efficient solution via an alternating minimization procedure. Based on this bivariate framework, we also develop new methods to filter unreliable and noisy labels. Extensive experiments over diverse benchmark datasets demonstrate the superior performance of our proposed methods. However, graph-based approaches suffer from the critical bottleneck in scalability since graph construction requires a quadratic complexity and the inference procedure costs even more. The widely used graph construction method relies on nearest neighbor search, which is prohibitive for large-scale applications. In addition, most large-scale visual search problems involve handling high-dimensional visual descriptors, thereby causing another challenge in excessive storage requirement. To handle the scalability issue of both computation and storage, the second part of the thesis focuses on efficient techniques for conducting approximate nearest neighbor (ANN) search, which is key to many machine learning algorithms, including graph-based semi-supervised learning and clustering. Specifically, we propose Semi-Supervised Hashing (SSH) methods that leverage semantic similarity over a small set of labeled data while preventing overfitting. We derive a rigorous formulation in which a supervised term minimizes the empirical errors on the labeled data and an unsupervised term provides effective regularization by maximizing variance and independence of individual bits. Experiments on several large datasets demonstrate the clear performance gain over several state-of-the-art methods without significant increase of the computational cost. The main contributions of the thesis include the following. Bivariate graph transduction: a) a bivariate formulation for graph-based semi-supervised learning with an efficient solution by alternating optimization; b) theoretic analysis from the view of graph cut for the bivariate optimization procedure; c) novel applications of the proposed techniques, such as interactive image retrieval, automatic re-ranking for text based image search, and a brain computer interface (BCI) for image retrieval. Semi-supervised hashing: a) a rigorous semi-supervised paradigm for hash functions learning with a tradeoff between empirical fitness on pair-wise label consistence and an information-theoretic regularizer; b) several efficient solutions for deriving semi-supervised hash functions, including an orthogonal solution using eigen-decomposition, a revised strategy for learning non-orthogonal hash functions, a sequential learning algorithm to derive boosted hash functions, and an extension to unsupervised cases by using pseudo labels. Two parts of the thesis - bivariate graph transduction and semi-supervised hashing - are complimentary and can be combined to achieve significant performance improvement in both speed and accuracy. Hash methods can help build sparse graphs in a linear time fashion and greatly reduce the data size, but they lack sufficient accuracy. Graph-based methods provide unique capabilities to handle non-linear data structures with noisy labels but suffer from high computational complexity. The synergistic combination of the two offers great potential for advancing the state-of-the-art in large-scale visual search and many other applications
    • …
    corecore