4,524 research outputs found

    Self-supervised object detection from audio-visual correspondence

    Get PDF
    We tackle the problem of learning object detectors without supervision. Differently from weakly-supervised object detection, we do not assume image-level class labels. Instead, we extract a supervisory signal from audio-visual data, using the audio component to "teach" the object detector. While this problem is related to sound source localisation, it is considerably harder because the detector must classify the objects by type, enumerate each instance of the object, and do so even when the object is silent. We tackle this problem by first designing a self-supervised framework with a contrastive objective that jointly learns to classify and localise objects. Then, without using any supervision, we simply use these self-supervised labels and boxes to train an image-based object detector. With this, we outperform previous unsupervised and weakly-supervised detectors for the task of object detection and sound source localization. We also show that we can align this detector to ground-truth classes with as little as one label per pseudo-class, and show how our method can learn to detect generic objects that go beyond instruments, such as airplanes and cats.Comment: Under revie

    Unsupervised maritime target detection

    Get PDF
    The unsupervised detection of maritime targets in grey scale video is a difficult problem in maritime video surveillance. Most approaches assume that the camera is static and employ pixel-wise background modelling techniques for foreground detection; other methods rely on colour or thermal information to detect targets. These methods fail in real-world situations when the static camera assumption is violated, and colour or thermal data is unavailable. In defence and security applications, prior information and training samples of targets may be unavailable for training a classifier; the learning of a one class classifier for the background may be impossible as well. Thus, an unsupervised online approach that attempts to learn from the scene data is highly desirable. In this thesis, the characteristics of the maritime scene and the ocean texture are exploited for foreground detection. Two fast and effective methods are investigated for target detection. Firstly, online regionbased background texture models are explored for describing the appearance of the ocean. This approach avoids the need for frame registration because the model is built spatially rather than temporally. The texture appearance of the ocean is described using Local Binary Pattern (LBP) descriptors. Two models are proposed: one model is a Gaussian Mixture (GMM) and the other, referred to as a Sparse Texture Model (STM), is a set of histogram texture distributions. The foreground detections are optimized using a Graph Cut (GC) that enforces spatial coherence. Secondly, feature tracking is investigated as a means of detecting stable features in an image frame that typically correspond to maritime targets; unstable features are background regions. This approach is a Track-Before-Detect (TBD) concept and it is implemented using a hierarchical scheme for motion estimation, and matching of Scale- Invariant Feature Transform (SIFT) appearance features. The experimental results show that these approaches are feasible for foreground detection in maritime video when the camera is either static or moving. Receiver Operating Characteristic (ROC) curves were generated for five test sequences and the Area Under the ROC Curve (AUC) was analyzed for the performance of the proposed methods. The texture models, without GC optimization, achieved an AUC of 0.85 or greater on four out of the five test videos. At 50% True Positive Rate (TPR), these four test scenarios had a False Positive Rate (FPR) of less than 2%. With the GC optimization, an AUC of greater than 0.8 was achieved for all the test cases and the FPR was reduced in all cases when compared to the results without the GC. In comparison to the state of the art in background modelling for maritime scenes, our texture model methods achieved the best performance or comparable performance. The two texture models executed at a reasonable processing frame rate. The experimental results for TBD show that one may detect target features using a simple track score based on the track length. At 50% TPR a FPR of less than 4% is achieved for four out of the five test scenarios. These results are very promising for maritime target detection

    Generative Adversarial Networks (GANs): Challenges, Solutions, and Future Directions

    Full text link
    Generative Adversarial Networks (GANs) is a novel class of deep generative models which has recently gained significant attention. GANs learns complex and high-dimensional distributions implicitly over images, audio, and data. However, there exists major challenges in training of GANs, i.e., mode collapse, non-convergence and instability, due to inappropriate design of network architecture, use of objective function and selection of optimization algorithm. Recently, to address these challenges, several solutions for better design and optimization of GANs have been investigated based on techniques of re-engineered network architectures, new objective functions and alternative optimization algorithms. To the best of our knowledge, there is no existing survey that has particularly focused on broad and systematic developments of these solutions. In this study, we perform a comprehensive survey of the advancements in GANs design and optimization solutions proposed to handle GANs challenges. We first identify key research issues within each design and optimization technique and then propose a new taxonomy to structure solutions by key research issues. In accordance with the taxonomy, we provide a detailed discussion on different GANs variants proposed within each solution and their relationships. Finally, based on the insights gained, we present the promising research directions in this rapidly growing field.Comment: 42 pages, Figure 13, Table

    Robust Modular Feature-Based Terrain-Aided Visual Navigation and Mapping

    Get PDF
    The visual feature-based Terrain-Aided Navigation (TAN) system presented in this thesis addresses the problem of constraining inertial drift introduced into the location estimate of Unmanned Aerial Vehicles (UAVs) in GPS-denied environment. The presented TAN system utilises salient visual features representing semantic or human-interpretable objects (roads, forest and water boundaries) from onboard aerial imagery and associates them to a database of reference features created a-priori, through application of the same feature detection algorithms to satellite imagery. Correlation of the detected features with the reference features via a series of the robust data association steps allows a localisation solution to be achieved with a finite absolute bound precision defined by the certainty of the reference dataset. The feature-based Visual Navigation System (VNS) presented in this thesis was originally developed for a navigation application using simulated multi-year satellite image datasets. The extension of the system application into the mapping domain, in turn, has been based on the real (not simulated) flight data and imagery. In the mapping study the full potential of the system, being a versatile tool for enhancing the accuracy of the information derived from the aerial imagery has been demonstrated. Not only have the visual features, such as road networks, shorelines and water bodies, been used to obtain a position ’fix’, they have also been used in reverse for accurate mapping of vehicles detected on the roads into an inertial space with improved precision. Combined correction of the geo-coding errors and improved aircraft localisation formed a robust solution to the defense mapping application. A system of the proposed design will provide a complete independent navigation solution to an autonomous UAV and additionally give it object tracking capability

    Event-based Vision: A Survey

    Get PDF
    Event cameras are bio-inspired sensors that differ from conventional frame cameras: Instead of capturing images at a fixed rate, they asynchronously measure per-pixel brightness changes, and output a stream of events that encode the time, location and sign of the brightness changes. Event cameras offer attractive properties compared to traditional cameras: high temporal resolution (in the order of microseconds), very high dynamic range (140 dB vs. 60 dB), low power consumption, and high pixel bandwidth (on the order of kHz) resulting in reduced motion blur. Hence, event cameras have a large potential for robotics and computer vision in challenging scenarios for traditional cameras, such as low-latency, high speed, and high dynamic range. However, novel methods are required to process the unconventional output of these sensors in order to unlock their potential. This paper provides a comprehensive overview of the emerging field of event-based vision, with a focus on the applications and the algorithms developed to unlock the outstanding properties of event cameras. We present event cameras from their working principle, the actual sensors that are available and the tasks that they have been used for, from low-level vision (feature detection and tracking, optic flow, etc.) to high-level vision (reconstruction, segmentation, recognition). We also discuss the techniques developed to process events, including learning-based techniques, as well as specialized processors for these novel sensors, such as spiking neural networks. Additionally, we highlight the challenges that remain to be tackled and the opportunities that lie ahead in the search for a more efficient, bio-inspired way for machines to perceive and interact with the world

    Depth Estimation Using 2D RGB Images

    Get PDF
    Single image depth estimation is an ill-posed problem. That is, it is not mathematically possible to uniquely estimate the 3rd dimension (or depth) from a single 2D image. Hence, additional constraints need to be incorporated in order to regulate the solution space. As a result, in the first part of this dissertation, the idea of constraining the model for more accurate depth estimation by taking advantage of the similarity between the RGB image and the corresponding depth map at the geometric edges of the 3D scene is explored. Although deep learning based methods are very successful in computer vision and handle noise very well, they suffer from poor generalization when the test and train distributions are not close. While, the geometric methods do not have the generalization problem since they benefit from temporal information in an unsupervised manner. They are sensitive to noise, though. At the same time, explicitly modeling of a dynamic scenes as well as flexible objects in traditional computer vision methods is a big challenge. Considering the advantages and disadvantages of each approach, a hybrid method, which benefits from both, is proposed here by extending traditional geometric models’ abilities to handle flexible and dynamic objects in the scene. This is made possible by relaxing geometric computer vision rules from one motion model for some areas of the scene into one for every pixel in the scene. This enables the model to detect even small, flexible, floating debris in a dynamic scene. However, it makes the optimization under-constrained. To change the optimization from under-constrained to over-constrained while maintaining the model’s flexibility, ”moving object detection loss” and ”synchrony loss” are designed. The algorithm is trained in an unsupervised fashion. The primary results are in no way comparable to the current state of the art. Because the training process is so slow, it is difficult to compare it to the current state of the art. Also, the algorithm lacks stability. In addition, the optical flow model is extremely noisy and naive. At the end, some solutions are suggested to address these issues

    Recent Advances in Image Restoration with Applications to Real World Problems

    Get PDF
    In the past few decades, imaging hardware has improved tremendously in terms of resolution, making widespread usage of images in many diverse applications on Earth and planetary missions. However, practical issues associated with image acquisition are still affecting image quality. Some of these issues such as blurring, measurement noise, mosaicing artifacts, low spatial or spectral resolution, etc. can seriously affect the accuracy of the aforementioned applications. This book intends to provide the reader with a glimpse of the latest developments and recent advances in image restoration, which includes image super-resolution, image fusion to enhance spatial, spectral resolution, and temporal resolutions, and the generation of synthetic images using deep learning techniques. Some practical applications are also included

    Action Recognition in Videos: from Motion Capture Labs to the Web

    Full text link
    This paper presents a survey of human action recognition approaches based on visual data recorded from a single video camera. We propose an organizing framework which puts in evidence the evolution of the area, with techniques moving from heavily constrained motion capture scenarios towards more challenging, realistic, "in the wild" videos. The proposed organization is based on the representation used as input for the recognition task, emphasizing the hypothesis assumed and thus, the constraints imposed on the type of video that each technique is able to address. Expliciting the hypothesis and constraints makes the framework particularly useful to select a method, given an application. Another advantage of the proposed organization is that it allows categorizing newest approaches seamlessly with traditional ones, while providing an insightful perspective of the evolution of the action recognition task up to now. That perspective is the basis for the discussion in the end of the paper, where we also present the main open issues in the area.Comment: Preprint submitted to CVIU, survey paper, 46 pages, 2 figures, 4 table
    • 

    corecore