393 research outputs found

    Comprehensive evaluation of matrix factorization methods for the analysis of DNA microarray gene expression data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Clustering-based methods on gene-expression analysis have been shown to be useful in biomedical applications such as cancer subtype discovery. Among them, Matrix factorization (MF) is advantageous for clustering gene expression patterns from DNA microarray experiments, as it efficiently reduces the dimension of gene expression data. Although several MF methods have been proposed for clustering gene expression patterns, a systematic evaluation has not been reported yet.</p> <p>Results</p> <p>Here we evaluated the clustering performance of orthogonal and non-orthogonal MFs by a total of nine measurements for performance in four gene expression datasets and one well-known dataset for clustering. Specifically, we employed a non-orthogonal MF algorithm, BSNMF (Bi-directional Sparse Non-negative Matrix Factorization), that applies bi-directional sparseness constraints superimposed on non-negative constraints, comprising a few dominantly co-expressed genes and samples together. Non-orthogonal MFs tended to show better clustering-quality and prediction-accuracy indices than orthogonal MFs as well as a traditional method, K-means. Moreover, BSNMF showed improved performance in these measurements. Non-orthogonal MFs including BSNMF showed also good performance in the functional enrichment test using Gene Ontology terms and biological pathways.</p> <p>Conclusions</p> <p>In conclusion, the clustering performance of orthogonal and non-orthogonal MFs was appropriately evaluated for clustering microarray data by comprehensive measurements. This study showed that non-orthogonal MFs have better performance than orthogonal MFs and <it>K</it>-means for clustering microarray data.</p

    Gene expression changes of single skeletal muscle fibers in response to modulation of the mitochondrial calcium uniporter (MCU)

    Get PDF
    The mitochondrial calcium uniporter (MCU) gene codifies for the inner mitochondrial membrane (IMM) channel responsible for mitochondrial Ca2 + uptake. Cytosolic Ca2 + transients are involved in sarcomere contraction through cycles of release and storage in the sarcoplasmic reticulum. In addition cytosolic Ca2 + regulates various signaling cascades that eventually lead to gene expression reprogramming. Mitochondria are strategically placed in close contact with the ER/SR, thus cytosolic Ca2 + transients elicit large increases in the [Ca2 +] of the mitochondrial matrix ([Ca2 +]mt). Mitochondrial Ca2 + uptake regulates energy production and cell survival. In addition, we recently showed that MCU-dependent mitochondrial Ca2 + uptake controls skeletal muscle trophism. In the same report, we dissected the effects of MCU-dependent mitochondrial Ca2 + uptake on gene expression through microarray gene expression analysis upon modulation of MCU expression by in vivo AAV infection. Analyses were performed on single skeletal muscle fibers at two time points (7 and 14 days post-AAV injection). Raw and normalized data are available on the GEO database (http://www.ncbi.nlm.nih.gov/geo/) (GSE60931)

    Visualizing Gene Clusters using Neighborhood Graphs in R

    Get PDF
    The visualization of cluster solutions in gene expression data analysis gives practitioners an understanding of the cluster structure of their data and makes it easier to interpret the cluster results. Neighborhood graphs allow for visual assessment of relationships between adjacent clusters. The number of clusters in gene expression data is for biological reasons rather large. As a linear projection of the data into 2 dimensions does not scale well in the number of clusters there is a need for new visualization techniques using non-linear arrangement of the clusters. The new visualization tool is implemented in the open source statistical computing environment R. It is demonstrated on microarray data from yeast

    Clustering Approaches for Evaluation and Analysis on Formal Gene Expression Cancer Datasets

    Get PDF
    Enormous generation of biological data and the need of analysis of that data led to the generation of the field Bioinformatics. Data mining is the stream which is used to derive, analyze the data by exploring the hidden patterns of the biological data. Though, data mining can be used in analyzing biological data such as genomic data, proteomic data here Gene Expression (GE) Data is considered for evaluation. GE is generated from Microarrays such as DNA and oligo micro arrays. The generated data is analyzed through the clustering techniques of data mining. This study deals with an implement the basic clustering approach K-Means and various clustering approaches like Hierarchal, Som, Click and basic fuzzy based clustering approach. Eventually, the comparative study of those approaches which lead to the effective approach of cluster analysis of GE.The experimental results shows that proposed algorithm achieve a higher clustering accuracy and takes less clustering time when compared with existing algorithms

    Local Guarantees in Graph Cuts and Clustering

    Full text link
    Correlation Clustering is an elegant model that captures fundamental graph cut problems such as Min s−ts-t Cut, Multiway Cut, and Multicut, extensively studied in combinatorial optimization. Here, we are given a graph with edges labeled ++ or −- and the goal is to produce a clustering that agrees with the labels as much as possible: ++ edges within clusters and −- edges across clusters. The classical approach towards Correlation Clustering (and other graph cut problems) is to optimize a global objective. We depart from this and study local objectives: minimizing the maximum number of disagreements for edges incident on a single node, and the analogous max min agreements objective. This naturally gives rise to a family of basic min-max graph cut problems. A prototypical representative is Min Max s−ts-t Cut: find an s−ts-t cut minimizing the largest number of cut edges incident on any node. We present the following results: (1)(1) an O(n)O(\sqrt{n})-approximation for the problem of minimizing the maximum total weight of disagreement edges incident on any node (thus providing the first known approximation for the above family of min-max graph cut problems), (2)(2) a remarkably simple 77-approximation for minimizing local disagreements in complete graphs (improving upon the previous best known approximation of 4848), and (3)(3) a 1/(2+Δ)1/(2+\varepsilon)-approximation for maximizing the minimum total weight of agreement edges incident on any node, hence improving upon the 1/(4+Δ)1/(4+\varepsilon)-approximation that follows from the study of approximate pure Nash equilibria in cut and party affiliation games

    Trajectory-based differential expression analysis for single-cell sequencing data

    Get PDF
    Trajectory inference has radically enhanced single-cell RNA-seq research by enabling the study of dynamic changes in gene expression. Downstream of trajectory inference, it is vital to discover genes that are (i) associated with the lineages in the trajectory, or (ii) differentially expressed between lineages, to illuminate the underlying biological processes. Current data analysis procedures, however, either fail to exploit the continuous resolution provided by trajectory inference, or fail to pinpoint the exact types of differential expression. We introduce tradeSeq, a powerful generalized additive model framework based on the negative binomial distribution that allows flexible inference of both within-lineage and between-lineage differential expression. By incorporating observation-level weights, the model additionally allows to account for zero inflation. We evaluate the method on simulated datasets and on real datasets from droplet-based and full-length protocols, and show that it yields biological insights through a clear interpretation of the data. Downstream of trajectory inference for cell lineages based on scRNA-seq data, differential expression analysis yields insight into biological processes. Here, Van den Berge et al. develop tradeSeq, a framework for the inference of within and between-lineage differential expression, based on negative binomial generalized additive models

    Online Correlation Clustering

    Get PDF
    We study the online clustering problem where data items arrive in an online fashion. The algorithm maintains a clustering of data items into similarity classes. Upon arrival of v, the relation between v and previously arrived items is revealed, so that for each u we are told whether v is similar to u. The algorithm can create a new cluster for v and merge existing clusters. When the objective is to minimize disagreements between the clustering and the input, we prove that a natural greedy algorithm is O(n)-competitive, and this is optimal. When the objective is to maximize agreements between the clustering and the input, we prove that the greedy algorithm is .5-competitive; that no online algorithm can be better than .834-competitive; we prove that it is possible to get better than 1/2, by exhibiting a randomized algorithm with competitive ratio .5+c for a small positive fixed constant c.Comment: 12 pages, 1 figur
    • 

    corecore