6,751 research outputs found

    Cluster validity in clustering methods

    Get PDF

    Accurate and efficient gp120 V3 loop structure based models for the determination of HIV-1 co-receptor usage

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>HIV-1 targets human cells expressing both the CD4 receptor, which binds the viral envelope glycoprotein gp120, as well as either the CCR5 (R5) or CXCR4 (X4) co-receptors, which interact primarily with the third hypervariable loop (V3 loop) of gp120. Determination of HIV-1 affinity for either the R5 or X4 co-receptor on host cells facilitates the inclusion of co-receptor antagonists as a part of patient treatment strategies. A dataset of 1193 distinct gp120 V3 loop peptide sequences (989 R5-utilizing, 204 X4-capable) is utilized to train predictive classifiers based on implementations of random forest, support vector machine, boosted decision tree, and neural network machine learning algorithms. An <it>in silico </it>mutagenesis procedure employing multibody statistical potentials, computational geometry, and threading of variant V3 sequences onto an experimental structure, is used to generate a feature vector representation for each variant whose components measure environmental perturbations at corresponding structural positions.</p> <p>Results</p> <p>Classifier performance is evaluated based on stratified 10-fold cross-validation, stratified dataset splits (2/3 training, 1/3 validation), and leave-one-out cross-validation. Best reported values of sensitivity (85%), specificity (100%), and precision (98%) for predicting X4-capable HIV-1 virus, overall accuracy (97%), Matthew's correlation coefficient (89%), balanced error rate (0.08), and ROC area (0.97) all reach critical thresholds, suggesting that the models outperform six other state-of-the-art methods and come closer to competing with phenotype assays.</p> <p>Conclusions</p> <p>The trained classifiers provide instantaneous and reliable predictions regarding HIV-1 co-receptor usage, requiring only translated V3 loop genotypes as input. Furthermore, the novelty of these computational mutagenesis based predictor attributes distinguishes the models as orthogonal and complementary to previous methods that utilize sequence, structure, and/or evolutionary information. The classifiers are available online at <url>http://proteins.gmu.edu/automute</url>.</p

    Design and HPC implementation of unsupervised Kernel methods in the context of molecular dynamics

    Get PDF
    The thesis represents an extensive research in the multidisciplinary domain formed by the cross contamination of unsupervised learning and molecular dynamics, two research elds that are coming close creating a breeding ground for valuable new concepts and methods. In this context, at rst, we describe a novel engine to perform large scale kernel k-means clustering. We introduce a two-fold approximation strategy to minimize the kernel k-means cost function in which the trade-off between accuracy and execution time is automatically ruled by the available system memory

    Transcriptome Analysis for Non-Model Organism: Current Status and Best-Practices

    Get PDF
    Since transcriptome analysis provides genome-wide sequence and gene expression information, transcript reconstruction using RNA-Seq sequence reads has become popular during recent years. For non-model organism, as distinct from the reference genome-based mapping, sequence reads are processed via de novo transcriptome assembly approaches to produce large numbers of contigs corresponding to coding or non-coding, but expressed, part of genome. In spite of immense potential of RNA-Seq–based methods, particularly in recovering full-length transcripts and spliced isoforms from short-reads, the accurate results can be only obtained by the procedures to be taken in a step-by-step manner. In this chapter, we aim to provide an overview of the state-of-the-art methods including (i) quality check and pre-processing of raw reads, (ii) the pros and cons of de novo transcriptome assemblers, (iii) generating non-redundant transcript data, (iv) current quality assessment tools for de novo transcriptome assemblies, (v) approaches for transcript abundance and differential expression estimations and finally (vi) further mining of transcriptomic data for particular biological questions. Our intention is to provide an overview and practical guidance for choosing the appropriate approaches to best meet the needs of researchers in this area and also outline the strategies to improve on-going projects
    corecore