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Abstract

The thesis represents an extensive research in the multidisciplinary domain
formed by the cross contamination of Unsupervised Learning and Molecular
Dynamics, two research fields that are coming close creating a breeding
ground for valuable new concepts and methods.

In this context, at first, we describe a novel engine to perform large scale
kernel k-means clustering. We introduce a two-fold approximation strategy
to minimize the kernel k-means cost function in which the trade-off between
accuracy and execution time is automatically ruled by the available system
memory. Moreover, we define an effective parallelization scheme well suited
for GPU endowed state-of-the-art parallel architectures.

We prove the effectiveness of the method testing a working MPI - CUDA
implementation on standard Machine Learning datasets and on an Molecular
Dynamics real-case application scenario.

Secondly, we introduce the concept of principal paths in data space. Those
paths can be interpreted as local Principal Curves and in the statistical me-
chanics realm correspond to, possibly Minimum, Free Energy Paths. Here
we move that concept from physics to data space and derive a regularized
k-means algorithm to compute them in the original and kernel space. In this
fully unsupervised environment, we successfully apply the Bayesian frame-
work of evidence maximization to perform in-sample model selection on the
introduced regularization parameter.

We apply the method to standard Machine Learning datasets, dynamical
systems and in particular on Molecular Dynamics trajectories showing the
generality, the usefulness of the approach and its superiority with respect to

other related techniques.
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Introduction






Chapter 1

Scope of the Thesis

1.1 From simulations to human interpretable mod-
els

Molecular Dynamics (MD) is a computational technique that allows the
dynamic of a system to be followed at atomistic resolution, therefore repre-
senting a virtual microscope to investigate chemical reactions and transitions
in molecular systems of interest. With this respect, for example, MD is cur-
rently the tool of choice for the in-silico study of dynamical protein-ligand
binding [1, 2, 3].

Unsupervised Learning (UL) is that area of Statistical Learning devoted
to learn non trivial representations of the data starting from unlabeled sam-
ples. As such, it is a cognitively difficult problem where a machine is asked
to infer the underlying structure of the data. Examples of methods in this
area being clustering, manifold learning and dimensionality reduction with
a wide spectrum of application domains.

This two apparently distant research fields recently found a point of con-
tact in the necessity to automatically process and extract useful informa-
tion out of long MD simulations. With state of the art High Performance
Computing (HPC), now endowed with general purpose GPUs (gpGPUs),
MD trajectories with up to 10'° frames (i.e. microsecond long trajecto-
ries) are now a reality. Their analysis can be a daunting task from the
standpoint both of the human intervention time and of the necessary com-
putation and storage requirements. Machine Learning (ML) techniques in
general, and more specifically large scale UL techniques, with their ability
to learn compact, meaningful representations of the data are valuable tools
in this context. A successful example of this being found in Markov State
Model (MSM) [4] which rely to various extent on clustering algorithms in
order to infer a coarse grained, human interpretable kinetic model starting
from MD data.

The resulting multidisciplinary field is rich in both scientific and tech-
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Chapter 1. Scope of the Thesis

nological challenges. Indeed from a technological standpoint the urge of
deploying automatic processing tools on the same HPC facilities where MD
simulations are running, together with the special requirements of MD data,
as it will be discussed in chapter 2, pushes the development of highly effi-
cient UL techniques. From a scientific point of view, not only UL applied to
MD can help in better understanding biomolecular processes of interest; but
MD can also inspire totally new learning concepts and algorithms resulting
in significant contributions to the UL field as it will be discussed in chapter
3.

The work presented here is naturally set in this cross contaminating
domain, two will be the main objectives of the thesis:

1. The design of an efficient kernel k-means engine to perform large scale
clustering on gpGPU endowed HPC facilities (with particular atten-
tion to MD trajectories as application scenario).

2. The theoretical derivation of a kernel algorithm to find Principal Paths
in data space, a new cognitively sound learning problem inspired by
MD.

The motivations behind those two objectives will be detailed respectively in
chapter 2 and chapter 3, whereas in the following a brief overview of MD
and UL is given.

1.2 Molecular Dynamics

Hereafter we are going to give a brief overview of MD aiming at introducing
those concepts that will be relevant for later discussions.

Let us consider a molecular system of N, atoms, its micro-state will be
then identified by z and p (i.e. the 3N, dimensional vectors of positions and
momenta respectively). According to classical mechanics the total energy of
the system subject to a given potential U(z) is given by the Hamiltonian:

2
H(z,p) = Ulz) + 2 (1.1)

= 2m

The time evolution of such system is governed by:

dv  OH
dp OH

In its most basic formulation MD is a computational technique that starts
from an initial state of the system (z°,p) and numerically integrates Eq.1.2
with a fixed time-step At for an empirical potential U(z) (i.e. a potential

12



1.2. Molecular Dynamics

energy properly designed and parametrized to model the bonded and non-
bonded interactions among the atoms in the system). The output of such
simulation therefore will be in the form of a sequence of N conformational
frames, namely {z°, 2%, 224, ..., 2V}, In this sense MD is commonly
viewed as a virtual microscope that allows one to closely follow the time
evolution of a process with atomistic resolution [5].

Simulating a system at constant temperature

In general terms, it is interesting to simulate a system at constant temper-
ature, therefore in a real application scenario the numerical integration of
Eq.1.2, which would normally conserve the total energy, is paired with a ther-
mostat that allows energy fluctuations. The Andersen technique [6] is prob-
ably the simplest example of thermostat where thermalization is achieved by
drawing the m0m2entum of randomly selected particles from the equilibrium

distribution e 5% .

Several other techniques are available in the literature (see e.g. [7, 8])
and one should keep in mind that simulating the time evolution of a ther-
malized system is a non trivial problem [9] which relies on central concepts
in statistical physics such as the one of ergodicity [10]. We will not enter
here into the details of such discussion, limiting ourselves to say that when a
thermostat is applied to the system then an MD simulation can be thought
as a process where the phase space is explored by means of thermal fluctu-
ations. In such scenario the probability for the system of being found in a
state (x,p) is given by the well known Boltzmann distribution:

2
P(z,p) x e PH@D) — ~BU@)—B55 (1.4)

Such distribution is of paramount importance providing a connection be-
tween the thermodynamics of macroscopic states and the statistics of mi-
croscopic system conformations. For example, having defined the occupancy
probability of a given macro-state A as:

Py x / dz dp e PH D) (1.5)
" p

then the free energy F4 can be defined as:

Fa = —kpTlog Py (1.6)

Reconstructing the Free Energy Surface

It is worth observing that biomolecular processes of interest usually evolves
through a series of metastable states corresponding to local minima of the
underlying free energy F just introduced.

13



Chapter 1. Scope of the Thesis

The first step for studying this kind of process via an MD simulation
is to define a small set of Collective Variables (CVs) meant to character-
ize the process i.e. a set of reaction coordinates that one can monitor to
clearly identify transitions among metastable states. A CV is defined as
a given function 0(z) of the system coordinates. It can be as simple as a
dihedral angle, even though in real application scenarios more sophisticated
and computationally expensive descriptors are often used (see e.g. [11]).

Let us assume, for the sake of simplicity, to define a single CV 6(z). Now
for a given state described by z = 0(x), the occupancy probability can be
defined as:

P(2) x / dze U@ (5 — 0(x)) (1.7)

and a Free Energy Surface (FES) with respect to the CV can be computed
as:
F(z) = —kpTlogP(z) + A (1.8)

With a thermalized MD simulation we would like to estimate the probability
distribution P(z) in order to reconstruct the FES F(z) from which a series
of relevant information can be extracted e.g. the stability of the states or
the tranistion rates among them. However as it is known from Arrhenius
law [12], the probability of escaping a free energy minimum by thermal
fluctuations is exponentially small with respect to the height of the barrier.
Therefore chances are that, being the simulation time finite, if the system is
initialized in a stable state corresponding to a free energy minimum it will
remain confined there.

This problem is usually reffered to as the problem of rare events and
several accelerated sampling techniques have been proposed in the literature
in order to partially overcome it (see e.g. metadynamics [13, 14]). The
simplest example of such techniques (i.e. umbrella sampling [15]) can be
easily understood also in this context, indeed let us suppose to introduce an
additive artificial potential depending only on the CV i.e. V(6(z)). Then
performing a thermalized MD simulation with such bias potential would
correspond to sampling the following probability of states:

P(z) x / dze PU@HVO@) 55 — g(2)) = e PV E) P(2) (1.9)

which in turns defines the following FES:
F(2) = —kpTlog P(z) = F(2) + V() + A (1.10)

The introduced artificial potential has an additive effect on the FES F(z)
and as such can be designed to compensate the orginal energy barriers thus
providing a better sampling of the phase space.

We close this section stating that MD simulations, when paired with ad-
equate accelerated sampling techniques, allow the study of a molecular pro-
cess by means of FES reconstruction [16, 17] and can be viewed as a source
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1.3. Unsupervised Learning

of conformational frames properly sampled from the underlying micro-state
occupancy probability distribution.

1.3 Unsupervised Learning

The UL problem is usually defined in relation to its supervised counterpart as
the problem of learning from data without labels. Indeed in the supervised
learning paradigm a Learning Machine is presented with a set of sample-
label pairs (z;,y;) where samples are drawn from P(z) (Generator) and
the labels are drawn from P(y|z) (Supervisor). In this context the goal
of learning is naturally identified with the one of selecting among a given
set of learnable functions the one that best approximates the supervisor’s
response i.e. minimize the expected value Ep(, ,)[Q(f(z),y)] of a given loss
function Q(f(x),y). The theoretical foundations of such problem are solid
and have to be ascribed mainly to the work of Vapnik [18] who introduced
several concepts of paramount importance such as the one VC entropy and
VC dimension (measures related to the generalization ability of a set of
functions) and the concept of Strucutral Risk Minimization i.e. a consistent
learning principle where the generalization ability of the function learned is
made a controlling variable of the optimization process.

When the Supervisor (i.e. set of labels) is removed from the paradigm
one has to redefine the objective of the learning process. While this may
still be an open question, it is common in the literature to identify UL with
regularized manifold learning [19] and topological data analysis [20]. More
intuitively, given a set of data X, the problem of learning from those data
without labels can be understood as the problem of learning a non trivial
representation W. In such scenario the learned representation has somehow
to be evaluated with respect to the samples themselves as shown in Fig.1.1.

Both the UL problems treated in this dissertation, namely clustering
and Principal Curve (PC) analysis are included in this intuitive definition.
Indeed in the first case one aims at representing the data as a small set of
prototypes whereas in the second case one aims at representing the data
with a continuous one-dimensional curve.

Regularized functionals

The concept of non trivial representation relates with the one of regulariza-
tion, a central aspect in the statistical learning theory [21, 22, 23]. Indeed
directly minimizing an empirical error without constraints on the set of
learnable representations may easily lead to overfitting. It is worth observ-
ing that a regularization can be either implicit (as in the case of clustering N
samples into N¢ clusters where one set No << N) or explicit. For instance,
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Chapter 1. Scope of the Thesis

(a) (b)

SUPERVISED LEARNING UNSUPERVISED LEARNING
P(x,y) P(x)

Generator Generator
P(X) P(x)
|
Xi
Learning Supervisor Learning
Machlne P(ylx) Machine
\

f(x) yL w; = f(x;) X;
ESTIMATE B ESTIMATE
I Qf(x),y) dP(x,y) | QG w)dP(x)

Figure 1.1: (a) Supervised learning paradigm where a Learning Machine is
paired with a supervisor providing labels y; for each training sample x;. The
learning procedure is described as the problem of minimizing the expected
loss starting from the training samples. (b) UL paradigm where a Learning
Machine is fed with unlabelled samples. In this context one may specu-
late that a good learning procedure is the one that minimizes the expected
representation error. For example, as explained in the main text, one can
minimize a regularized empirical representation error.

one could formulate a learning problem as:
H‘lz‘i]n")/Qx(X, W) + )\Qw(W) (1.11)

where Q) x is the empirical error of the representation W on the data X and
Qu is a penalty term penalizing the complexity of the representation. The
problem of properly setting the trade-off between representation error and
regularization (i.e. properly setting the values of v and \) is the generally
difficult problem of model selection, an essential part of the learning process.

Bayesian evidence

It is worth noting that one may as well look at the regularized learning prob-
lem described by Eq.1.11 as a maximum posterior problem in the framework
of Bayesian inference. Indeed, simply taking the negative exponential of the
regularized cost and assuming a proper normalization, the following proba-
bility can be defined:
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1.3. Unsupervised Learning

e~ UW X ,7,))
IACOV
e*’YQX (W’X) eiAQW(W) ZX (V)ZW()\)

where Z, Zx and Zy are normalizing constants defined as:

P(W[X,7,A) =
(1.12)

Z(v,A) = /eQ(W’X”Y’A)dW

e = [ sy

Zw (\) = / e MW Wg

Comparing Eq.1.12 with the well known Bayes theorem for conditional
probability:

1
P(W[X,v,\) = P(X\Wa%A)P(W\%)\)m

one can obtain the following definition for the likelihood of the data:

e~ x (W.X)
L(v,W) = P(X|W,~,\) = O (1.13)
for the prior probability of the model:
P(W,\) = LW(W) (1.14)
Zw (A)
and for the evidence:
E(v,A) = P(X]y,A) = Z;ca(;Zj;(M (1.15)

At this point the learning process can be formulated as the following two
level inference procedure:

e 1st Level: starting from a given hypothesis (v, \) infer the best model
W p through a maximum posterior criterion (i.e. minimizing the
regularized cost function).

e 2nd Level: Infer the best parameters (v, A) with a maximum posterior
criterion on the hypothesis set. Assuming a flat prior probability (i.e.
stopping the inference at this second level) such maximum posterior
criteria is equivalent to a maximum evidence criteria as shown by:

17



Chapter 1. Scope of the Thesis

g

P(X|y, M) P(y,A)

O PX)
= max E(y,\)
YA

The Bayesian inference perspective on learning therefore is valuable, pro-
viding a theoretical framework for the model selection of the parameters as
extensively discussed in [24].

1.4 Outline of the thesis

The rest of the thesis is structured as follow: chapter 2 and chapter 3 com-
plete the introductory part giving the motivations behind the two main
objectives of the thesis and framing them into the relevant literature. More
specifically chapter 2 introduces the problem of clustering MD trajectories
and chapter 3 deals with the problem of finding Principal Paths in data
space. Three methodological chapters follows where the original contribu-
tion of the thesis is detailed. Chapter 4 describes the novel Distributed
Kernel K-means (DKK) clustering engine where a two-fold approximation
is paired with an efficient distribution strategy to tackle the computational
burden of standard kernel k-means. Chapter 5 then shows how an acceler-
ation strategy can be effectively designed for DKK in order to cluster MD
trajectories on HPC facilities where CPUs are paired to accelerators, with
particular attention to gpGPUs for which an efficient CUDA implementa-
tion is proposed. At last, chapter 6 describes a regularized kernel k-means
functional that can be minimized in order to find principal paths in data
space together with an actual optimization algorithm and the derivation of a
maximal evidence principle for in-sample model selection of the parameters.
Two experimental chapters, namely chapter 7 and chapter 8 follows, where
the developed methods are validate against toy models, standard datasets
in the ML literature and a real MD appliction scenario. Overall conclusions
close the manuscript.
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Chapter 2

Unsupervised Learning
Applied to Molecular
Dynamics

Hereafter a first connection between Molecular Dynamics (MD) and Unsu-
pervised Learning (UL) is described. More precisely, we will discuss how
clustering methods can be applied in the automatic analysis of MD trajec-
tories.

At first clustering is framed in the context of UL presenting two of the
most widely known clustering techniques i.e k-means algorithm (both in its
linear and kernelized formulation) and the related k-medoids algorithm. Sec-
ondly, we discuss how clustering has been successfully used in the literature
in order to build coarse grained models inferred from MD data.

At last we close this chapter identifying kernel k-means as a valuable
clustering algorithm in this domain and accordingly, we define the first ob-
jective of the thesis to be the development of an efficient large scale kernel
k-means algorithm.

2.1 Clustering data

The problem of clustering can be informally described as the problem of par-
titioning unlabeled data samples into meaningful groups. Since 1967, when
k-means was originally introduced [25], a variety of different clustering al-
gorithms arose without a clear all-around winner. Reasons behind such a
fragmented panorama have to be found in the ambiguity of what a meaning-
ful cluster is. Different cluster definitions indeed induce different grouping
strategies e.g density based definitions lead to algorithms such as DBSCAN
[26] whereas definitions based on the spectral property of a similarity matrix
leads to Spectral Clustering [27]. Even though desirable, a unified theory
of clustering seems far from being achieved. Recent developments in such
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Chapter 2. Unsupervised Learning Applied to Molecular Dynamics

direction have to be found in the work of Kleinberg [28] who, starting from
a small set of reasonable axioms for a clustering function proved an impossi-
bilty theorem and in the works by Shai Ben-David [29, 30] who went one step
further moving the attention from clustering functions to clustering quality
measures proving how in such domain a working set of axioms can be found.

Hereafter, for the sake of simplicity, the clustering problem will be iden-
tified with what is usually found in the literature as vector quantization i.e.
the problem of learning a discrete representation for the data in the form of
N¢ prototype vectors w;,.

2.1.1 K-means Algorithm

Let us consider a set X of N data samples z; € R? and let us define a
partition of the data in the form of labels u; € [1, N¢|. One can now define
the following quantization error to be minimized:

N Ne

QUX, W) = ZZHL - Mj||25(ui,j) (2.1)

i=1 j=1

Finding a global minimum for such non-convex cost is a computationally un-
feasible task. The k-means algorithm [31] finds sub-optimal minima starting
from an intial set of prototypes W' with the following two steps EM-like
procedure [32]:

1. assuming a set W' of prototypes at a given iteration t, set the labels
to be equal to the one minimizing Q(X, W?) i.e.

t+1
U, W;

— arg min]|z; — w![? (2.2)
J
2. having computed the update labels uf“, minimize €2 with respect to
the set of prototypes W keeping uﬁ“ fixed i.e

N

1 .
Wit = D me(u ) (2.3)
—J' =1

As shown in [33], this kind of procedure almost surely converges to a local
minimum eventually reaching the stopping condition uf“ =ul, Vi € [1, N]
ie. P(limyeo{utt = uf Vi € [I, N}) = 1. The complexity of the algorithm
is O(NN¢dT') where T is the number of iterations needed to converge.
The success of k-means algorithm has to be found mainly in its simplicity
and in the clear geometrical interpretation of its results. It is worth observing
however that the applicability of k-means as discussed above is limited to
those domains where an explicit feature space is known i.e. where one can

evaluate Eq.2.3 to compute the explicit coordinates of the centroids. This
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2.1. Clustering data

Polynomial kernel Kmn = (y2lz, +c)
2
Gaussian (RBF) kernel Kmn = eXp(—%)
Sigmoid kernel Ky = tanh(yzl z, + c)!

Table 2.1: Popular kernel functions

may not always be the case, an example being all those situations in which
graph-like structured data has to be analyzed. In such scenarios usually
one does not have a readily available feature space but rather a similarity
or a distance measure. Moreover k-means clustering does not allow non
linearities in the data, always looking for linearly separable clusters. To
deal with both problems as we are going to show, a kernel extension of the
algorithm was proposed in [34].

2.1.2 Kernel K-means Algorithm

The kernel k-means algorithm can be easily derived starting from the two
step EM-like procedure proposed before. Let us substitute Eq.2.3 into Eq.2.2
in order to obtain the following self consistent update equation for the set
of labels:

ul™ = arg min % Z@m,gnﬁ(u;},jﬁ(u;,j) - lt Z@w&mﬁ(%,j)
5wy o= il 4
(2.4)
We can now obtain a kernel version for the k-means algorithm by means
of what is usually referred to as kernel trick [35] i.e. replacing the inner
product among data samples (z,,,, z,,) with a generic Mercer kernel function
K(z,,,z,) ie.

Lmy L

W = argmin e 3 Ko )60 1) = 1o 3K b0y )
It myn It m

(2.5)
Several choices are possible as listed in table 2.1 and it is worth observing
that if the kernel function depends only by the distance among samples
D(z,,,z,) then the set of labels can be updated till convergence requiring
just the N x N distance matrix D thus enabling the algorithm to run also
on those structured data where an explicit vector space may not be readily
available.

Substituting the inner product with a Mercer kernel function is a legit-
imate operation that leads to a meaningful kernel k-means algorithm since
those kind of functions are proved to be inner product in a possibly un-
known transformed space i.e. K(z,,,z,) = (¢(z,,), d(z,)), ¢(-) : R4 — R? .

=m
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Chapter 2. Unsupervised Learning Applied to Molecular Dynamics

Iterating Eq.2.5 we are therefore implicitly minimizing the following quan-
tization error with respect to the set of prototypes w, € R% in the unknown
transformed space:

N N¢

QX W) = > () — wyl*5(ui, j) (2.6)

i=1 j=1

It is worth observing that since the transformation ¢(-) : R — R¥ is
usually unknown the algorithm in the proposed formulation does not give
access directly to the set of prototypes W. One however can easily find the
prototypes medoids i.e. those samples that in the transformed space are
closest to the prototypes:

67 ) = my = arg il o(z) -

x,€

1
= in Kj; —2—— K, 6(u;,j
arg min K, : ZZ: 1,16 (uis J)

Approximate kernel k-means

The major shortcoming of kernel k-means has to be found in the intrin-
sic quadratic complexity of the algorithm due to the kernel matrix evalua-
tion step which limits the applicability of the method to reasonably small
datasets. Chitta et al. [36] recently proposed an approximate version of the
algorithm in order to reduce such burden based on a centroids sparse rep-
resentation. By construction, at each iteration of the exact kernel k-means
algorithm one is implicitly representing the centroids in the transformed
space as a linear combination of the entire dataset:

N
1 )
™ = iy 2 H@)dT ) (2:8)

If one restrict such representation to a sub space spanned by a small set
of landmarks L. C X then is easy to demonstrate that the evaluation of
K(z,,, x,) Vz,, € X Vz, € L is sufficient to iterate the algorithm until con-
vergence i.e. the complexity of the kernel matrix evaluation step is reduced

to O(|L|N).

K-means as a limiting case

We close this section showing that, interestingly enough, standard k-means
can be obtained as a limiting case of kernel k-means for ¢ — oo when
a gaussian kernel is used. One may argue that using kernel k-means to
emulate k-means results is a rather inefficient way to proceed however this
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2.1. Clustering data

may be a viable solution to perform standard k-means clustering on datasets
where an explicit feature space is not available.

Let us start expanding the gaussian kernel function with euclidean dis-
tance around 0:

2 2
x +H|zn||*—2 < 2, TH > 1
el il 2 < 2msa > o 1

|l — 23>

Ky, = lim exp(— )=1-

o—00 0'2 (o

Now substituting this expansion into Eq.2.4 closes the proof, proving that
the two update rules Eq.2.4 and Eq.2.5 (i.e. the two algorithms) are equiv-
alent:
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2.1.3 K-medoids Algorithm

K-medoids algorithm is a popular variation of k-means where each prototype
is forced to be one sample i.e. we look for the N¢o objects in the dataset
that minimize the distance among them and their closest samples. Solving
such partitioning problem, as in the case of k-means is an NP-hard problem
and several heuristics were proposed in order to find sub-optimal solutions
starting from an initial set of medoids.

For example, as originally proposed in [37] one may iteratively swap a
random sample z € X\ W with a random medoid m € W discarding all the
swaps that do not decrease the quantization error. A more efficient faster
heuristic that closely resembles the two steps EM-like procedure of k-means
was also recently proposed [38]:
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Chapter 2. Unsupervised Learning Applied to Molecular Dynamics

1. Update labels u; < arg min;|z; — w,||?

2. Update medoids w; < arg ming, SN ||lm — 2|26 (us, §)

One can iterate such algorithm until the stopping condition is reached i.e.
ul™ = uf, Vi € [1, N]. Tt is worth observing that k-medoids does not require
an explicit feature space for the data, indeed both the above steps can be
carried out knowing the euclidean distance among samples or more generally
a given distance matrix D; ; = 02@,%)\1@',3’ € [1, N].

2.1.4 The initialization problem

It is worth observing that all the mentioned algorithms are heuristics that
find sub-optimal solutions starting from an intial set of prototypes WP.
The quality of the solution therefore is closely related to the quality of the
initialization technique used and a multi-start approach may be needed. A
powerful initialization techniques is the one known as k-means++ [39] where
an initial set of prototypes is selected with the following iterative procedure:

1. Pick a random sample z ~ P(z) = + and add it to the prototypes set
ie. WO« WOU {z}

2. Compute the distance of each sample to its closest prototype: D2, (z) +
min, cwo D?(z, w)

3. Pick a random sample from X \ W% i.e. z ~ P(z) = Z_D;ﬂ and
J

%n(ﬁj)
add it to the prototypes set i.e. W° «+— WU {z}

4. Tterate 2-3 until N¢ samples have been selected as prototypes.

As shown by the authors, the above procedure dramatically reduce both
the iterations needed by the algorithm to converge and the variance of the
obtained results. Moreover selecting the set of initial prototypes as a subset
of the samples can be effectively used for k-means, k-medoids and even
in kernel space using as a distance measure the euclidean distance in the
transformed space i.e. D?(z,m) = K(z,z) + K(m,m) — 2K (z,m).

2.1.5 Relevant large scale techniques

In order to cope with the growing size of the data sets, several large scale
techniques have been proposed in the literature. We are going to intro-
duce here one rather successful approach, namely the one where the original
dataset is divided into smaller mini-batches. Those mini-batches can be pro-
cessed either sequentially reducing the memory footprint of the algorithm
or in a distributed environment thus introducing significant speedups.
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2.1. Clustering data

With this respect Sculley [40] proposed to use rather small mini-batches
that are sequentially iterated as a series of Stochastic Gradient Descent
(SGD) steps obtaining the following algorithm:

1. Load a random sampled mini-batch M C X
2. Initialize mini-batch labels u; = arg min;|z; — w;|[* Va; € M
3. For all z; € M:

e Select proper cluster j < u

e Update count |w;| |w;|+1
— Ly, + L

e SGD step w; «+ (1 - Jw, + AL

4. Go to 1.

The algorithm is usually iterated for a fixed number of iterations 7' and
proved to work better than a simple online SGD approach. However the
number of iterations 1" may be difficult to estimate a priori and the technique
is intrinsically serial.

Another possibility is the one proposed in the series of works on Patch
Clustering [41, 42] and Kernel Patch Clustering [43] in the context of Neural
Gas (NG) algorithm which can be viewed as a weighted variant of k-means.
There the dataset is divided into larger disjoint mini-batches that can be
processed in parallel on a distributed system with Np nodes, the procedure
follows:

1. Divide the dataset in B disjoint mini-batches
2. Distribute next Np mini-batches, one per node

3. Each node iterates the NG algorithm until convergence on its mini-
batch

4. Gather all the NpNg mini-batches centroids w§, i € [0,Ng] ,j €
[O7NC]

5. Merge such mini-batches centroids into N¢ global centroids w;.

6. Feed w; to the next mini-batches as weighted samples with weights
- [wj]
proportional to N,
7. If there are still unprocessed mini-batches go to 2.

Such kind of strategy has the advantage of being trivially parallel. In the
method proposed by Sculley the merging phase was seamlessly carried out
with the initialization step, here instead an explicit merging phase is needed
since each node outputs an unrelated set of centroids.
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Chapter 2. Unsupervised Learning Applied to Molecular Dynamics

2.2 Building Molecular Dynamics Coarse Grained
Models

In the previous section we introduced the problem of clustering in the general
settings of UL as the problem of finding a discrete representation of the data
in the form of a small number of prototypes. It is therefore obvious how such
problem is relevant in the context of MD simulations where one constantly
faces the issue of defining few macro- or meso-states through which the
system evolves starting from a large set of conformational frames. With
this respect, in the following we are going to discuss how clustering analysis
is indeed performed on MD trajectories in order to obtain coarse grained
models of the underlying process.

2.2.1 MD data sets

As a starting point let us discuss the nature of a molecular dynamics tra-
jectory from the standpoint of the clustering analysis. The first observation
to be made regards the size and the dimensionality of the data, N being
related with the length of the simulation and d = 3N, being related to the
number of atoms N,. With state of the art computational facilities one can
expect N to be in the range [107,10'°] (i.e. microsecond long trajectories
with fs time-step) with N, ranging in between [102,10°] depending on the
application. Of course one has to keep in mind that those numbers are
meant to increase as faster computational platforms will be available.

It is also worth stressing the fact that while the output of an MD sim-
ulation naturally lies on the 3/N,-dimensional vector space spanned by the
Cartesian coordinates of each atom, this may not be a convenient space
to perform clustering. Indeed one is usually interested in conformational
changes within the molecular system regardless any kind of rigid transfor-
mation. A standard distance metric in the field is the Minimum Root Mean
Square Deviation (RMSD) defined as:

N,
1l
RMSD(z;,z;) = rﬁglmlzgl\wﬁ — zh|? (2.9)

where the minimum is taken on the set of all possible roto-translations. In
this sense one may think at molecular conformations as structured graph-
like data where a distance metric is properly defined but an explicit vector
space is not readily available. If needed, an explicit feature space can be
obtained by means of a featurization procedure:

1. Pick a reference frame

2. For each other frame:
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2.2. Building Molecular Dynamics Coarse Grained Models

e Find the best alignment with the reference.

e Compute explicit coordinates as displacement from reference.

This kind of procedure however is biased towards the alignment of the ref-
erence frame and in general does not guarantee a meaningful vector space
where to perform the clustering analysis.

2.2.2 Clustering MD trajectories

From the above considerations one should understand how MD trajectories
are large datasets in an intrinsic unknown high dimensional conformational
space where a pairwise distance matrix can be obtained by means of the
RMSD evaluation.

We already discussed how biomolecular processes of interest usually
evolves through a series of metastable states defined as local minima of
a given Free Energy Surface (FES). Being an MD trajectory obtained by
sampling such FES, a certain smoothness is expected. Given a set W of
prototypical conformations of the system describing those metastable states
one may as well model the likelihood of the MD trajectory by means of a
simple guassian model:

P(X|W) o e~ Sits 557G RMSD? (.2,) (2.10)

Even though such assumption is quite naive, it does help us in selecting a
proper clustering algorithm. In particular the k-means related techniques
discussed in the previous section seems appropriate, solving a minimization
problem in the form of:

N Ng
. 2 .
%HE;D (wi> ;)6 (us, J) (2.11)
This can be viewed as a maximization problem of the likelihood described
by Eq.2.10 with the additional hard assignment of labels provided that one
evaluates distances with the proper RMSD metric. This last requirement
rules out the possibility of using k-means in its standard formulation thus
identifying kernel k-means and k-medoids as two valuable methods.
K-medoids is indeed one of the tools of choice when one looks into the
literature of MD clustering. In particular we highlight in this context the
achievement of Decherchi et al. in [1], where microsecond-long trajecto-
ries of the binding mechanism of a drug, specifically a transition state ana-
logue named DADMe-immucillin-H, to the Purine Nucleoside Phosphorylase
(PNP) enzyme were analyzed. Clustering was there performed with an in-
house version of the k-medoids algorithm presented before and the binding
mechanism was elucidated running a shortest path analysis on the graph of
connected clusters where the edge weights were set to the negative logarithm
of the number of observed transitions.
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Chapter 2. Unsupervised Learning Applied to Molecular Dynamics

2.2.3 Markov State Models

Performing plain clustering on MD is therefore a valuable solution to ob-
tain a coarse grained model of the simulated process. Starting from this
consideration, one may think to use clustering analysis in order to build a
more sophisticated kinetic model where a network of conformational states
is related to a probability matrix describing transitions between them. This
is the aim of a particularly successful class of models known as Markov State
Models (MSMs) [4, 44] .

The main idea behind MSMs is to first construct a reduced dynamics
description by clustering MD trajectories into a large set of microstates and
then to further coarse grain such description in a kinetically meaningful way
in order to build a more understandable macrostates model. The overall
procedure goes as follow:

1. Perform a clustering step e.g. via k-medoids algorithm with RMSD
metric in order to cluster simulation data into microstates (i.e. small
portion of the conformational space with non vanishing probability).

2. Convert the MD trajectory into a time series of microstates labeling
each frame within the simulation with the proper microstate.

3. Build a count matrix C(7) whose elements C;;(7) represent the number
of transitions observed between state i and state j within a lag time
T.

4. Infer a transition matrix T(7) by means of maximum likelyhood anal-
ysis on the count matrix C(7)

5. Coarse grain the model with a second clustering step in order to obtain
macrostates which give clear insights about the kinetic of the process.

It should be clear that the accuracy of MSMs highly depends on the
quality of the initial data set (i.e. how well transitions between microstates
are sampled). However it is worth noting how MSMs can be used to guide
further data acquisition improving the overall sampling. Indeed the count
matrix C(7) can be used to predict the statistical error on T(7) and, con-
sequently, the states that are limiting the accuracy of the model.

2.3 Large Scale Kernel K-means for MD

Above we discussed how clustering represents a valuable technique for MD
trajectory analysis both as a standalone modeling tool and as core procedure
in the more sophisticated MSMs. We also discussed how the requirements
of MD data would suggest kernel k-means as a possible technique of interest

28



2.3. Large Scale Kernel K-means for MD

since firstly it does not require an explicit feature space and secondly, it
recovers standard k-means results as limiting case.

Computational complexity and memory occupancy however are major
drawbacks of kernel based clustering where the size of the kernel matrix
to be stored together with the number of kernel function evaluations scales
quadratically with the number of samples. Such computational burden has
historically limited the success of kernel k-means as an effective clustering
technique. From this considerations we naturally identify the first out of
two main objectives of the thesis.

Purpose of the thesis will be the development of a new clus-
tering engine to perform large scale kernel k-means on High Per-
formance Computing (HPC) facilities. The developed tool will be a
valuable asset not only in MD data analysis but more generally in the con-
text of clustering where the theoretical capabilities of kernel k-means have
been already demonstrated [45].
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Chapter 3

Molecular Dynamics
Inspiring Unsupervised
Learning

In the previous chapter we presented a first connection between Molecular
Dynamics (MD) and Unsupervised Learning (UL) showing how Clustering
techniques can be effectively used in order to learn coarse grained models
that facilitate the interpretation of MD simulations. With this respect, we
defined one of the two objective of the thesis i.e. developing an efficient
large scale clustering engine that meets the requirements of MD data.

In this chapter we will discuss a further, more profound connection be-
tween the two fields of interest showing how not only MD resides within
the applicability domain of UL but how it is also able to inspire totally
new learning problems. As a first step in this direction we will introduce
the concepts of Minimum Energy Path (MEP) and Minimum Free Energy
Path (MFEP) proper of statistical mechanics. In doing so we will state why
they are relevant in the domain of MD simulations and we will discuss the
algorithms available in the literature for computing them. As a second step
we will then give an overview of a closely related problem in the field of UL,
namely the problem of finding Principal Curves (PCs).

As a last point we will discuss how the transposition of the MFEP con-
cept into the domain of UL brings it close to the one of PC. Such discussion
will lead to the definition of a new cognitively sound concept i.e. the one
of Principal Path in data space. The theoretical derivation of an algorithm
to find such Principal Path is identified as the second and final objective of
the thesis thus closing this introductory part.
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3.1 Minimum Energy Path

Let us consider a molecular system evolving according to a given potential
energy U(z) where the state z is a 3N, dimensional vector describing the
cartesian coordinates of all the atoms in the system. The MEP is defined as
the steepest path connecting two local minima of U(z) i.e. z4 and z g, via
a saddle point. It follows by the definition of steepest path that the force
F = —YU(z) has to be tangent to the MEP everywhere. Representing
the path with a parametric curve z(a) ,a € [0,1] one can easily write the
following differential equation:

(VU(z(v)))1 =0 Va € [0,1] (3.1)

which can be solved in order to find the MEP simply adding the two bound-
ary conditions: z(0) = x4 and z(1) = 2.

MEPs are relevant objects in the study of a simulated process of interest
where they are used in the definition of reaction coordinates in order to
quantitatively describe the transitions z 4 <> . It is obvious to observe
that along the MEP the maximum value for the potential U(x) is reached at
the saddle point z, which is usually identified with an intermediate transition
state of the process. The energy differences U(z,) — U(z,4) and U(z,) —
U(zp) describe the activation energy barriers of the reaction and are of
paramount importance for example in the estimate of transition rates.

From all the above considerations it stems the need for computational
tools in order to evaluate the MEP along a molecular simulation. Among
several possible techniques in the following we will limit ourselves to give
an overview on chain of states methods since they will be the ones relevant
for latter discussions. Those kinds of techniques revolve around the idea of
having R replicas of the system z,....zx connected to form a 1D topology.
Such chain of replicas is usually initialized with a simple guess for the MEP
e.g. straight line connecting x4 to zp and it is evolved according to a
dynamics that slowly converges towards a discretized MEP as shown in
Fig.3.1.

3.1.1 The plain elastic band method

The simplest chain of states method is the one known as Plain Elastic Band
(PEB) [46] where the 1D topology among replicas is enforced with a set
of harmonic restraints. In such scenario the global potential energy of the
system is:

A R o Bl
Ulzy,...,z5) = Z Ulz;) + 5 Z(%H —z;)? (3.2)
i=0 i=0

One can now numerically integrate the equation of motions i.e. per-
forming an MD simulation for the connected R replicas evolving according
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3.1. Minimum Energy Path

Figure 3.1: Pictorial representation of chain of states methods for finding
the MEP. The replicas are initialized on a straigth path connecting x, and
xp and evolve towards a piece-wise approximation of the MEP.

to such global potential in order to obtain a discretized approximation to
the MEP. The approach works provided that one is able to select a proper
value for the spring constant k. The choice of an optimal value for such
parameter is not trivial at all as shown in [47], indeed while large values of
k are desirable in order to enforce a smooth curve, small values of k£ are also
desirable in order to do not steer away from the actual MEP.

3.1.2 The nudged elastic band method

In order to solve the problems deriving from the choice of a proper value
for the spring constant k the Nudged Elastic Band (NEB) [47, 48] method
was introduced. The idea behind NEB is quite simple, one starts observing
that the force acting on each replica of a Plain Elastic Band model can be
decomposed in the following 4 contributions:

F'PB —F| + F| + F{ + Ff (3.3)

where the force F' derived from the original potential and the force FX
derived by the harmonic restraints are decomposed along the directions tan-
gent and perpendicular to the path. At this point one integrates out the
contribution of Fy| and Ff thus applying the following nudged force on each
replica of the system:

FNEB — B + Ff (3.4)

As extensively discussed in [47] such modified dynamics enforces the equal
spacing of replicas via F|K . However since such force is acting by construc-
tion in the direction parallel to the path the replicas are not steered away

33



Chapter 3. Molecular Dynamics Inspiring Unsupervised Learning

from the steepest descent dynamics described by F',. It is worth observing
that even though the technique heuristically works as widely demonstrated
in the literature, the physical interpretation of such nudged dynamics is not
clear.

3.2 Minimum Free Energy Path

As discussed in chapter 1, one is usually interested in simulating a system
at a given temperature, thus closely reproducing the conditions observed in
actual experiments. In such setup one is studying the transitions among
thermodinamical states defined as average on finite portion of the available
phase space. Entropy is therefore a relevant factor and the interest is shifted
to Free Energy Differences and Free Energy Paths in order to characterize
the process. Both the above techniques deal with the system in the space
of Cartesian coordinates and therefore seems inappropriate for the task.
Indeed as discussed in chapter 1 the Free Energy Surface (FES) is usually
reconstructed on a set of reduced descriptors i.e. a set of Collective Variables
(CVs) z = (01(z),...,04(x)). In such space the MFEP is defined as the
steepest trajectory connecting two local minimum of the Free Energy z4
and zp via a saddle point.

It is possible to demonstrate that in the CVs space the constitutive
equation 3.1 can be written as:

(M(2(t))V=F(2(t))L =0 (3.5)

with boundary conditions z(0) = z4, z(1) = zp where M(z) is the average
jacobian of the transformation z = (01(x),...,04(x)). We will now briefly
discuss a chain of states method to evaluate the MFEP common in the field
of MD, namely the String Method.

3.2.1 The string method

The string method as introduced in [49] looks for the MFEP starting from
an initial guess and then evolves a simple steepest descent dynamics derived
by Eq.3.5 on each replica z; of the system i.e.

2 < 2 — A (M(2;) V2 F(z;)) L (3.6)

It should be clear that at each iteration of such procedure one needs
to evaluate the the mean force —V,F(z;) and the jacobian M(gz;) for ev-
ery replica. This can be done for example with a set of restrained MD
sjmulations where the total potential energy of each replica is given by
Ulz;) = Ulzy) + k(0(z;) — 2;)*
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The authors of the method also suggest to introduce a smoothing step
in order to prevent abrupt fluctuations of the path i.e.

2 (1—=s8)z; + g(éiq + 2i41) (3.7)

with s € [0, 1] being a smoothing parameter to be set.

At last one can introduce a further reparametrization step in order to
enforce an equally spaced sampled path. The overall 4 steps procedure can
be summarized as:

1. Estimate —V,F(z;) and M(z;) Vi.
2. Evolve each replica according to Eq.3.6.
3. Prevent abrupt fluctuations applying Eq.3.7.

4. Reparametrize the curve enforcing equal arc-length among subsequent
replicas.

More sophisticated approaches were then developed starting from this
idea in order to improve the sampling process needed for the estimates of
—V_,F and M (see e.g [50]) however for the sake of our future discussions
the simple formulation above is sufficient. We close this section recalling
that in the same work the authors also prove that the MFEP coincides with
the maximum likelihood reaction path thus highlighting its importance in
the context of theoretical and computational chemistry.

3.3 Principal Curves

Let us now leave aside the problem of finding MEP and MFEP in the context
of molecular simulations to focus instead on a related problem in the litera-
ture of UL, namely the problem of finding PCs. PCs were intuitively defined
by Hastie [51, 52] as smooth one-dimensional curves that pass through the
middle of the data. A mathematically formal definition was also given by
the same author introducing the concept of self consistency that we are going
to review now.

Let us consider a set of sampled data z; € R?, and a parametric curve
f(c) lying in the same space. We define the projection index a(z;) as the
value of « for which f(a) is closer to z; i.e.

ay(z;) = infllz; — £(@)] (3.8)

Then a curve f(t) is called self-consistent or PC if E(z|a¢(z) = o) =
f(a)Va ie. if the expected value of the data projection onto the curve
coincide with the curve itself. Such definition naturally leads to the following
Hastie-Stuetzle two step procedure for finding PCs starting from an initial

guess io(oz):
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1. Compute projection indices af:(z) = infq||z; — f*(@)]|
2. Update the curve f“(a) = E(z|asp(z = a))

where one continuously updates each point of the curve with the expected
value of the samples projecting onto it until a stopping condition is met.
Such algorithm however may work just in the hypothetical case of an infinite
sample size and cannot be applied in practice as it is. Indeed in a finite
sample case one can expect at most one data point to project on a given
« of the curve resulting in the impossibility of performing the expectation
step. Moreover some sort of discretization of the curve is needed in order to
deal with a finite number of parameters. Several successful algorithms have
been proposed in order to deal with both those problems starting from the
original idea of Hastie and Stuetzle, see among others [53, 54, 55]. In the
following we will focus our attention on two popular techniques where a set
of prototypes W = {w;, }, connected to form a one-dimensional topology, is
optimized to find the PC.

3.3.1 Elastic maps

Elastic maps [56, 57, 58] were developed as systems of elastic graphs opti-
mized in data space to find low dimensional data embeddings. The output
of such methods is in the form of regular grids in data space that can effec-
tively approximate non-linear principal manifolds in the Hastie and Stueltze
sense.

Let G be an undirected graph with N¢ vertices v; and a set of edges
E. We now introduce the map ¢ : V — R? as a function which embeds
the graph vertices into the data space R%. The approximation energy of the
map is defined as:

N N¢

Ua(G.X) =Dl — é(v)]*6(ui, ) (3.9)

i=1 j=1

By analogy with the k-means cost function introduced in the previous chap-
ter we will refer in the following to w; = ¢(v;) as to the prototypes of the
map. Let us now introduce the elastic energy and the bending energy of the
map defined as:

Up(G) = Z Aillp(ei(0)) — ples(1))]]%,

e k (3.10)
Us(G) = > millD_ (s;(i)) — k(s;(0))] ]
s, €8k i=1

where S* is a family of k-star sub-graphs of G.
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In their most general form elastic maps deal with the minimization of
the following global energy:

U(G) = Ua(G,X) + Ug(G) + U(G) (3.11)

Vi e;(0) e(1) si(1) si(0) si(2)

(@ @ | o 0 0

(b)

Figure 3.2: (a)Schematic representation of the constitutive elements of a
one-dimensional elastic map i.e. vertices v;, edges e; and 2-star subgraphs
si. (b) Schematic representation of a one-dimensional elastic map for PC
learning.

For the purpose of PC Learning elastic maps are usually used considering
a one dimensional chain with only 2-star contributions as shown in Fig.3.2
. Therefore the optimization problem to be solved has the following form:

N Ne
. 2 .
mind D llz; - wl*o(u, )+
=1 j=1
Ne—-1 Ne—1
+ Z Aillwg g — wyl[*+ Z pillwi_y + wiy — 2wl * (3.12)
i1 =2

The authors propose an Expectation Maximization (EM) procedure similar
to the one used in standard k-means clustering where 1) the labels u! are
computed for a given set of prototypes and 2) the updated prototypes Wit!
are obtained minimizing Eq.3.12 given u!. Such two steps are iterated until
a given stopping condition is reached e.g. the change in the cost function
becomes less than a small value e.

One can immediately recognize how Eq.3.12 is a regularized form of the
standard k-means minimization problem where the set of 2No — 3 regular-
izing parameters {\;, 1;}Vi € [1, N¢ — 1],V¥j € [2, NC — 1] is introduced.
The major drawback of elastic maps has to be found precisely in the large
number of such parameters resulting in a too wide solution space and in the
lack of a proper model selection framework to set them.
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3.3.2 Self Organizing Maps

Probably one of the most widely used frameworks to learn principal mani-
folds is the one of Self Organizing Maps (SOMs) that we are going to intro-
duce here.

The method was originally proposed by Kohonen in [59] as a competitive
learning procedure to train a neural network where each neuron has a weight
vector w; € R? and is connected to the other neurons according to a given
neighborhood set N;.

The stochastic training process goes as follows:
1. Select a random data sample z;

2. Find the best matching neuron u; = arg min;||z; — w,||*
3. Update the best matching neuron and its neighborhood set according
to:

t+1 __ t .
wi™ = (1= Nwj +Az; ,A€[0,1] ,j € Ny, (3.13)

If one sets the neighborhood set to be equal to N; = {w;_1, w;, w;,} it is
clear how such procedure describe the evolution of a one-dimensional chain
of prototypes in data space, where the prototypes are the actual weight
vectors of the neurons. As pointed out by Kegl in [60], even though the
method was developed in the context of competitive neural networks, one-
dimensional SOMs can be effectively used in order to approximate PCs in
the Hastie-Stuetzle sense. However, it is worth stressing the fact that a
major short coming of SOMs is the absence of an objective function to be
minimized. Indeed the learning procedure it is completely heuristic and a
functional formulation cannot be found [61].

3.4 From MFEPs to Principal Paths in Data Space

We will now discuss how the concepts introduced in this chapter can be
jointly used to intuitively define the notion of Principal Paths in data space.
Let us start observing that MEP techniques relies on the knowledge of the
underlying potential energy of the system U(z) in order to simulate a set of
replicas along the path. Similarly, algorithms for finding the MFEP relies
on the ability of sampling the equilibrium distribution e #7(2) around the
path by means of MD simulations. In both cases such techniques are on-line
procedures where the path is optimized together with a set of replicas of the
system.

Let us now change perspective, assuming that a set of samples was gen-
erated beforehand for example by means of a long MD simulation. How can
we now define energetically relevant paths in such data space?
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1. In analogy to the MEP and the MFEP, an energetically relevant path
in data space have to be defined in relation to fixed boundary condi-
tions i.e. fixed starting and ending samples z 4 and z 5.

2. Since the MFEP is the maximum likelyhood reaction path, it will also
be the most probable transition path z4 — zp to be sampled along
a dynamic simulation. We can speculate that, no matter how rare
such transition is, if it is observed (and the CVs are proper smooth
descriptors of the system) then the samples produced will populate
contiguous regions of the data space. An energetically relevant path
in data space therefore have to pass through those populated regions.

Starting with this two observations, we can intuitively define the notion
of Principal Path in data space as a smooth path connecting a starting sam-
ple 24 to an ending one x5 locally passing through the middle of the data.
A Principal Path can be thought of as a local version of the PC where local
means that a valuable path may be found that passes through just a subset
of the data.

Purpose of the thesis will be the formalization of such intuitive
definition introducing both a functional that embeds the notion
of Principal Path and an effective optimization algorithm. The
developed technique will be a valuable tool both in MD where it can be used
to infer coarse grained models out of long trajectories and, more generally,
in the context of manifold and topological methods, a branch of UL with
growing interest [20].
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Chapter 4

Distributed Kernel K-means

The first three chapters of the thesis served to shape a challenging, multidis-
ciplinary research field, namely the one formed by the cross contamination
of Molecular Dynamics (MD) and Unsupervised Learning (UL). Within the
realm of computational chemistry we showed in chapter 1 how MD is an
effective in-silico tool to generate large collections of molecular conforma-
tions. In the same chapter we then explained how the urge to organize such
data into coarse grained readable models brought MD into the applicabil-
ity domain of UL techniques, in particular of clustering. Among several
possible algorithms we discussed how kernel k-means represents a favorable
choice in this context, without requiring an explicit vector space for the data
and having a simple definition of clusters (that matches the nature of MD
trajectories).

We enter, with the following chapter, the details of our original contribu-
tions to the field. Hereafter we introduce a novel clustering engine, namely
Distributed Kernel K-means (DKK), to perform large scale kernel k-means
clustering. A two-fold approximation technique is presented to tackle the
well known O(N?) scaling of exact kernel methods. We then show how
such approximation technique, can be effectively parallelized entering in the
details of an ad hoc distribution strategy. As it will be clear, the twofold
approximation introduced is controlled via two straightforward parameters:
the number of mini-batches B and the sparsity degree of the centroid rep-
resentation s. These two knobs allow the user to finely adapt the algorithm
to the available computational resources in order to cope with virtually any
sample size.

Throughout the chapter the following notation will be used:

e N is the number of samples.
e N¢ is the number of cluster prototypes.

o ¢(): R~ R is the possibly non-linear transformation mapping the
d-dimensional input space into a d’-dimensional transformed one.
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e X is the N x d matrix of samples x; arranged in a row wise fashion
i.e. XL. = Ty.

e K is the N x N kernel matrix defined as K; ; = (¢(z;), ¢(z;)).

e W is the N¢ x d’ matrix of cluster prototypes w, arranged in a row
wise fashion.

e |w;| represents the cardinality of the i-th cluster.

e u; € [1, N¢] is the label associated with the i-th sample z;.

4.1 The base algorithm: kernel k-means by Zhang
and Rudnicky

As a starting point we briefly present here a reformulation of the Expectation
Maximization (EM) procedure to minimize the kernel k-means cost function
in terms of the cluster compactness g (1 x N¢) and the average cluster
similarity F (N x N¢). B

For the sake of clarity let us recall the kernel k-means cost function
introduced in chapter 2:

N Ng

QX W) =D [lo(z;) — w1 *0(us, 5)

i=1 j=1

For a given cluster j we define the compactness as:
1 . .
95 = jZKz,mé(uz,M(um,J) (4.1)
whereas the average similarity of a sample ¢ with a cluster j is given by:
1 .
Fij=—=> Kiib(u,j) (4.2)
|wj| 4
With these definitions, the EM minimization procedure for kernel k-means

can be written as:

W41 <= argming gj e — 2F(; j) 4
git+1 ﬁ >t Km0 (W41, 3)6 (W t+1, 5) (4.3)
Flajyeer < oo 200 Kid (ureen, 5)

and the medoid approximation for a given cluster prototype j can be rewrit-

ten as:

¢_1(wj) ~m; = arg ;ng% K, —2F;; (4.4)
)
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Such reformulation of the kernel k-means algorithm was originally pro-
posed by Zhang and Rudnicky [62] to reduce the memory footprint of the
kernel matrix allowing disk caching. As we are going to show, we took
advantage of the same formalism to design an efficient distribution strategy.

4.2 A new two-fold approximation to kernel k-
means

We introduce in this section a novel two-fold approximation for the kernel
k-means minimization algorithm. First, we introduce a mini-batch approach
that reduces the computational cost of a factor B with % being the mini-
batch size and B the actual number of mini-batches. An a priori sparse
representation for the cluster centroids is then discussed allowing for a fur-
ther reduction in the computational cost of a factor % with s < 1 being
related to the sparsity of the representation. The action of such two-fold ap-
proximation on the number of kernel elements to be evaluated is illustrated
in Fig.4.1(c). One should immediately appreciate also how, reducing the
number of such element also the memory footprint of the algorithm will be
dramatically reduced.

Remark about the notation used: in the following, a superscript iden-
tifies a specific mini-batch quantity, when no superscript is used the quantity
has to be intended as a global quantity. As an example, Q;- represents the
J-th cluster prototype for the i-th mini-batch whereas w; is the j-th global
cluster prototype obtained combining the partial results of all mini-batches.

4.2.1 Mini-batch approximation

Our primary approach to reduce the O(N?) complexity coming from the
kernel matrix evaluation consists of splitting the dataset into disjoint mini-
batches that are processed one after the other. The procedure can be sum-
marized by the following steps that will be carefully explained in the subse-
quent paragraphs:

1. Fetch one mini-batch at a time (until all data is consumed).

2. Evaluate the mini-batch kernel matrix and initialize the mini-batch
labels.

3. Tterate kernel k-means EM-procedure on one minibatch and collect
results.

4. Merge together current minibatch results to global results with a proper
strategy and go to step 1.
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(a) (b)

foriin0, B-1

evaluate kernel

Initialize labels ‘

up to convergence

N
B

kernel k-means \

find minibatch medoids

find global medoids

Figure 4.1: (a) Pictorial description of the algorithm to highlight its dou-
ble loop structure. The iterations of the outer loop are fixed once B is set
whereas the inner loop runs up to convergence. (b) Visualization of two pos-
sible sampling strategies to divide the dataset into mini-batches. (c¢) From
left to right we visualize the effect of the two-fold approximation proposed
on the number of kernel matrix elements that need to be evaluated. With
standard kernel k-means the symmetry of the matrix can be exploited to
evaluate just NTQ elements, introducing the mini-batch approximation one
needs to evaluate N x % elements, introducing also the a priori sparse rep-
resentation of cluster centers the number of kernel evaluations is cut to

N
NXSE.

Fig.4.1(a) shows a pictorial description of such algorithm highlighting
its hierarchical structure. A pseudo code for the entire procedure is also
provided in Alg.1 at the end of this section.

Mini-batch fetching The first sensible choice to be made, regards the
way in which the dataset is divided in B disjoint mini-batches of size %. A
variety of possibilities arise, we present here two common reasonable sam-
pling strategies.

Let us assume that the dataset X = {xz;, ...,z } is generated by a dis-
crete time process X; sampled at time ¢ = {At, ..., NAt}. For example this
is exactly the case of conformational frames obtained in a standard MD sim-
ulation. In such situation one can expect the autocorrelation of the process
to decay after a lag time 7 > At suggesting a stride sampling strategy of this
kind: X' = {z;,;p},j € [0, X —1]. This first approach suggests to split the
data using a striding strategy to assure the best data distribution strategy
among the mini-batches. This however requires waiting for the end of the
simulation to start the clustering process.
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A second way to approach the sampling is to feed the algorithm with a
data stream; in such situation a simpler block sampling strategy is desirable
in order to begin the clustering procedure as soon as the first % samples are
received i.e. X! = {gi%ﬂ.},j € [0, % — 1]. Obviously this second strategy
has the drawback that each mini-batch is time-consistent and, as such, the
sampling on each mini-batch is rather partial.

We will discuss within the experimental section the effects of those two
choices in a worst case scenario (a concept drift case).

Kernel evaluation and mini-batch initialization Once a mini-batch
is fetched, it is straightforward to evaluate the mini-batch kernel matrix K°
. . N2 . oy s .
with a computational cost of O(5z). Let us now discuss how it is possible

to initialize the i-th mini-batch labels. We distinguish two cases:

i =0 : during the first mini-batch the global cluster medoids have to
be selected randomly or by means of some rational. We propose here to use
the kernelized version of the popular k-means++ initialization scheme as it
was introduced in chapter 2

1 # 0:  Starting from the second mini-batch the global cluster medoids
M = {m; ~ ¢ '(w,)} obtained at the end of the previous iterations are
used for the initialization. Simply assigning each new sample to its closest
global medoid we obtain:

uj = arg mjinnmf) — my||? (4.5)

J

Such initialization step automatically allows to keep track of the clusters
across different mini-batches. Indeed the global j-th medoid obtained at
the end of the (i — 1)-th iteration is used as initialization for the same j-th
cluster of the i-th mini-batch. This avoids ambiguity also when the partial
mini-batch result has to be merged with the global one: the mini-batch
medoid mé- will be combined with the global medoid m; having the same
index j.

It should be understood that in order to evaluate the second term of
such equation one has to perform additional computations. Indeed one has
to compute the kernel function for all the pairs (gf,mj) where g} belongs
to the i-th mini-batch and m; is a global medoid coming from the previous
(1 —1) mini-batches. It is therefore clear that the initialization phase of each
mini-batch requires an auxiliary kernel matrix K’ of size % x N¢ computed
evaluating K (z,m) Yz € X*,m € M.
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Mini-batch inner EM loop Given a mini-batch kernel matrix K* and
an initial set of labels gg, equations 4.1 - 4.3 are used to perform a Gradient
Descent (GD) optimization of the reduced cost function:

N¢
QX, W) = > llé(a;) — wil*a(us, 1) (4.7)

z;€X =1

A final set of labels u’ is obtained as a result of such optimization procedure.
It is worth stressing the fact that at this point the set of mini-batch cluster
prototypes is not explicitly known. As a matter of fact, even though we could

formally write the equation: w} = @Zzlexi o(2))0(u, j),7 € [1, N¢l,

without knowing the explicit form of ¢, we would not be able to evaluate it.
As a solution, we propose a medoid approximation as introduced in chapter
2 for standard kernel k-means. Therefore we set the cluster prototypes to
be equal to:

wj = ¢(mmj) : mj = arg min |6(z,) - wil® (4.8)
More sophisticated approaches based, for instance, on a sparse representa-
tion of cluster centers are possible (e.g. see [40]). However the inherent
additional computational cost and the satisfactory results already obtained
by means of the simple medoid approximation discouraged us to further
investigate this possibility.

Full batch cluster centers update We discuss now on how to merge
the medoids M? of the i-th mini-batch together with the global medoid set
M.

Let {w; = ¢(m;)} be the global medoids obtained from the (i —1) previ-
ous iterations of the outer loop and let {w; = qﬁ(m;)} be the approximated
cluster centers for the current ¢ — th mini-batch. We propose to obtain the
resulting global cluster prototypes as a convex combination of the two:

w; + (1= a)p(my) + ag(m;) (4.9)

Practically, since Eq.4.9 cannot be evaluated directly, we introduce a second
medoid approximation as already done in the previous paragraph so that:

wj + ¢(m;) : m; = arg xmi)lgi||¢(£z) — (1= a)p(m;) — ap(m})|*  (4.10)
z;

The choice of this convex combination stems from a simple but important

observation; indeed in order to choose the coefficient « let us consider the

updating equation for the global cluster center w; at the second iteration of

the algorithm, when the first two mini-batches are merged in a single one

(assuming this is the complete dataset):
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1 .
Wi =15 1 Z d(2;)0(ui, )
@'H—@j z;€X0UX!
|w]| . |wj
11O a0 L] 12,0 Z o(z ,J)+ o0 LIl 1 Z P(z;)0(ui, j)
~ Tl Hw et P |+|w Hw =,
’w 0 ’w
S L I R
w0 T
(4.11)
We therefore set a = % so that, if each mini-batch is labelled
Wil +w,

correctly at the end of the EM minimization, we retrieve the correct result
i.e. same cluster medoids as for full batch kernel k-means.

Empty clusters We close this subsection with a remark about empty-
clusters. Indeed it is not guaranteed that along inner loop iterations there
will be at least one data sample per each cluster. This is a well known k-
means issue and several strategies to deal with such empty-clusters problem
are possible e.g. randomly pick a new cluster prototype or reducing N¢.

Here we propose the following: if a given cluster j is found to be empty
at the end of the i-th mini-batch iteration then its global prototype will not
be updated i.e. w; ¢(m§»_1). It is worth noting that this kind of strategy
is naturally embedded in the definition of « since for @;]: 0 we have a =0
and Eq.4.9 guarantees the correct single batch behavior.

4.2.2 Sparse representation of cluster centroids

In the previous paragraph we introduced a simple yet powerful mini-batch
approximation which allowed us to reduce the number of kernel evaluations
down to N %. Here, we show how we can further reduce the complexity of
the algorithm by means of an a priori sparse representation of the cluster
centroids. As discussed in chapter 2 this approach was first introduced by
Chitta et al. [36] in the context of standard kernel k-means. We recall here
that such technique relies on the simple observation that the full kernel ma-
trix is required at each iteration of the kernel k-means algorithm because the
cluster centers are represented as a linear combination of the entire dataset.
However the number of kernel elements to be evaluated can be drastically
reduced if one restricts the cluster centers to a smaller sub space spanned
by a small number of landmarks i.e. data samples randomly extracted from
the dataset.

We illustrate here how we can reformulate the same idea within the
framework of our algorithm introducing a sparse representation for clus-
ter centroids at each mini-batch itereation. In order to do so let us recall
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Algorithm 1: Mini-batch kernel k-means pseudocode

input: dataset X, number of clusters N, number of mini-batches B
output: medoids M, labels u

1 for i+ 1to B do
2 X' < samples fetched from X \ X/<
3 K! < precompute mini-batch kernel matrix
4 if i ==1 then
5 M < initialize according to kernel k-means—++
6 end
7 u' «+ assigned according to nearest neighbor medoid among M
8 t<+<0
9 while u} # u} , do
10 g' + update according to Eq.4.1
11 F? < update according to Eq.4.2
12 Ei+1 <+ reassign according to FEq.4.3
13 t—t+1
14 end
15 M’ <+ medoid approximation according to Eq.4.4
16 | M« aM+ (1 —a)M
17 end

18 u < assigned according to nearest neighbor medoid

that while performing kernel k-means on each mini-batch we are implicitly
carrying out the following M-step:

N
W) T > dlah)d(ul,, 5), Vi € [1,Nel
—7' m=1

Now all we have to do is to restrict the above summation on the subset
m:z,, € L' where L' = {lz,...,lm} is a set of |L| landmarks uniformly
sampled from the mini-batch.

Lj ey

The update equation for the mini-batch labels will be:

267, )] (4.12)

7 NS
Uy 4= arg Min(g; —

where QZ and F' are the approximate mini-batch clusters compactness and
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mini-batch clusters similarity respectively:

g = ‘2 > K 0(uiy, 5)5(ul, 5) (4.13)

m,n€L’

Wn leL
It should be clear from Eq. 4.13 and Eq. 4.14 that the number of
kernel evaluations needed to run such approximated algorithm is now N s%,
where the key parameter s is the fraction of data used for the cluster centers
representation in each mini-batch defined as:
L]
=—B 4.15
=1 (4.15)
As already stated in the introduction of the chapter s, together with B,
act like knobs that control the degree of approximation of the procedure
with respect to standard kernel k-means. In the experimental section we
will discuss on how to pick proper values for these parameters according to
the available computational resources.

4.3 An efficient distribution strategy

We discuss here how the nature of the previously introduced algorithm is
particularly suited to be implemented on systems with a distributed ar-
chitecture. Let us focus on the distribution strategy for the inner loop of
our algorithm analyzing how both data and computations can be effectively
scheduled across multiple nodes. We decide here to express the parallelism
via a message passing approach, where each node is a peer without a master
node.

The primary concern is to decompose the kernel matrix so that the eval-
uation of its O(%) elements is evenly distributed across the nodes. Several
choices are possible and a few observations about the way these kernel ele-
ments are used across the algorithm are needed before detailing our choice.
As already discussed in section 4.1, the whole iterative procedure to up-
date the set of predicted labels minimizing the kernel k-means cost func-
tion can be expressed in terms of the average cluster similarity Fj,j,Vi €
0,..., %,j €0,...,N¢c — 1 and the cluster compactness g;Vj € 0,..., No — 1.
Both quantities can be expressed as partial summations of kernel matrix
elements, where the elements to be summed are selected according to the
labels via d(u;, j). One should note that g does not scale with the size of
the input whereas F scales linearly with %. Therefore, in order to design a
proper data distribution pattern, we consider how to scatter the computa-
tion of such second quantity minimizing the communication overhead. From
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(a)

node 1

node 2

080 0] 1

node p

K K FooU

=1
@ e
=

K(p) . F(p) . F(p).

allreduce g =~ e allgather U mo—
U e g(p):| g(p)—

Figure 4.2: (a) Distribution scheme for the principal quantities needed to
complete an inner loop iteration. Each node holds a set of entire rows for
K, K, F and u. Each node holds a local copy of g too, however the local
information about this vector is partial. The overall information can be
retrieved by means of an all-to-all reduction. (b) From left to right the
main steps of an inner loop iteration are illustrated. At first, each node is
computing its portion of F together with a partial g(p) starting from its
K(p) and u(p). Then, the global g is retrieved with an all-to-all reduction
step. In the third stage each node uses that information together with F(p)
to compute its slice of u. As a final step an all-to-all gathering step spread
the updated labels across the network. At this point it is possible to go on
with the next iteration as all the information needed is available to each
node. It is worth noting how, along the entire procedure, all the nodes are
peers ensuring automatically a good workload balance.
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Eq. 4.2 it should be clear that the summation to compute the i-th row of
F runs just over the i-th row of K, this naturally suggests us a row wise
distribution strategy. Considering a system with Np nodes, the workload is
divided so that each node p accounts for the computation of K;; and Fj;
Vi€ [0,%),i € [pph=: (P + 1) gh=). L € [0, No).

The full data distribution scheme is presented in figure 4.2(a) and the
resulting algorithm is detailed via pseudo code in Alg.2. The advantage
of such approach mainly consists in the reduced communication overhead.
Indeed, for each iteration of the inner loop two communication steps are
sufficient, involving a reduction of the cluster compactness g together with
a gathering step for the updated labels u. The kernel matrix K as well as
the average cluster similarity F always reside locally to the node and they
never go through the network. Per node communications and computations
are detailed in figure 4.2(b) and table 4.1.

Algorithm 2: Distributed mini-batch kernel k-means pseudocode for
node p

input: dataset X, number of clusters N¢o, number of mini-batches B
output: medoids M, labels u

1 for i+ 1to B do
2 X' < samples fetched from X \ X7<
3 K'(p) + precompute mini-batch kernel matrix
4 if i ==1 then
5 ‘ M < initialize according to kernel k-means+-+
6 end
7 u’(p) < assigned according to nearest neighbor medoid among M
8 t<+0
9 while u} # u} , do
10 allgather u} // sync
11 gi(p) <+ update according to Eq.4.1
12 Fi(p) < update according to Eq.4.2
13 allreduce sum g // sync
14 yi_i_l <+ reassign according to Eq.4.3
15 t+—1t+1
16 end
17 M¢(p) + medoid approximation according to Eq.4.4
18 allreduce min M; // sync
19 M + aM + (1 — a)M!
20 allreduce min M // sync
21 end

22 u < assigned according to nearest neighbor medoid
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Algorithm step Memory Operations Comm.
. N2 N2
K evaluatlon BTZVP DBT]VP -
N N2
F, g update TJVPNC B2Np NC
u reassignment % BLNPNC BLNP
medoid approximation N¢ B—%PNC N¢

Table 4.1: Complexity analysis of the distributed mini-batch algorithm,
the factor D introduced in the number of operations for the K evaluatoin
accounts for the complexity of the kernel function and the relative distance
metric. As an example, the number of operations while using an euclidean
based kernel scales linearly also with the dimensionality of the data d.

The memory footprint can be easily computed and amounts to Q(BLNP (%

N¢) + % + 2N¢) where @ is the size of variables expressed in Bytes, this
is a central quantity because in a real application scenario once fixed the
computational resources i.e. amount of memory available per processor R
and the number of processors Np, it allows us to compute the minimum
number of mini-batch that can be used to process the entire dataset:

2N

Bmin -

- — ? —— (4.16)
—(E+ D)+ /(E+1)7 -8 + &

An upper bound for the message size per node can also be easily given
by Q(% + 2N¢). This however represents a worst case scenario, where
the entire set of labels v are communicated at each step, instead of commu-
nicating just the ones that were actually updated.

The computational complexity of the proposed implementation grows
as O(BN—]\?P) and it is dominated by the kernel matrix evaluation step as it
should be clear from table 4.1. It is worth stressing the fact that we decided
not to exploit any kernel matrix symmetry because that would have resulted
in the impossibility of pursuing our row-wise data distribution scheme and
additionally it would have hindered the possibility of using non symmet-
ric similarity functions. Moreover, exploiting the kernel matrix symmetry
would have resulted in a non trivial addressing scheme, unsuitable for the
limited memory addressing capabilities of accelerators such as general pur-
pose GPUs (gpGPUs). However this increased memory footprint is largely
compensated by the approximation strategy in performance terms.
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4.4 Discussion

As discussed in the introduction, more specifically in chapter 2, mini-batch
approaches are not new in the clustering community and encountered a
great success when applied to standard k-means [40]. In his work, Sculley
showed how a mini-batch Stochastic Gradient Descent (SGD) procedure
converges faster than regular GD. However he proposed to set the size of
mini-batches to a rather small value, namely ~ 103, and to fix an a-priori
number of iterations for the algorithm. Our suggestion here is quite different,
indeed the number of iterations is by construction equal to the number of
mini-batches B in order to exploit the entire dataset. Moreover, a major
difference with the SGD procedure proposed by Sculley is here represented
by the inner loop. We actually believe that iterating each mini-batch up to
convergence can lead to a better minimization of the cost function and to
a less noisy procedure. To prove this point in the experimental section the
reader can find a comparison between the here proposed algorithm and the
mini-batch SGD procedure proposed by Sculley.

We stress also the fact that our parallelization approach is rather differ-
ent when compared to parallel patch clustering algorithms [42] as they were
discussed in the introductory chapter. Indeed, we don’t parallelize across
mini-batches assigning one mini-batch per node. Instead, we parallelize the
iterations within each mini-batch thus allowing the algorithm to better cope
with large sample size. In Fig.4.3 one can better appreciate such difference
in a scenario where the available computational resources are limited with
respect to the size of K. In such realistic case of application it is evident
how our algorithm provides a better approximation to the single-batch re-
sult. Indeed the DKK algorithm, being able to distribute the K* partial
kernel matrix over the entire network of nodes can cope with significantly
larger mini-batches of the data per iteration.
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PATCH

DKK

1stjter 1stiter

Available resources

v LSl v Gather medoids

Gather results

node 3 node 4

2nd jter

Vv
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Figure 4.3: Graphical representation of the two different mini-batch par-
allelization approaches of Patch clustering and DKK. A system of 4 nodes
with limited amount of memory per node R,, (represented as the area of the
central gray squares) is taken into consideration with respect to a kernel ma-
trix K (in blue) that requires 16 R,, available memory. In order to cope with
such matrix the Patch algorithm requires a subdivision of the data into 4
small mini-batches and runs in a single trivially parallel iteration. The pro-
posed DKK algorithm when dealing with the same matrix is able to gather a
global results in two iterations, requiring however just 2 larger mini-batches.
The quality of the global clustering result is expected to be higher for the
DKK algorithm since it take into consideration N72 kernel elements whereas
thze patch algorithm take into consideration a smaller fraction of them i.e.
N

4

56



Chapter 5

GPU Accelerated DKK for
Clustering MD Data

In the previous chapter we introduced a novel clustering engine, namely Dis-
tributed Kernel K-means (DKK). We showed how starting from a proper
reformulation of the original kernel k-means algorithm is possible to devise
an efficient distribution strategy that together with the proposed tw