
Design and HPC Implementation of

Unsupervised Kernel Methods in the

Context of Molecular Dynamics

PhD Thesis for the Course in:
Science and Technology for Electronic and

Telecommunication Engineering

Marco Jacopo Ferrarotti

supervised by
Dr. Walter Rocchia
Prof. Rodolfo Zunino

February 28, 2018
Genova, Italy

Abstract

The thesis represents an extensive research in the multidisciplinary domain

formed by the cross contamination of Unsupervised Learning and Molecular

Dynamics, two research fields that are coming close creating a breeding

ground for valuable new concepts and methods.

In this context, at first, we describe a novel engine to perform large scale

kernel k-means clustering. We introduce a two-fold approximation strategy

to minimize the kernel k-means cost function in which the trade-off between

accuracy and execution time is automatically ruled by the available system

memory. Moreover, we define an effective parallelization scheme well suited

for GPU endowed state-of-the-art parallel architectures.

We prove the effectiveness of the method testing a working MPI - CUDA

implementation on standard Machine Learning datasets and on an Molecular

Dynamics real-case application scenario.

Secondly, we introduce the concept of principal paths in data space. Those

paths can be interpreted as local Principal Curves and in the statistical me-

chanics realm correspond to, possibly Minimum, Free Energy Paths. Here

we move that concept from physics to data space and derive a regularized

k-means algorithm to compute them in the original and kernel space. In this

fully unsupervised environment, we successfully apply the Bayesian frame-

work of evidence maximization to perform in-sample model selection on the

introduced regularization parameter.

We apply the method to standard Machine Learning datasets, dynamical

systems and in particular on Molecular Dynamics trajectories showing the

generality, the usefulness of the approach and its superiority with respect to

other related techniques.

3

Contents

I Introduction 9

1 Scope of the Thesis 11

1.1 From simulations to human interpretable models 11

1.2 Molecular Dynamics . 12

1.3 Unsupervised Learning . 15

1.4 Outline of the thesis . 18

2 Unsupervised Learning Applied to Molecular Dynamics 19

2.1 Clustering data . 19

2.1.1 K-means Algorithm 20

2.1.2 Kernel K-means Algorithm 21

2.1.3 K-medoids Algorithm 23

2.1.4 The initialization problem 24

2.1.5 Relevant large scale techniques 24

2.2 Building Molecular Dynamics Coarse Grained Models 26

2.2.1 MD data sets . 26

2.2.2 Clustering MD trajectories 27

2.2.3 Markov State Models 28

2.3 Large Scale Kernel K-means for MD 28

3 Molecular Dynamics Inspiring Unsupervised Learning 31

3.1 Minimum Energy Path . 32

3.1.1 The plain elastic band method 32

3.1.2 The nudged elastic band method 33

3.2 Minimum Free Energy Path 34

3.2.1 The string method . 34

3.3 Principal Curves . 35

3.3.1 Elastic maps . 36

3.3.2 Self Organizing Maps 38

3.4 From MFEPs to Principal Paths in Data Space 38

5

Contents

II Developed Methods 41

4 Distributed Kernel K-means 43

4.1 The base algorithm: kernel k-means by Zhang and Rudnicky 44

4.2 A new two-fold approximation to kernel k-means 45

4.2.1 Mini-batch approximation 45

4.2.2 Sparse representation of cluster centroids 49

4.3 An efficient distribution strategy 51

4.4 Discussion . 55

5 GPU Accelerated DKK for Clustering MD Data 57

5.1 Offload acceleration strategy 58

5.2 Fast RMSD kernel evaluation with CUDA 58

5.2.1 The QCP algorithm for minimum RMSD 60

5.2.2 Design of an effective CUDA implementation 61

5.3 Implementation parameters 65

5.4 Discussion . 66

6 A Principal Paths Finding Algorithm in Kernel Space 69

6.1 The cost function . 70

6.2 EM optimization . 73

6.3 EM optimization algorithm in kernel space 74

6.4 Approximated algorithm in kernel space 76

6.4.1 Approximation up to O(s2) 76

6.4.2 Approximation by fixed point iterations 78

6.5 Manifold selection: filtering data 81

6.6 Model selection via Bayesian evidence maximization 82

6.6.1 From cost minimization to posterior maximization . . 82

6.6.2 Bayesian interpretation of γ and λ 85

6.6.3 Numerical evidence evaluation in Linear Space 87

6.6.4 Numerical evidence evaluation in Kernel Space 89

6.7 Discussion . 92

III Experiments 95

7 Experiments on Clustering with DKK 97

7.1 The datasets . 98

7.2 The quality measures . 99

7.3 The platforms . 99

7.4 Assessing the degree of approximation 100

7.5 Scaling behaviour . 103

7.6 Standard datasets analysis . 104

7.7 Comparison with mini-batch SGD 106

6

Contents

7.8 MD application Scenario . 108

8 Experiments on the Principal Path Finding Algorithm 111
8.1 The datasets . 112
8.2 A quality measure for Principal Paths 113
8.3 A note on the initialization of the algorithm 115
8.4 Maximal Evidence Assessment 115
8.5 A comparison with shortest path 120
8.6 Assessing noise tolerance . 123
8.7 Manifold reconstruction . 124
8.8 MD application scenario . 125

IV Conclusions 129

9 UL in the Context of MD: Findings and Perspectives 131
9.1 UL applied to MD: Distributed Kernel K-means 131
9.2 MD inspiring UL: Principal Paths 132
9.3 Future perspectives . 132
9.4 A general remark about MD and UL 133

Acronyms 133

Glossary 136

List of Figures 140

Bibliography 148

7

Part I

Introduction

9

Chapter 1

Scope of the Thesis

1.1 From simulations to human interpretable mod-
els

Molecular Dynamics (MD) is a computational technique that allows the
dynamic of a system to be followed at atomistic resolution, therefore repre-
senting a virtual microscope to investigate chemical reactions and transitions
in molecular systems of interest. With this respect, for example, MD is cur-
rently the tool of choice for the in-silico study of dynamical protein-ligand
binding [1, 2, 3].

Unsupervised Learning (UL) is that area of Statistical Learning devoted
to learn non trivial representations of the data starting from unlabeled sam-
ples. As such, it is a cognitively difficult problem where a machine is asked
to infer the underlying structure of the data. Examples of methods in this
area being clustering, manifold learning and dimensionality reduction with
a wide spectrum of application domains.

This two apparently distant research fields recently found a point of con-
tact in the necessity to automatically process and extract useful informa-
tion out of long MD simulations. With state of the art High Performance
Computing (HPC), now endowed with general purpose GPUs (gpGPUs),
MD trajectories with up to 1010 frames (i.e. microsecond long trajecto-
ries) are now a reality. Their analysis can be a daunting task from the
standpoint both of the human intervention time and of the necessary com-
putation and storage requirements. Machine Learning (ML) techniques in
general, and more specifically large scale UL techniques, with their ability
to learn compact, meaningful representations of the data are valuable tools
in this context. A successful example of this being found in Markov State
Model (MSM) [4] which rely to various extent on clustering algorithms in
order to infer a coarse grained, human interpretable kinetic model starting
from MD data.

The resulting multidisciplinary field is rich in both scientific and tech-

11

Chapter 1. Scope of the Thesis

nological challenges. Indeed from a technological standpoint the urge of
deploying automatic processing tools on the same HPC facilities where MD
simulations are running, together with the special requirements of MD data,
as it will be discussed in chapter 2, pushes the development of highly effi-
cient UL techniques. From a scientific point of view, not only UL applied to
MD can help in better understanding biomolecular processes of interest; but
MD can also inspire totally new learning concepts and algorithms resulting
in significant contributions to the UL field as it will be discussed in chapter
3.

The work presented here is naturally set in this cross contaminating
domain, two will be the main objectives of the thesis:

1. The design of an efficient kernel k-means engine to perform large scale
clustering on gpGPU endowed HPC facilities (with particular atten-
tion to MD trajectories as application scenario).

2. The theoretical derivation of a kernel algorithm to find Principal Paths
in data space, a new cognitively sound learning problem inspired by
MD.

The motivations behind those two objectives will be detailed respectively in
chapter 2 and chapter 3, whereas in the following a brief overview of MD
and UL is given.

1.2 Molecular Dynamics

Hereafter we are going to give a brief overview of MD aiming at introducing
those concepts that will be relevant for later discussions.

Let us consider a molecular system of Na atoms, its micro-state will be
then identified by x and p (i.e. the 3Na dimensional vectors of positions and
momenta respectively). According to classical mechanics the total energy of
the system subject to a given potential U(x) is given by the Hamiltonian:

H(x, p) = U(x) +
p2

2m
(1.1)

The time evolution of such system is governed by:

dx

dt
=
∂H

∂p
(1.2)

dp

dt
= −∂H

∂x
(1.3)

In its most basic formulation MD is a computational technique that starts
from an initial state of the system (x0, p0) and numerically integrates Eq.1.2
with a fixed time-step ∆t for an empirical potential U(x) (i.e. a potential

12

1.2. Molecular Dynamics

energy properly designed and parametrized to model the bonded and non-
bonded interactions among the atoms in the system). The output of such
simulation therefore will be in the form of a sequence of N conformational
frames, namely {x0, x∆t, x2∆t, . . . , xN∆t}. In this sense MD is commonly
viewed as a virtual microscope that allows one to closely follow the time
evolution of a process with atomistic resolution [5].

Simulating a system at constant temperature

In general terms, it is interesting to simulate a system at constant temper-
ature, therefore in a real application scenario the numerical integration of
Eq.1.2, which would normally conserve the total energy, is paired with a ther-
mostat that allows energy fluctuations. The Andersen technique [6] is prob-
ably the simplest example of thermostat where thermalization is achieved by
drawing the momentum of randomly selected particles from the equilibrium

distribution e−β
p2

2m .
Several other techniques are available in the literature (see e.g. [7, 8])

and one should keep in mind that simulating the time evolution of a ther-
malized system is a non trivial problem [9] which relies on central concepts
in statistical physics such as the one of ergodicity [10]. We will not enter
here into the details of such discussion, limiting ourselves to say that when a
thermostat is applied to the system then an MD simulation can be thought
as a process where the phase space is explored by means of thermal fluctu-
ations. In such scenario the probability for the system of being found in a
state (x, p) is given by the well known Boltzmann distribution:

P (x, p) ∝ e−βH(x,p) = e−βU(x)e−β
p2

2m (1.4)

Such distribution is of paramount importance providing a connection be-
tween the thermodynamics of macroscopic states and the statistics of mi-
croscopic system conformations. For example, having defined the occupancy
probability of a given macro-state A as:

PA ∝
∫
A
dx dp e−βH(x,p) (1.5)

then the free energy FA can be defined as:

FA = −kBT logPA (1.6)

Reconstructing the Free Energy Surface

It is worth observing that biomolecular processes of interest usually evolves
through a series of metastable states corresponding to local minima of the
underlying free energy F just introduced.

13

Chapter 1. Scope of the Thesis

The first step for studying this kind of process via an MD simulation
is to define a small set of Collective Variables (CVs) meant to character-
ize the process i.e. a set of reaction coordinates that one can monitor to
clearly identify transitions among metastable states. A CV is defined as
a given function θ(x) of the system coordinates. It can be as simple as a
dihedral angle, even though in real application scenarios more sophisticated
and computationally expensive descriptors are often used (see e.g. [11]).

Let us assume, for the sake of simplicity, to define a single CV θ(x). Now
for a given state described by z = θ(x), the occupancy probability can be
defined as:

P (z) ∝
∫
dxe−βU(x)δ(z − θ(x)) (1.7)

and a Free Energy Surface (FES) with respect to the CV can be computed
as:

F(z) = −kBT logP (z) +A (1.8)

With a thermalized MD simulation we would like to estimate the probability
distribution P (z) in order to reconstruct the FES F(z) from which a series
of relevant information can be extracted e.g. the stability of the states or
the tranistion rates among them. However as it is known from Arrhenius
law [12], the probability of escaping a free energy minimum by thermal
fluctuations is exponentially small with respect to the height of the barrier.
Therefore chances are that, being the simulation time finite, if the system is
initialized in a stable state corresponding to a free energy minimum it will
remain confined there.

This problem is usually reffered to as the problem of rare events and
several accelerated sampling techniques have been proposed in the literature
in order to partially overcome it (see e.g. metadynamics [13, 14]). The
simplest example of such techniques (i.e. umbrella sampling [15]) can be
easily understood also in this context, indeed let us suppose to introduce an
additive artificial potential depending only on the CV i.e. V (θ(x)). Then
performing a thermalized MD simulation with such bias potential would
correspond to sampling the following probability of states:

P̂ (z) ∝
∫
dxe−β(U(x)+V (θ(x))δ(z − θ(x)) = e−βV (z)P (z) (1.9)

which in turns defines the following FES:

F̂(z) = −kBT log P̂ (z) = F(z) + V (z) +A (1.10)

The introduced artificial potential has an additive effect on the FES F (z)
and as such can be designed to compensate the orginal energy barriers thus
providing a better sampling of the phase space.

We close this section stating that MD simulations, when paired with ad-
equate accelerated sampling techniques, allow the study of a molecular pro-
cess by means of FES reconstruction [16, 17] and can be viewed as a source

14

1.3. Unsupervised Learning

of conformational frames properly sampled from the underlying micro-state
occupancy probability distribution.

1.3 Unsupervised Learning

The UL problem is usually defined in relation to its supervised counterpart as
the problem of learning from data without labels. Indeed in the supervised
learning paradigm a Learning Machine is presented with a set of sample-
label pairs (xi, yi) where samples are drawn from P (x) (Generator) and
the labels are drawn from P (y|x) (Supervisor). In this context the goal
of learning is naturally identified with the one of selecting among a given
set of learnable functions the one that best approximates the supervisor’s
response i.e. minimize the expected value EP (x,y)[Ω(f(x), y)] of a given loss
function Ω(f(x), y). The theoretical foundations of such problem are solid
and have to be ascribed mainly to the work of Vapnik [18] who introduced
several concepts of paramount importance such as the one VC entropy and
VC dimension (measures related to the generalization ability of a set of
functions) and the concept of Strucutral Risk Minimization i.e. a consistent
learning principle where the generalization ability of the function learned is
made a controlling variable of the optimization process.

When the Supervisor (i.e. set of labels) is removed from the paradigm
one has to redefine the objective of the learning process. While this may
still be an open question, it is common in the literature to identify UL with
regularized manifold learning [19] and topological data analysis [20]. More
intuitively, given a set of data X, the problem of learning from those data
without labels can be understood as the problem of learning a non trivial
representation W. In such scenario the learned representation has somehow
to be evaluated with respect to the samples themselves as shown in Fig.1.1.

Both the UL problems treated in this dissertation, namely clustering
and Principal Curve (PC) analysis are included in this intuitive definition.
Indeed in the first case one aims at representing the data as a small set of
prototypes whereas in the second case one aims at representing the data
with a continuous one-dimensional curve.

Regularized functionals

The concept of non trivial representation relates with the one of regulariza-
tion, a central aspect in the statistical learning theory [21, 22, 23]. Indeed
directly minimizing an empirical error without constraints on the set of
learnable representations may easily lead to overfitting. It is worth observ-
ing that a regularization can be either implicit (as in the case of clustering N
samples into NC clusters where one set NC << N) or explicit. For instance,

15

Chapter 1. Scope of the Thesis

Figure 1.1: (a) Supervised learning paradigm where a Learning Machine is
paired with a supervisor providing labels yi for each training sample xi. The
learning procedure is described as the problem of minimizing the expected
loss starting from the training samples. (b) UL paradigm where a Learning
Machine is fed with unlabelled samples. In this context one may specu-
late that a good learning procedure is the one that minimizes the expected
representation error. For example, as explained in the main text, one can
minimize a regularized empirical representation error.

one could formulate a learning problem as:

min
W

γΩX(X,W) + λΩW (W) (1.11)

where ΩX is the empirical error of the representation W on the data X and
ΩW is a penalty term penalizing the complexity of the representation. The
problem of properly setting the trade-off between representation error and
regularization (i.e. properly setting the values of γ and λ) is the generally
difficult problem of model selection, an essential part of the learning process.

Bayesian evidence

It is worth noting that one may as well look at the regularized learning prob-
lem described by Eq.1.11 as a maximum posterior problem in the framework
of Bayesian inference. Indeed, simply taking the negative exponential of the
regularized cost and assuming a proper normalization, the following proba-
bility can be defined:

16

1.3. Unsupervised Learning

P (W|X, γ, λ) =
e−Ω(W,X,γ,λ)

Z(γ, λ)

=
e−γΩX(W,X)

ZX(γ)

e−λΩW (W)

ZW (λ)

ZX(γ)ZW (λ)

Z(γ, λ)

(1.12)

where Z, ZX and ZW are normalizing constants defined as:

Z(γ, λ) =

∫
e−Ω(W,X,γ,λ)dW

ZD(γ) =

∫
e−γΩX(W,X)dW

ZW (λ) =

∫
e−λΩW (W)dW

Comparing Eq.1.12 with the well known Bayes theorem for conditional
probability:

P (W|X, γ, λ) = P (X|W, γ, λ)P (W|γ, λ)
1

P (X|γ, λ)

one can obtain the following definition for the likelihood of the data:

L(γ,W) = P (X|W, γ, λ) =
e−γΩX(W,X)

ZX(γ)
(1.13)

for the prior probability of the model:

P (W, λ) =
e−λΩW (W)

ZW (λ)
(1.14)

and for the evidence:

E(γ, λ) = P (X|γ, λ) =
Z(γ, λ)

ZX(γ)ZW (λ)
(1.15)

.
At this point the learning process can be formulated as the following two

level inference procedure:

• 1st Level: starting from a given hypothesis (γ, λ) infer the best model
WMP through a maximum posterior criterion (i.e. minimizing the
regularized cost function).

• 2nd Level: Infer the best parameters (γ, λ) with a maximum posterior
criterion on the hypothesis set. Assuming a flat prior probability (i.e.
stopping the inference at this second level) such maximum posterior
criteria is equivalent to a maximum evidence criteria as shown by:

17

Chapter 1. Scope of the Thesis

(γ, λ)ME = max
γ,λ

P (γ, λ|X)

= max
γ,λ

P (X|γ, λ)P (γ, λ)

P (X)

= max
γ,λ

E(γ, λ)

The Bayesian inference perspective on learning therefore is valuable, pro-
viding a theoretical framework for the model selection of the parameters as
extensively discussed in [24].

1.4 Outline of the thesis

The rest of the thesis is structured as follow: chapter 2 and chapter 3 com-
plete the introductory part giving the motivations behind the two main
objectives of the thesis and framing them into the relevant literature. More
specifically chapter 2 introduces the problem of clustering MD trajectories
and chapter 3 deals with the problem of finding Principal Paths in data
space. Three methodological chapters follows where the original contribu-
tion of the thesis is detailed. Chapter 4 describes the novel Distributed
Kernel K-means (DKK) clustering engine where a two-fold approximation
is paired with an efficient distribution strategy to tackle the computational
burden of standard kernel k-means. Chapter 5 then shows how an acceler-
ation strategy can be effectively designed for DKK in order to cluster MD
trajectories on HPC facilities where CPUs are paired to accelerators, with
particular attention to gpGPUs for which an efficient CUDA implementa-
tion is proposed. At last, chapter 6 describes a regularized kernel k-means
functional that can be minimized in order to find principal paths in data
space together with an actual optimization algorithm and the derivation of a
maximal evidence principle for in-sample model selection of the parameters.
Two experimental chapters, namely chapter 7 and chapter 8 follows, where
the developed methods are validate against toy models, standard datasets
in the ML literature and a real MD appliction scenario. Overall conclusions
close the manuscript.

18

Chapter 2

Unsupervised Learning
Applied to Molecular
Dynamics

Hereafter a first connection between Molecular Dynamics (MD) and Unsu-
pervised Learning (UL) is described. More precisely, we will discuss how
clustering methods can be applied in the automatic analysis of MD trajec-
tories.

At first clustering is framed in the context of UL presenting two of the
most widely known clustering techniques i.e k-means algorithm (both in its
linear and kernelized formulation) and the related k-medoids algorithm. Sec-
ondly, we discuss how clustering has been successfully used in the literature
in order to build coarse grained models inferred from MD data.

At last we close this chapter identifying kernel k-means as a valuable
clustering algorithm in this domain and accordingly, we define the first ob-
jective of the thesis to be the development of an efficient large scale kernel
k-means algorithm.

2.1 Clustering data

The problem of clustering can be informally described as the problem of par-
titioning unlabeled data samples into meaningful groups. Since 1967, when
k-means was originally introduced [25], a variety of different clustering al-
gorithms arose without a clear all-around winner. Reasons behind such a
fragmented panorama have to be found in the ambiguity of what a meaning-
ful cluster is. Different cluster definitions indeed induce different grouping
strategies e.g density based definitions lead to algorithms such as DBSCAN
[26] whereas definitions based on the spectral property of a similarity matrix
leads to Spectral Clustering [27]. Even though desirable, a unified theory
of clustering seems far from being achieved. Recent developments in such

19

Chapter 2. Unsupervised Learning Applied to Molecular Dynamics

direction have to be found in the work of Kleinberg [28] who, starting from
a small set of reasonable axioms for a clustering function proved an impossi-
bilty theorem and in the works by Shai Ben-David [29, 30] who went one step
further moving the attention from clustering functions to clustering quality
measures proving how in such domain a working set of axioms can be found.

Hereafter, for the sake of simplicity, the clustering problem will be iden-
tified with what is usually found in the literature as vector quantization i.e.
the problem of learning a discrete representation for the data in the form of
NC prototype vectors wi.

2.1.1 K-means Algorithm

Let us consider a set X of N data samples xi ∈ Rd and let us define a
partition of the data in the form of labels ui ∈ [1, NC]. One can now define
the following quantization error to be minimized:

Ω(X,W) =
N∑
i=1

NC∑
j=1

||xi − wj ||2δ(ui, j) (2.1)

Finding a global minimum for such non-convex cost is a computationally un-
feasible task. The k-means algorithm [31] finds sub-optimal minima starting
from an intial set of prototypes W0 with the following two steps EM-like
procedure [32]:

1. assuming a set Wt of prototypes at a given iteration t, set the labels
to be equal to the one minimizing Ω(X,Wt) i.e.

ut+1
i = arg min

j
||xi − wtj ||2 (2.2)

2. having computed the update labels ut+1
i , minimize Ω with respect to

the set of prototypes W keeping ut+1
i fixed i.e

wt+1
j =

1

|wtj |

N∑
i=1

xiδ(u
t+1
i , j) (2.3)

As shown in [33], this kind of procedure almost surely converges to a local
minimum eventually reaching the stopping condition ut+1

i = uti, ∀i ∈ [1, N]
i.e. P (limt→∞{ut+1

i = uti ∀i ∈ [1, N}) = 1. The complexity of the algorithm
is O(NNCdT) where T is the number of iterations needed to converge.

The success of k-means algorithm has to be found mainly in its simplicity
and in the clear geometrical interpretation of its results. It is worth observing
however that the applicability of k-means as discussed above is limited to
those domains where an explicit feature space is known i.e. where one can
evaluate Eq.2.3 to compute the explicit coordinates of the centroids. This

20

2.1. Clustering data

Polynomial kernel Km,n = (γxTmxn + c)l

Gaussian (RBF) kernel Km,n = exp(−D2(xm,xn)
2σ2)

Sigmoid kernel Km,n = tanh(γxTmxn + c)l

Table 2.1: Popular kernel functions

may not always be the case, an example being all those situations in which
graph-like structured data has to be analyzed. In such scenarios usually
one does not have a readily available feature space but rather a similarity
or a distance measure. Moreover k-means clustering does not allow non
linearities in the data, always looking for linearly separable clusters. To
deal with both problems as we are going to show, a kernel extension of the
algorithm was proposed in [34].

2.1.2 Kernel K-means Algorithm

The kernel k-means algorithm can be easily derived starting from the two
step EM-like procedure proposed before. Let us substitute Eq.2.3 into Eq.2.2
in order to obtain the following self consistent update equation for the set
of labels:

ut+1
i = arg min

j

1

|wtj |2
∑
m,n

〈xm, xn〉δ(utm, j)δ(utn, j)−
2

|wtj |
∑
m

〈xi, xm〉δ(utm, j)

(2.4)
We can now obtain a kernel version for the k-means algorithm by means

of what is usually referred to as kernel trick [35] i.e. replacing the inner
product among data samples 〈xm, xn〉 with a generic Mercer kernel function
K(xm, xn) i.e.

ut+1
i = arg min

j

1

|wtj |2
∑
m,n

Km,nδ(u
t
m, j)δ(u

t
n, j)−

2

|wtj |
∑
m

Ki,mδ(u
t
m, j)

(2.5)
Several choices are possible as listed in table 2.1 and it is worth observing
that if the kernel function depends only by the distance among samples
D(xm, xn) then the set of labels can be updated till convergence requiring
just the N ×N distance matrix D thus enabling the algorithm to run also
on those structured data where an explicit vector space may not be readily
available.

Substituting the inner product with a Mercer kernel function is a legit-
imate operation that leads to a meaningful kernel k-means algorithm since
those kind of functions are proved to be inner product in a possibly un-
known transformed space i.e. K(xm, xn) = 〈φ(xm), φ(xn)〉, φ(·) : Rd → Rd′ .

21

Chapter 2. Unsupervised Learning Applied to Molecular Dynamics

Iterating Eq.2.5 we are therefore implicitly minimizing the following quan-
tization error with respect to the set of prototypes wi ∈ Rd′ in the unknown
transformed space:

Ω(X,W) =
N∑
i=1

NC∑
j=1

||φ(xi)− wj ||2δ(ui, j) (2.6)

It is worth observing that since the transformation φ(·) : Rd → Rd′ is
usually unknown the algorithm in the proposed formulation does not give
access directly to the set of prototypes W. One however can easily find the
prototypes medoids i.e. those samples that in the transformed space are
closest to the prototypes:

φ−1(wj) ≈ mj = arg min
xl∈X
‖φ(xl)− wj‖2

= arg min
xl∈X

Kl,l − 2
1

|wj |
∑
i

Ki,lδ(ui, j)
(2.7)

Approximate kernel k-means

The major shortcoming of kernel k-means has to be found in the intrin-
sic quadratic complexity of the algorithm due to the kernel matrix evalua-
tion step which limits the applicability of the method to reasonably small
datasets. Chitta et al. [36] recently proposed an approximate version of the
algorithm in order to reduce such burden based on a centroids sparse rep-
resentation. By construction, at each iteration of the exact kernel k-means
algorithm one is implicitly representing the centroids in the transformed
space as a linear combination of the entire dataset:

wt+1
j =

1

|wtj |

N∑
i=1

φ(xi)δ(u
t+1
i , j) (2.8)

If one restrict such representation to a sub space spanned by a small set
of landmarks L ⊂ X then is easy to demonstrate that the evaluation of
K(xm, xn) ∀xm ∈ X ∀xn ∈ L is sufficient to iterate the algorithm until con-
vergence i.e. the complexity of the kernel matrix evaluation step is reduced
to O(|L|N).

K-means as a limiting case

We close this section showing that, interestingly enough, standard k-means
can be obtained as a limiting case of kernel k-means for σ → ∞ when
a gaussian kernel is used. One may argue that using kernel k-means to
emulate k-means results is a rather inefficient way to proceed however this

22

2.1. Clustering data

may be a viable solution to perform standard k-means clustering on datasets
where an explicit feature space is not available.

Let us start expanding the gaussian kernel function with euclidean dis-
tance around 0:

Km,n = lim
σ→∞

exp(−‖xm − x
2
n‖2

σ2
) = 1−‖xm‖

2+‖xn‖2−2 < xm, xn >

σ2
+O(

1

σ4
)

Now substituting this expansion into Eq.2.4 closes the proof, proving that
the two update rules Eq.2.4 and Eq.2.5 (i.e. the two algorithms) are equiv-
alent:

ut+1
i = arg min

j

1

|wtj |2
∑
m,n

Km,nδ(u
t
m, j)δ(u

t
n, j)−

2

|wtj |
∑
m

Ki,mδ(u
t
m, j)

= arg min
j

1

|wtj |2
∑
m,n

1− ‖xm‖
2+‖xn‖2−2〈xm, xn〉

σ2
δ(utm, j)δ(u

t
n, j)

− 2

|wtj |
∑
m

1− ‖xi‖
2+‖xm‖2−2〈xi, xm〉

σ2
δ(utm, j)

= arg min
j

1
���������
− 2

|wtj |
∑
m

‖xm‖2

σ2
+

2

σ2|wtj |2
∑
m,n

〈xm, xn〉δ(utm, j)δ(utn, j)

−2 +
2‖xi‖2

σ2 ���������
+

2

|wtj |
∑
m

‖xm‖2

σ2
− 4

|wtj |
∑
m

〈xi, xm〉δ(utm, j)

= arg min
j
−1 +

2‖xi‖2

σ2
+

2

σ2

(
(

1

|wtj |2
∑
m,n

〈xm, xn〉δ(utm, j)δ(utn, j)

− 2

|wtj |
∑
m

〈xi, xm〉δ(utm, j)

)
= arg min

j

1

|wj |2
∑
m,n

〈xm, xn〉δ(um, j)δ(un, j)−
2

|wj |
∑
m

〈xi, xm〉δ(um, j)

2.1.3 K-medoids Algorithm

K-medoids algorithm is a popular variation of k-means where each prototype
is forced to be one sample i.e. we look for the NC objects in the dataset
that minimize the distance among them and their closest samples. Solving
such partitioning problem, as in the case of k-means is an NP-hard problem
and several heuristics were proposed in order to find sub-optimal solutions
starting from an initial set of medoids.

For example, as originally proposed in [37] one may iteratively swap a
random sample x ∈ X\W with a random medoid m ∈W discarding all the
swaps that do not decrease the quantization error. A more efficient faster
heuristic that closely resembles the two steps EM-like procedure of k-means
was also recently proposed [38]:

23

Chapter 2. Unsupervised Learning Applied to Molecular Dynamics

1. Update labels ui ← arg minj ||xi − wj ||2

2. Update medoids wj ← arg minm
∑N

i=1||m− xi||2δ(ui, j)

One can iterate such algorithm until the stopping condition is reached i.e.
ut+1
i = uti, ∀i ∈ [1, N]. It is worth observing that k-medoids does not require

an explicit feature space for the data, indeed both the above steps can be
carried out knowing the euclidean distance among samples or more generally
a given distance matrix Di,j = D2(xi, xj)∀i, j ∈ [1, N].

2.1.4 The initialization problem

It is worth observing that all the mentioned algorithms are heuristics that
find sub-optimal solutions starting from an intial set of prototypes W0.
The quality of the solution therefore is closely related to the quality of the
initialization technique used and a multi-start approach may be needed. A
powerful initialization techniques is the one known as k-means++ [39] where
an initial set of prototypes is selected with the following iterative procedure:

1. Pick a random sample x ∼ P (x) = 1
N and add it to the prototypes set

i.e. W0 ←W0 ∪ {x}

2. Compute the distance of each sample to its closest prototype: D2
m(x)←

minw∈W0 D2(x,w)

3. Pick a random sample from X \W0 i.e. x ∼ P (x) = D2
m(x)∑

j D
2
m(xj)

and

add it to the prototypes set i.e. W0 ←W0 ∪ {x}

4. Iterate 2-3 until NC samples have been selected as prototypes.

As shown by the authors, the above procedure dramatically reduce both
the iterations needed by the algorithm to converge and the variance of the
obtained results. Moreover selecting the set of initial prototypes as a subset
of the samples can be effectively used for k-means, k-medoids and even
in kernel space using as a distance measure the euclidean distance in the
transformed space i.e. D2(x,m) = K(x, x) +K(m,m)− 2K(x,m).

2.1.5 Relevant large scale techniques

In order to cope with the growing size of the data sets, several large scale
techniques have been proposed in the literature. We are going to intro-
duce here one rather successful approach, namely the one where the original
dataset is divided into smaller mini-batches. Those mini-batches can be pro-
cessed either sequentially reducing the memory footprint of the algorithm
or in a distributed environment thus introducing significant speedups.

24

2.1. Clustering data

With this respect Sculley [40] proposed to use rather small mini-batches
that are sequentially iterated as a series of Stochastic Gradient Descent
(SGD) steps obtaining the following algorithm:

1. Load a random sampled mini-batch M ⊂ X

2. Initialize mini-batch labels ul = arg minj ||xl − wj ||2 ∀xl ∈M

3. For all xl ∈M:

• Select proper cluster j ← ul

• Update count |wj |← |wj |+1

• SGD step wj ← (1− 1
|wj |)wj + 1

|wj |x

4. Go to 1.

The algorithm is usually iterated for a fixed number of iterations T and
proved to work better than a simple online SGD approach. However the
number of iterations T may be difficult to estimate a priori and the technique
is intrinsically serial.

Another possibility is the one proposed in the series of works on Patch
Clustering [41, 42] and Kernel Patch Clustering [43] in the context of Neural
Gas (NG) algorithm which can be viewed as a weighted variant of k-means.
There the dataset is divided into larger disjoint mini-batches that can be
processed in parallel on a distributed system with NP nodes, the procedure
follows:

1. Divide the dataset in B disjoint mini-batches

2. Distribute next NP mini-batches, one per node

3. Each node iterates the NG algorithm until convergence on its mini-
batch

4. Gather all the NPNC mini-batches centroids wij , i ∈ [0, NB] , j ∈
[0, NC]

5. Merge such mini-batches centroids into NC global centroids wj .

6. Feed wj to the next mini-batches as weighted samples with weights

proportional to
|wj |
Np

.

7. If there are still unprocessed mini-batches go to 2.

Such kind of strategy has the advantage of being trivially parallel. In the
method proposed by Sculley the merging phase was seamlessly carried out
with the initialization step, here instead an explicit merging phase is needed
since each node outputs an unrelated set of centroids.

25

Chapter 2. Unsupervised Learning Applied to Molecular Dynamics

2.2 Building Molecular Dynamics Coarse Grained
Models

In the previous section we introduced the problem of clustering in the general
settings of UL as the problem of finding a discrete representation of the data
in the form of a small number of prototypes. It is therefore obvious how such
problem is relevant in the context of MD simulations where one constantly
faces the issue of defining few macro- or meso-states through which the
system evolves starting from a large set of conformational frames. With
this respect, in the following we are going to discuss how clustering analysis
is indeed performed on MD trajectories in order to obtain coarse grained
models of the underlying process.

2.2.1 MD data sets

As a starting point let us discuss the nature of a molecular dynamics tra-
jectory from the standpoint of the clustering analysis. The first observation
to be made regards the size and the dimensionality of the data, N being
related with the length of the simulation and d = 3Na being related to the
number of atoms Na. With state of the art computational facilities one can
expect N to be in the range [107, 1010] (i.e. microsecond long trajectories
with fs time-step) with Na ranging in between [102, 105] depending on the
application. Of course one has to keep in mind that those numbers are
meant to increase as faster computational platforms will be available.

It is also worth stressing the fact that while the output of an MD sim-
ulation naturally lies on the 3Na-dimensional vector space spanned by the
Cartesian coordinates of each atom, this may not be a convenient space
to perform clustering. Indeed one is usually interested in conformational
changes within the molecular system regardless any kind of rigid transfor-
mation. A standard distance metric in the field is the Minimum Root Mean
Square Deviation (RMSD) defined as:

RMSD(xi, xj) = min
RT

1

Na

Na∑
l=1

||xli − xlj ||2 (2.9)

where the minimum is taken on the set of all possible roto-translations. In
this sense one may think at molecular conformations as structured graph-
like data where a distance metric is properly defined but an explicit vector
space is not readily available. If needed, an explicit feature space can be
obtained by means of a featurization procedure:

1. Pick a reference frame

2. For each other frame:

26

2.2. Building Molecular Dynamics Coarse Grained Models

• Find the best alignment with the reference.

• Compute explicit coordinates as displacement from reference.

This kind of procedure however is biased towards the alignment of the ref-
erence frame and in general does not guarantee a meaningful vector space
where to perform the clustering analysis.

2.2.2 Clustering MD trajectories

From the above considerations one should understand how MD trajectories
are large datasets in an intrinsic unknown high dimensional conformational
space where a pairwise distance matrix can be obtained by means of the
RMSD evaluation.

We already discussed how biomolecular processes of interest usually
evolves through a series of metastable states defined as local minima of
a given Free Energy Surface (FES). Being an MD trajectory obtained by
sampling such FES, a certain smoothness is expected. Given a set W of
prototypical conformations of the system describing those metastable states
one may as well model the likelihood of the MD trajectory by means of a
simple guassian model:

P (X|W) ∝ e−
∑N
i=1

∑NC
j=1 RMSD2(wi,xj) (2.10)

Even though such assumption is quite naive, it does help us in selecting a
proper clustering algorithm. In particular the k-means related techniques
discussed in the previous section seems appropriate, solving a minimization
problem in the form of:

min
W

N∑
i=1

NC∑
j=1

D2(wi, xj)δ(ui, j) (2.11)

This can be viewed as a maximization problem of the likelihood described
by Eq.2.10 with the additional hard assignment of labels provided that one
evaluates distances with the proper RMSD metric. This last requirement
rules out the possibility of using k-means in its standard formulation thus
identifying kernel k-means and k-medoids as two valuable methods.

K-medoids is indeed one of the tools of choice when one looks into the
literature of MD clustering. In particular we highlight in this context the
achievement of Decherchi et al. in [1], where microsecond-long trajecto-
ries of the binding mechanism of a drug, specifically a transition state ana-
logue named DADMe-immucillin-H, to the Purine Nucleoside Phosphorylase
(PNP) enzyme were analyzed. Clustering was there performed with an in-
house version of the k-medoids algorithm presented before and the binding
mechanism was elucidated running a shortest path analysis on the graph of
connected clusters where the edge weights were set to the negative logarithm
of the number of observed transitions.

27

Chapter 2. Unsupervised Learning Applied to Molecular Dynamics

2.2.3 Markov State Models

Performing plain clustering on MD is therefore a valuable solution to ob-
tain a coarse grained model of the simulated process. Starting from this
consideration, one may think to use clustering analysis in order to build a
more sophisticated kinetic model where a network of conformational states
is related to a probability matrix describing transitions between them. This
is the aim of a particularly successful class of models known as Markov State
Models (MSMs) [4, 44] .

The main idea behind MSMs is to first construct a reduced dynamics
description by clustering MD trajectories into a large set of microstates and
then to further coarse grain such description in a kinetically meaningful way
in order to build a more understandable macrostates model. The overall
procedure goes as follow:

1. Perform a clustering step e.g. via k-medoids algorithm with RMSD
metric in order to cluster simulation data into microstates (i.e. small
portion of the conformational space with non vanishing probability).

2. Convert the MD trajectory into a time series of microstates labeling
each frame within the simulation with the proper microstate.

3. Build a count matrix C(τ) whose elements Cij(τ) represent the number
of transitions observed between state i and state j within a lag time
τ .

4. Infer a transition matrix T(τ) by means of maximum likelyhood anal-
ysis on the count matrix C(τ)

5. Coarse grain the model with a second clustering step in order to obtain
macrostates which give clear insights about the kinetic of the process.

It should be clear that the accuracy of MSMs highly depends on the
quality of the initial data set (i.e. how well transitions between microstates
are sampled). However it is worth noting how MSMs can be used to guide
further data acquisition improving the overall sampling. Indeed the count
matrix C(τ) can be used to predict the statistical error on T(τ) and, con-
sequently, the states that are limiting the accuracy of the model.

2.3 Large Scale Kernel K-means for MD

Above we discussed how clustering represents a valuable technique for MD
trajectory analysis both as a standalone modeling tool and as core procedure
in the more sophisticated MSMs. We also discussed how the requirements
of MD data would suggest kernel k-means as a possible technique of interest

28

2.3. Large Scale Kernel K-means for MD

since firstly it does not require an explicit feature space and secondly, it
recovers standard k-means results as limiting case.

Computational complexity and memory occupancy however are major
drawbacks of kernel based clustering where the size of the kernel matrix
to be stored together with the number of kernel function evaluations scales
quadratically with the number of samples. Such computational burden has
historically limited the success of kernel k-means as an effective clustering
technique. From this considerations we naturally identify the first out of
two main objectives of the thesis.

Purpose of the thesis will be the development of a new clus-
tering engine to perform large scale kernel k-means on High Per-
formance Computing (HPC) facilities. The developed tool will be a
valuable asset not only in MD data analysis but more generally in the con-
text of clustering where the theoretical capabilities of kernel k-means have
been already demonstrated [45].

29

Chapter 3

Molecular Dynamics
Inspiring Unsupervised
Learning

In the previous chapter we presented a first connection between Molecular
Dynamics (MD) and Unsupervised Learning (UL) showing how Clustering
techniques can be effectively used in order to learn coarse grained models
that facilitate the interpretation of MD simulations. With this respect, we
defined one of the two objective of the thesis i.e. developing an efficient
large scale clustering engine that meets the requirements of MD data.

In this chapter we will discuss a further, more profound connection be-
tween the two fields of interest showing how not only MD resides within
the applicability domain of UL but how it is also able to inspire totally
new learning problems. As a first step in this direction we will introduce
the concepts of Minimum Energy Path (MEP) and Minimum Free Energy
Path (MFEP) proper of statistical mechanics. In doing so we will state why
they are relevant in the domain of MD simulations and we will discuss the
algorithms available in the literature for computing them. As a second step
we will then give an overview of a closely related problem in the field of UL,
namely the problem of finding Principal Curves (PCs).

As a last point we will discuss how the transposition of the MFEP con-
cept into the domain of UL brings it close to the one of PC. Such discussion
will lead to the definition of a new cognitively sound concept i.e. the one
of Principal Path in data space. The theoretical derivation of an algorithm
to find such Principal Path is identified as the second and final objective of
the thesis thus closing this introductory part.

31

Chapter 3. Molecular Dynamics Inspiring Unsupervised Learning

3.1 Minimum Energy Path

Let us consider a molecular system evolving according to a given potential
energy U(x) where the state x is a 3Na dimensional vector describing the
cartesian coordinates of all the atoms in the system. The MEP is defined as
the steepest path connecting two local minima of U(x) i.e. xA and xB, via
a saddle point. It follows by the definition of steepest path that the force
F = −∇U(x) has to be tangent to the MEP everywhere. Representing
the path with a parametric curve x(α) , α ∈ [0, 1] one can easily write the
following differential equation:

(∇U(x(α)))⊥ = 0 ∀α ∈ [0, 1] (3.1)

which can be solved in order to find the MEP simply adding the two bound-
ary conditions: x(0) = xA and x(1) = xB.

MEPs are relevant objects in the study of a simulated process of interest
where they are used in the definition of reaction coordinates in order to
quantitatively describe the transitions xA ↔ xB. It is obvious to observe
that along the MEP the maximum value for the potential U(x) is reached at
the saddle point xs which is usually identified with an intermediate transition
state of the process. The energy differences U(xs) − U(xA) and U(xs) −
U(xB) describe the activation energy barriers of the reaction and are of
paramount importance for example in the estimate of transition rates.

From all the above considerations it stems the need for computational
tools in order to evaluate the MEP along a molecular simulation. Among
several possible techniques in the following we will limit ourselves to give
an overview on chain of states methods since they will be the ones relevant
for latter discussions. Those kinds of techniques revolve around the idea of
having R replicas of the system x1,xR connected to form a 1D topology.
Such chain of replicas is usually initialized with a simple guess for the MEP
e.g. straight line connecting xA to xB and it is evolved according to a
dynamics that slowly converges towards a discretized MEP as shown in
Fig.3.1.

3.1.1 The plain elastic band method

The simplest chain of states method is the one known as Plain Elastic Band
(PEB) [46] where the 1D topology among replicas is enforced with a set
of harmonic restraints. In such scenario the global potential energy of the
system is:

Û(x1, . . . , xR) =
R∑
i=0

U(xi) +
k

2

R−1∑
i=0

(xi+1 − xi)2 (3.2)

One can now numerically integrate the equation of motions i.e. per-
forming an MD simulation for the connected R replicas evolving according

32

3.1. Minimum Energy Path

Figure 3.1: Pictorial representation of chain of states methods for finding
the MEP. The replicas are initialized on a straigth path connecting xa and
xb and evolve towards a piece-wise approximation of the MEP.

to such global potential in order to obtain a discretized approximation to
the MEP. The approach works provided that one is able to select a proper
value for the spring constant k. The choice of an optimal value for such
parameter is not trivial at all as shown in [47], indeed while large values of
k are desirable in order to enforce a smooth curve, small values of k are also
desirable in order to do not steer away from the actual MEP.

3.1.2 The nudged elastic band method

In order to solve the problems deriving from the choice of a proper value
for the spring constant k the Nudged Elastic Band (NEB) [47, 48] method
was introduced. The idea behind NEB is quite simple, one starts observing
that the force acting on each replica of a Plain Elastic Band model can be
decomposed in the following 4 contributions:

FPEB = F⊥ + F‖ + F k⊥ + F k‖ (3.3)

where the force F derived from the original potential and the force FK

derived by the harmonic restraints are decomposed along the directions tan-
gent and perpendicular to the path. At this point one integrates out the
contribution of F‖ and F k⊥ thus applying the following nudged force on each
replica of the system:

FNEB = F⊥ + F k‖ (3.4)

As extensively discussed in [47] such modified dynamics enforces the equal
spacing of replicas via FK‖ . However since such force is acting by construc-
tion in the direction parallel to the path the replicas are not steered away

33

Chapter 3. Molecular Dynamics Inspiring Unsupervised Learning

from the steepest descent dynamics described by F⊥. It is worth observing
that even though the technique heuristically works as widely demonstrated
in the literature, the physical interpretation of such nudged dynamics is not
clear.

3.2 Minimum Free Energy Path

As discussed in chapter 1, one is usually interested in simulating a system
at a given temperature, thus closely reproducing the conditions observed in
actual experiments. In such setup one is studying the transitions among
thermodinamical states defined as average on finite portion of the available
phase space. Entropy is therefore a relevant factor and the interest is shifted
to Free Energy Differences and Free Energy Paths in order to characterize
the process. Both the above techniques deal with the system in the space
of Cartesian coordinates and therefore seems inappropriate for the task.
Indeed as discussed in chapter 1 the Free Energy Surface (FES) is usually
reconstructed on a set of reduced descriptors i.e. a set of Collective Variables
(CVs) z = (θ1(x), . . . , θd(x)). In such space the MFEP is defined as the
steepest trajectory connecting two local minimum of the Free Energy zA
and zB via a saddle point.

It is possible to demonstrate that in the CVs space the constitutive
equation 3.1 can be written as:

(M(z(t))∇zF(z(t)))⊥ = 0 (3.5)

with boundary conditions z(0) = zA, z(1) = zB where M(z) is the average
jacobian of the transformation z = (θ1(x), . . . , θd(x)). We will now briefly
discuss a chain of states method to evaluate the MFEP common in the field
of MD, namely the String Method.

3.2.1 The string method

The string method as introduced in [49] looks for the MFEP starting from
an initial guess and then evolves a simple steepest descent dynamics derived
by Eq.3.5 on each replica zi of the system i.e.

zi ← zi −∆t(M(zi)∇zF(zi))⊥ (3.6)

It should be clear that at each iteration of such procedure one needs
to evaluate the the mean force −∇zF(zi) and the jacobian M(zi) for ev-
ery replica. This can be done for example with a set of restrained MD
simulations where the total potential energy of each replica is given by
Û(xi) = U(xi) + k(θ(xi)− zi)2.

34

3.3. Principal Curves

The authors of the method also suggest to introduce a smoothing step
in order to prevent abrupt fluctuations of the path i.e.

zi ← (1− s)zi +
s

2
(zi−1 + zi+1) (3.7)

with s ∈ [0, 1] being a smoothing parameter to be set.
At last one can introduce a further reparametrization step in order to

enforce an equally spaced sampled path. The overall 4 steps procedure can
be summarized as:

1. Estimate −∇zF(zi) and M(zi) ∀i.

2. Evolve each replica according to Eq.3.6.

3. Prevent abrupt fluctuations applying Eq.3.7.

4. Reparametrize the curve enforcing equal arc-length among subsequent
replicas.

More sophisticated approaches were then developed starting from this
idea in order to improve the sampling process needed for the estimates of
−∇zF and M (see e.g [50]) however for the sake of our future discussions
the simple formulation above is sufficient. We close this section recalling
that in the same work the authors also prove that the MFEP coincides with
the maximum likelihood reaction path thus highlighting its importance in
the context of theoretical and computational chemistry.

3.3 Principal Curves

Let us now leave aside the problem of finding MEP and MFEP in the context
of molecular simulations to focus instead on a related problem in the litera-
ture of UL, namely the problem of finding PCs. PCs were intuitively defined
by Hastie [51, 52] as smooth one-dimensional curves that pass through the
middle of the data. A mathematically formal definition was also given by
the same author introducing the concept of self consistency that we are going
to review now.

Let us consider a set of sampled data xi ∈ Rd, and a parametric curve
f(α) lying in the same space. We define the projection index αf (xi) as the
value of α for which f(α) is closer to xi i.e.

αf (xi) = inf
α
||xi − f(α)|| (3.8)

Then a curve f(t) is called self-consistent or PC if E(x|αf (x) = α) =
f(α)∀α i.e. if the expected value of the data projection onto the curve
coincide with the curve itself. Such definition naturally leads to the following
Hastie-Stuetzle two step procedure for finding PCs starting from an initial
guess f0(α):

35

Chapter 3. Molecular Dynamics Inspiring Unsupervised Learning

1. Compute projection indices αf t(x) = infα||xi − f t(α)||

2. Update the curve f t+1(α) = E(x|αf t(x = α))

where one continuously updates each point of the curve with the expected
value of the samples projecting onto it until a stopping condition is met.
Such algorithm however may work just in the hypothetical case of an infinite
sample size and cannot be applied in practice as it is. Indeed in a finite
sample case one can expect at most one data point to project on a given
α of the curve resulting in the impossibility of performing the expectation
step. Moreover some sort of discretization of the curve is needed in order to
deal with a finite number of parameters. Several successful algorithms have
been proposed in order to deal with both those problems starting from the
original idea of Hastie and Stuetzle, see among others [53, 54, 55]. In the
following we will focus our attention on two popular techniques where a set
of prototypes W = {wi}, connected to form a one-dimensional topology, is
optimized to find the PC.

3.3.1 Elastic maps

Elastic maps [56, 57, 58] were developed as systems of elastic graphs opti-
mized in data space to find low dimensional data embeddings. The output
of such methods is in the form of regular grids in data space that can effec-
tively approximate non-linear principal manifolds in the Hastie and Stueltze
sense.

Let G be an undirected graph with NC vertices vi and a set of edges
E. We now introduce the map φ : V → Rd as a function which embeds
the graph vertices into the data space Rd. The approximation energy of the
map is defined as:

UA(G,X) =
N∑
i=1

NC∑
j=1

||xi − φ(vj)||2δ(ui, j) (3.9)

By analogy with the k-means cost function introduced in the previous chap-
ter we will refer in the following to wj = φ(vj) as to the prototypes of the
map. Let us now introduce the elastic energy and the bending energy of the
map defined as:

UE(G) =
∑
ei∈E

λi||φ(ei(0))− φ(ei(1))||2,

UB(G) =
∑
sj∈Sk

µjk||
k∑
i=1

φ(sj(i))− kφ(sj(0))||2
(3.10)

where Sk is a family of k-star sub-graphs of G.

36

3.3. Principal Curves

In their most general form elastic maps deal with the minimization of
the following global energy:

U(G) = UA(G,X) + UE(G) + UB(G) (3.11)

Figure 3.2: (a)Schematic representation of the constitutive elements of a
one-dimensional elastic map i.e. vertices vi, edges ei and 2-star subgraphs
si. (b) Schematic representation of a one-dimensional elastic map for PC
learning.

For the purpose of PC Learning elastic maps are usually used considering
a one dimensional chain with only 2-star contributions as shown in Fig.3.2
. Therefore the optimization problem to be solved has the following form:

min
W

N∑
i=1

NC∑
j=1

||xi − wj ||2δ(ui, j)+

+

NC−1∑
i=1

λi||wi+1 − wi||2+

NC−1∑
i=2

µi||wi−1 + wi+1 − 2wi||2 (3.12)

The authors propose an Expectation Maximization (EM) procedure similar
to the one used in standard k-means clustering where 1) the labels uti are
computed for a given set of prototypes and 2) the updated prototypes Wt+1

are obtained minimizing Eq.3.12 given uti. Such two steps are iterated until
a given stopping condition is reached e.g. the change in the cost function
becomes less than a small value ε.

One can immediately recognize how Eq.3.12 is a regularized form of the
standard k-means minimization problem where the set of 2NC − 3 regular-
izing parameters {λi, µj}∀i ∈ [1, NC − 1],∀j ∈ [2, NC − 1] is introduced.
The major drawback of elastic maps has to be found precisely in the large
number of such parameters resulting in a too wide solution space and in the
lack of a proper model selection framework to set them.

37

Chapter 3. Molecular Dynamics Inspiring Unsupervised Learning

3.3.2 Self Organizing Maps

Probably one of the most widely used frameworks to learn principal mani-
folds is the one of Self Organizing Maps (SOMs) that we are going to intro-
duce here.

The method was originally proposed by Kohonen in [59] as a competitive
learning procedure to train a neural network where each neuron has a weight
vector wi ∈ Rd and is connected to the other neurons according to a given
neighborhood set Ni.

The stochastic training process goes as follows:

1. Select a random data sample xi

2. Find the best matching neuron ui = arg minj ||xi − wj ||2

3. Update the best matching neuron and its neighborhood set according
to:

wt+1
j = (1− λ)wtj + λxi , λ ∈ [0, 1] , j ∈ Nui (3.13)

If one sets the neighborhood set to be equal to Ni = {wi−1, wi, wi+1} it is
clear how such procedure describe the evolution of a one-dimensional chain
of prototypes in data space, where the prototypes are the actual weight
vectors of the neurons. As pointed out by Kegl in [60], even though the
method was developed in the context of competitive neural networks, one-
dimensional SOMs can be effectively used in order to approximate PCs in
the Hastie-Stuetzle sense. However, it is worth stressing the fact that a
major short coming of SOMs is the absence of an objective function to be
minimized. Indeed the learning procedure it is completely heuristic and a
functional formulation cannot be found [61].

3.4 From MFEPs to Principal Paths in Data Space

We will now discuss how the concepts introduced in this chapter can be
jointly used to intuitively define the notion of Principal Paths in data space.
Let us start observing that MEP techniques relies on the knowledge of the
underlying potential energy of the system U(x) in order to simulate a set of
replicas along the path. Similarly, algorithms for finding the MFEP relies
on the ability of sampling the equilibrium distribution e−βF(z) around the
path by means of MD simulations. In both cases such techniques are on-line
procedures where the path is optimized together with a set of replicas of the
system.

Let us now change perspective, assuming that a set of samples was gen-
erated beforehand for example by means of a long MD simulation. How can
we now define energetically relevant paths in such data space?

38

3.4. From MFEPs to Principal Paths in Data Space

1. In analogy to the MEP and the MFEP, an energetically relevant path
in data space have to be defined in relation to fixed boundary condi-
tions i.e. fixed starting and ending samples xA and xB.

2. Since the MFEP is the maximum likelyhood reaction path, it will also
be the most probable transition path zA → zB to be sampled along
a dynamic simulation. We can speculate that, no matter how rare
such transition is, if it is observed (and the CVs are proper smooth
descriptors of the system) then the samples produced will populate
contiguous regions of the data space. An energetically relevant path
in data space therefore have to pass through those populated regions.

Starting with this two observations, we can intuitively define the notion
of Principal Path in data space as a smooth path connecting a starting sam-
ple xA to an ending one xB locally passing through the middle of the data.
A Principal Path can be thought of as a local version of the PC where local
means that a valuable path may be found that passes through just a subset
of the data.

Purpose of the thesis will be the formalization of such intuitive
definition introducing both a functional that embeds the notion
of Principal Path and an effective optimization algorithm. The
developed technique will be a valuable tool both in MD where it can be used
to infer coarse grained models out of long trajectories and, more generally,
in the context of manifold and topological methods, a branch of UL with
growing interest [20].

39

Part II

Developed Methods

41

Chapter 4

Distributed Kernel K-means

The first three chapters of the thesis served to shape a challenging, multidis-
ciplinary research field, namely the one formed by the cross contamination
of Molecular Dynamics (MD) and Unsupervised Learning (UL). Within the
realm of computational chemistry we showed in chapter 1 how MD is an
effective in-silico tool to generate large collections of molecular conforma-
tions. In the same chapter we then explained how the urge to organize such
data into coarse grained readable models brought MD into the applicabil-
ity domain of UL techniques, in particular of clustering. Among several
possible algorithms we discussed how kernel k-means represents a favorable
choice in this context, without requiring an explicit vector space for the data
and having a simple definition of clusters (that matches the nature of MD
trajectories).

We enter, with the following chapter, the details of our original contribu-
tions to the field. Hereafter we introduce a novel clustering engine, namely
Distributed Kernel K-means (DKK), to perform large scale kernel k-means
clustering. A two-fold approximation technique is presented to tackle the
well known O(N2) scaling of exact kernel methods. We then show how
such approximation technique, can be effectively parallelized entering in the
details of an ad hoc distribution strategy. As it will be clear, the twofold
approximation introduced is controlled via two straightforward parameters:
the number of mini-batches B and the sparsity degree of the centroid rep-
resentation s. These two knobs allow the user to finely adapt the algorithm
to the available computational resources in order to cope with virtually any
sample size.

Throughout the chapter the following notation will be used:

• N is the number of samples.

• NC is the number of cluster prototypes.

• φ(·) : Rd → Rd′ is the possibly non-linear transformation mapping the
d-dimensional input space into a d′-dimensional transformed one.

43

Chapter 4. Distributed Kernel K-means

• X is the N × d matrix of samples xi arranged in a row wise fashion
i.e. Xi,· = xi.

• K is the N ×N kernel matrix defined as Ki,j = 〈φ(xi), φ(xj)〉.

• W is the NC × d′ matrix of cluster prototypes wi arranged in a row
wise fashion.

• |wi| represents the cardinality of the i-th cluster.

• ui ∈ [1, NC] is the label associated with the i-th sample xi.

4.1 The base algorithm: kernel k-means by Zhang
and Rudnicky

As a starting point we briefly present here a reformulation of the Expectation
Maximization (EM) procedure to minimize the kernel k-means cost function
in terms of the cluster compactness g (1 × NC) and the average cluster
similarity F (N ×NC).

For the sake of clarity let us recall the kernel k-means cost function
introduced in chapter 2:

Ω(X,W) =
N∑
i=1

NC∑
j=1

‖φ(xi)− wj‖2δ(ui, j)

For a given cluster j we define the compactness as:

gj =
1

|wj |2
∑
l,m

Kl,mδ(ul, j)δ(um, j) (4.1)

whereas the average similarity of a sample i with a cluster j is given by:

Fi,j =
1

|wj |
∑
l

Ki,lδ(ul, j) (4.2)

With these definitions, the EM minimization procedure for kernel k-means
can be written as:

ui,t+1 ← arg minj gj,t − 2F(i,j),t

gj,t+1 ← 1
|wj |2

∑
l,mKl,mδ(ul,t+1, j)δ(um,t+1, j)

F(i,j),t+1 ← 1
|wj |

∑
lKi,lδ(ul,t+1, j)

(4.3)

and the medoid approximation for a given cluster prototype j can be rewrit-
ten as:

φ−1(wj) ≈ mj = arg min
xl∈X

Kl,l − 2Fi,j (4.4)

44

4.2. A new two-fold approximation to kernel k-means

Such reformulation of the kernel k-means algorithm was originally pro-
posed by Zhang and Rudnicky [62] to reduce the memory footprint of the
kernel matrix allowing disk caching. As we are going to show, we took
advantage of the same formalism to design an efficient distribution strategy.

4.2 A new two-fold approximation to kernel k-
means

We introduce in this section a novel two-fold approximation for the kernel
k-means minimization algorithm. First, we introduce a mini-batch approach
that reduces the computational cost of a factor B with N

B being the mini-
batch size and B the actual number of mini-batches. An a priori sparse
representation for the cluster centroids is then discussed allowing for a fur-
ther reduction in the computational cost of a factor 1

s with s < 1 being
related to the sparsity of the representation. The action of such two-fold ap-
proximation on the number of kernel elements to be evaluated is illustrated
in Fig.4.1(c). One should immediately appreciate also how, reducing the
number of such element also the memory footprint of the algorithm will be
dramatically reduced.

Remark about the notation used: in the following, a superscript iden-
tifies a specific mini-batch quantity, when no superscript is used the quantity
has to be intended as a global quantity. As an example, wij represents the
j-th cluster prototype for the i-th mini-batch whereas wj is the j-th global
cluster prototype obtained combining the partial results of all mini-batches.

4.2.1 Mini-batch approximation

Our primary approach to reduce the O(N2) complexity coming from the
kernel matrix evaluation consists of splitting the dataset into disjoint mini-
batches that are processed one after the other. The procedure can be sum-
marized by the following steps that will be carefully explained in the subse-
quent paragraphs:

1. Fetch one mini-batch at a time (until all data is consumed).

2. Evaluate the mini-batch kernel matrix and initialize the mini-batch
labels.

3. Iterate kernel k-means EM-procedure on one minibatch and collect
results.

4. Merge together current minibatch results to global results with a proper
strategy and go to step 1.

45

Chapter 4. Distributed Kernel K-means

Figure 4.1: (a) Pictorial description of the algorithm to highlight its dou-
ble loop structure. The iterations of the outer loop are fixed once B is set
whereas the inner loop runs up to convergence. (b) Visualization of two pos-
sible sampling strategies to divide the dataset into mini-batches. (c) From
left to right we visualize the effect of the two-fold approximation proposed
on the number of kernel matrix elements that need to be evaluated. With
standard kernel k-means the symmetry of the matrix can be exploited to
evaluate just N2

2 elements, introducing the mini-batch approximation one
needs to evaluate N × N

B elements, introducing also the a priori sparse rep-
resentation of cluster centers the number of kernel evaluations is cut to
N × sNB .

Fig.4.1(a) shows a pictorial description of such algorithm highlighting
its hierarchical structure. A pseudo code for the entire procedure is also
provided in Alg.1 at the end of this section.

Mini-batch fetching The first sensible choice to be made, regards the
way in which the dataset is divided in B disjoint mini-batches of size N

B . A
variety of possibilities arise, we present here two common reasonable sam-
pling strategies.

Let us assume that the dataset X = {x1, ..., xN} is generated by a dis-
crete time process Xt sampled at time t = {∆t, ..., N∆t}. For example this
is exactly the case of conformational frames obtained in a standard MD sim-
ulation. In such situation one can expect the autocorrelation of the process
to decay after a lag time τ > ∆t suggesting a stride sampling strategy of this
kind: Xi = {xi+jB}, j ∈ [0, NB − 1]. This first approach suggests to split the
data using a striding strategy to assure the best data distribution strategy
among the mini-batches. This however requires waiting for the end of the
simulation to start the clustering process.

46

4.2. A new two-fold approximation to kernel k-means

A second way to approach the sampling is to feed the algorithm with a
data stream; in such situation a simpler block sampling strategy is desirable
in order to begin the clustering procedure as soon as the first N

B samples are
received i.e. Xi = {xiN

B
+j}, j ∈ [0, NB − 1]. Obviously this second strategy

has the drawback that each mini-batch is time-consistent and, as such, the
sampling on each mini-batch is rather partial.

We will discuss within the experimental section the effects of those two
choices in a worst case scenario (a concept drift case).

Kernel evaluation and mini-batch initialization Once a mini-batch
is fetched, it is straightforward to evaluate the mini-batch kernel matrix Ki

with a computational cost of O(N
2

B2). Let us now discuss how it is possible
to initialize the i-th mini-batch labels. We distinguish two cases:

i = 0 : during the first mini-batch the global cluster medoids have to
be selected randomly or by means of some rational. We propose here to use
the kernelized version of the popular k-means++ initialization scheme as it
was introduced in chapter 2

i 6= 0: Starting from the second mini-batch the global cluster medoids
M = {mj ≈ φ−1(wj)} obtained at the end of the previous iterations are
used for the initialization. Simply assigning each new sample to its closest
global medoid we obtain:

uil = arg min
j
||φ(xil)−mj ||2 (4.5)

= arg min
j

[Ki(xil, x
i
l) +Ki(mj ,mj)− 2K(xil,mj)] (4.6)

Such initialization step automatically allows to keep track of the clusters
across different mini-batches. Indeed the global j-th medoid obtained at
the end of the (i− 1)-th iteration is used as initialization for the same j-th
cluster of the i-th mini-batch. This avoids ambiguity also when the partial
mini-batch result has to be merged with the global one: the mini-batch
medoid mi

j will be combined with the global medoid mj having the same
index j.

It should be understood that in order to evaluate the second term of
such equation one has to perform additional computations. Indeed one has
to compute the kernel function for all the pairs (xil,mj) where xil belongs
to the i-th mini-batch and mj is a global medoid coming from the previous
(i−1) mini-batches. It is therefore clear that the initialization phase of each
mini-batch requires an auxiliary kernel matrix K̃i of size N

B ×NC computed
evaluating K(x,m) ∀x ∈ Xi,m ∈M.

47

Chapter 4. Distributed Kernel K-means

Mini-batch inner EM loop Given a mini-batch kernel matrix Ki and
an initial set of labels ui0, equations 4.1 - 4.3 are used to perform a Gradient
Descent (GD) optimization of the reduced cost function:

Ω(X,Wi) =
∑
xj∈Xi

NC∑
l=1

‖φ(xj)− wil‖2δ(uij , l) (4.7)

A final set of labels ui is obtained as a result of such optimization procedure.
It is worth stressing the fact that at this point the set of mini-batch cluster
prototypes is not explicitly known. As a matter of fact, even though we could
formally write the equation: wij = 1

|wij |
∑

xl∈Xi φ(xl)δ(ul, j), j ∈ [1, NC],

without knowing the explicit form of φ, we would not be able to evaluate it.
As a solution, we propose a medoid approximation as introduced in chapter
2 for standard kernel k-means. Therefore we set the cluster prototypes to
be equal to:

wij ← φ(mi
j) : mi

j = arg min
xl∈Xi

‖φ(xl)− wij‖2 (4.8)

More sophisticated approaches based, for instance, on a sparse representa-
tion of cluster centers are possible (e.g. see [40]). However the inherent
additional computational cost and the satisfactory results already obtained
by means of the simple medoid approximation discouraged us to further
investigate this possibility.

Full batch cluster centers update We discuss now on how to merge
the medoids Mi of the i-th mini-batch together with the global medoid set
M.

Let {wj = φ(mj)} be the global medoids obtained from the (i−1) previ-
ous iterations of the outer loop and let {wij = φ(mi

j)} be the approximated
cluster centers for the current i− th mini-batch. We propose to obtain the
resulting global cluster prototypes as a convex combination of the two:

wj ← (1− α)φ(mj) + αφ(mi
j) (4.9)

Practically, since Eq.4.9 cannot be evaluated directly, we introduce a second
medoid approximation as already done in the previous paragraph so that:

wj ← φ(mj) : mj = arg min
xl∈Xi

‖φ(xl)− (1− α)φ(mj)− αφ(mi
j)‖2 (4.10)

The choice of this convex combination stems from a simple but important
observation; indeed in order to choose the coefficient α let us consider the
updating equation for the global cluster center wj at the second iteration of
the algorithm, when the first two mini-batches are merged in a single one
(assuming this is the complete dataset):

48

4.2. A new two-fold approximation to kernel k-means

wj =
1

|w0
j |+|w1

j |
∑

xi∈X0∪X1

φ(xi)δ(ui, j)

=
|w0

j |
|w0

j |+|w1
j |

1

|w0
j |
∑
xi∈X0

φ(xi)δ(ui, j) +
|w1

j |
|w0

j |+|w1
j |

1

|w1
j |
∑
xi∈X1

φ(xi)δ(ui, j)

=
|w0

j |
|w0

j |+|w1
j |
w0
j + (1−

|w0
j |

|w0
j |+|w1

j |
)w1

j

(4.11)

We therefore set α =
|wij |

|wij |+|wj |
so that, if each mini-batch is labelled

correctly at the end of the EM minimization, we retrieve the correct result
i.e. same cluster medoids as for full batch kernel k-means.

Empty clusters We close this subsection with a remark about empty-
clusters. Indeed it is not guaranteed that along inner loop iterations there
will be at least one data sample per each cluster. This is a well known k-
means issue and several strategies to deal with such empty-clusters problem
are possible e.g. randomly pick a new cluster prototype or reducing NC .

Here we propose the following: if a given cluster j is found to be empty
at the end of the i-th mini-batch iteration then its global prototype will not
be updated i.e. wj ← φ(mi−1

j). It is worth noting that this kind of strategy

is naturally embedded in the definition of α since for |wij |= 0 we have α = 0
and Eq.4.9 guarantees the correct single batch behavior.

4.2.2 Sparse representation of cluster centroids

In the previous paragraph we introduced a simple yet powerful mini-batch
approximation which allowed us to reduce the number of kernel evaluations
down to N N

B . Here, we show how we can further reduce the complexity of
the algorithm by means of an a priori sparse representation of the cluster
centroids. As discussed in chapter 2 this approach was first introduced by
Chitta et al. [36] in the context of standard kernel k-means. We recall here
that such technique relies on the simple observation that the full kernel ma-
trix is required at each iteration of the kernel k-means algorithm because the
cluster centers are represented as a linear combination of the entire dataset.
However the number of kernel elements to be evaluated can be drastically
reduced if one restricts the cluster centers to a smaller sub space spanned
by a small number of landmarks i.e. data samples randomly extracted from
the dataset.

We illustrate here how we can reformulate the same idea within the
framework of our algorithm introducing a sparse representation for clus-
ter centroids at each mini-batch itereation. In order to do so let us recall

49

Chapter 4. Distributed Kernel K-means

Algorithm 1: Mini-batch kernel k-means pseudocode

input: dataset X, number of clusters NC , number of mini-batches B
output: medoids M, labels u

1 for i← 1 to B do
2 Xi ← samples fetched from X \Xj<i

3 Ki ← precompute mini-batch kernel matrix
4 if i == 1 then
5 M← initialize according to kernel k-means++
6 end
7 ui ← assigned according to nearest neighbor medoid among M
8 t← 0
9 while uit 6= uit+1 do

10 gi ← update according to Eq.4.1

11 Fi ← update according to Eq.4.2
12 uit+1 ← reassign according to Eq.4.3
13 t← t+ 1

14 end
15 Mi ← medoid approximation according to Eq.4.4
16 M← αM + (1− α)Mi

17 end
18 u← assigned according to nearest neighbor medoid

that while performing kernel k-means on each mini-batch we are implicitly
carrying out the following M-step:

wij ←
1

|wij |

N∑
m=1

φ(xim)δ(uim, j), ∀j ∈ [1, NC]

Now all we have to do is to restrict the above summation on the subset
m : xm ∈ Li where Li = {li0, ..., li|L|} is a set of |L| landmarks uniformly
sampled from the mini-batch.

wij ←
1

|wij |

N∑
m∈Li

φ(xim)δ(uim, j), ∀j ∈ [1, NC]

The update equation for the mini-batch labels will be:

uim ← arg min
j

[ĝij − 2F̂ i(m,j)] (4.12)

where ĝi and F̂i are the approximate mini-batch clusters compactness and

50

4.3. An efficient distribution strategy

mini-batch clusters similarity respectively:

ĝij =
1

|wij |2
∑

m,n∈Li
Ki
m,nδ(u

i
m, j)δ(u

i
n, j) (4.13)

F̂ im,n =
1

|win|
∑
l∈Li

Ki
m,lδ(u

i
l, n) (4.14)

It should be clear from Eq. 4.13 and Eq. 4.14 that the number of
kernel evaluations needed to run such approximated algorithm is now NsNB ,
where the key parameter s is the fraction of data used for the cluster centers
representation in each mini-batch defined as:

s =
|L|
N
B (4.15)

As already stated in the introduction of the chapter s, together with B,
act like knobs that control the degree of approximation of the procedure
with respect to standard kernel k-means. In the experimental section we
will discuss on how to pick proper values for these parameters according to
the available computational resources.

4.3 An efficient distribution strategy

We discuss here how the nature of the previously introduced algorithm is
particularly suited to be implemented on systems with a distributed ar-
chitecture. Let us focus on the distribution strategy for the inner loop of
our algorithm analyzing how both data and computations can be effectively
scheduled across multiple nodes. We decide here to express the parallelism
via a message passing approach, where each node is a peer without a master
node.

The primary concern is to decompose the kernel matrix so that the eval-
uation of its O(NB) elements is evenly distributed across the nodes. Several
choices are possible and a few observations about the way these kernel ele-
ments are used across the algorithm are needed before detailing our choice.
As already discussed in section 4.1, the whole iterative procedure to up-
date the set of predicted labels minimizing the kernel k-means cost func-
tion can be expressed in terms of the average cluster similarity Fi, j, ∀i ∈
0, ..., NB , j ∈ 0, ..., NC − 1 and the cluster compactness gj∀j ∈ 0, ..., NC − 1.
Both quantities can be expressed as partial summations of kernel matrix
elements, where the elements to be summed are selected according to the
labels via δ(ui, j). One should note that g does not scale with the size of

the input whereas F scales linearly with N
B . Therefore, in order to design a

proper data distribution pattern, we consider how to scatter the computa-
tion of such second quantity minimizing the communication overhead. From

51

Chapter 4. Distributed Kernel K-means

Figure 4.2: (a) Distribution scheme for the principal quantities needed to
complete an inner loop iteration. Each node holds a set of entire rows for
K̃, K, F and u. Each node holds a local copy of g too, however the local
information about this vector is partial. The overall information can be
retrieved by means of an all-to-all reduction. (b) From left to right the
main steps of an inner loop iteration are illustrated. At first, each node is
computing its portion of F together with a partial g(p) starting from its
K(p) and u(p). Then, the global g is retrieved with an all-to-all reduction
step. In the third stage each node uses that information together with F(p)
to compute its slice of u. As a final step an all-to-all gathering step spread
the updated labels across the network. At this point it is possible to go on
with the next iteration as all the information needed is available to each
node. It is worth noting how, along the entire procedure, all the nodes are
peers ensuring automatically a good workload balance.

52

4.3. An efficient distribution strategy

Eq. 4.2 it should be clear that the summation to compute the i-th row of
F runs just over the i-th row of K, this naturally suggests us a row wise
distribution strategy. Considering a system with NP nodes, the workload is
divided so that each node p accounts for the computation of Ki,j and Fi,l
∀j ∈ [0, NB), i ∈ [p N

BNP
, (p+ 1) N

BNP
), l ∈ [0, NC).

The full data distribution scheme is presented in figure 4.2(a) and the
resulting algorithm is detailed via pseudo code in Alg.2. The advantage
of such approach mainly consists in the reduced communication overhead.
Indeed, for each iteration of the inner loop two communication steps are
sufficient, involving a reduction of the cluster compactness g together with
a gathering step for the updated labels u. The kernel matrix K as well as
the average cluster similarity F always reside locally to the node and they
never go through the network. Per node communications and computations
are detailed in figure 4.2(b) and table 4.1.

Algorithm 2: Distributed mini-batch kernel k-means pseudocode for
node p

input: dataset X, number of clusters NC , number of mini-batches B
output: medoids M, labels u

1 for i← 1 to B do
2 Xi ← samples fetched from X \Xj<i

3 Ki(p)← precompute mini-batch kernel matrix
4 if i == 1 then
5 M← initialize according to kernel k-means++
6 end
7 ui(p)← assigned according to nearest neighbor medoid among M
8 t← 0
9 while uit 6= uit+1 do

10 allgather uit // sync

11 gi(p)← update according to Eq.4.1

12 Fi(p)← update according to Eq.4.2
13 allreduce sum gi // sync

14 uit+1 ← reassign according to Eq.4.3
15 t← t+ 1

16 end
17 Mi(p)← medoid approximation according to Eq.4.4
18 allreduce min Mi // sync

19 M← αM + (1− α)Mi

20 allreduce min M // sync

21 end
22 u← assigned according to nearest neighbor medoid

53

Chapter 4. Distributed Kernel K-means

Algorithm step Memory Operations Comm.

K evaluation N2

B2NP
D N2

B2NP
-

F, g update N
BNP

NC
N2

B2NP
NC

u reassignment N
B

N
BNP

NC
N

BNP

medoid approximation NC
N

BNP
NC NC

Table 4.1: Complexity analysis of the distributed mini-batch algorithm,
the factor D introduced in the number of operations for the K evaluatoin
accounts for the complexity of the kernel function and the relative distance
metric. As an example, the number of operations while using an euclidean
based kernel scales linearly also with the dimensionality of the data d.

The memory footprint can be easily computed and amounts toQ(N
BNP

(NB+

NC) + N
B + 2NC) where Q is the size of variables expressed in Bytes, this

is a central quantity because in a real application scenario once fixed the
computational resources i.e. amount of memory available per processor R
and the number of processors NP , it allows us to compute the minimum
number of mini-batch that can be used to process the entire dataset:

Bmin =

2N
NP

−(C
NP

+ 1) +
√

(C
NP

+ 1)2 − 8 C
NP

+ R
Q

(4.16)

An upper bound for the message size per node can also be easily given
by Q(N

BNP
+ 2NC). This however represents a worst case scenario, where

the entire set of labels u are communicated at each step, instead of commu-
nicating just the ones that were actually updated.

The computational complexity of the proposed implementation grows
as O(N2

BNP
) and it is dominated by the kernel matrix evaluation step as it

should be clear from table 4.1. It is worth stressing the fact that we decided
not to exploit any kernel matrix symmetry because that would have resulted
in the impossibility of pursuing our row-wise data distribution scheme and
additionally it would have hindered the possibility of using non symmet-
ric similarity functions. Moreover, exploiting the kernel matrix symmetry
would have resulted in a non trivial addressing scheme, unsuitable for the
limited memory addressing capabilities of accelerators such as general pur-
pose GPUs (gpGPUs). However this increased memory footprint is largely
compensated by the approximation strategy in performance terms.

54

4.4. Discussion

4.4 Discussion

As discussed in the introduction, more specifically in chapter 2, mini-batch
approaches are not new in the clustering community and encountered a
great success when applied to standard k-means [40]. In his work, Sculley
showed how a mini-batch Stochastic Gradient Descent (SGD) procedure
converges faster than regular GD. However he proposed to set the size of
mini-batches to a rather small value, namely ≈ 103, and to fix an a-priori
number of iterations for the algorithm. Our suggestion here is quite different,
indeed the number of iterations is by construction equal to the number of
mini-batches B in order to exploit the entire dataset. Moreover, a major
difference with the SGD procedure proposed by Sculley is here represented
by the inner loop. We actually believe that iterating each mini-batch up to
convergence can lead to a better minimization of the cost function and to
a less noisy procedure. To prove this point in the experimental section the
reader can find a comparison between the here proposed algorithm and the
mini-batch SGD procedure proposed by Sculley.

We stress also the fact that our parallelization approach is rather differ-
ent when compared to parallel patch clustering algorithms [42] as they were
discussed in the introductory chapter. Indeed, we don’t parallelize across
mini-batches assigning one mini-batch per node. Instead, we parallelize the
iterations within each mini-batch thus allowing the algorithm to better cope
with large sample size. In Fig.4.3 one can better appreciate such difference
in a scenario where the available computational resources are limited with
respect to the size of K. In such realistic case of application it is evident
how our algorithm provides a better approximation to the single-batch re-
sult. Indeed the DKK algorithm, being able to distribute the Ki partial
kernel matrix over the entire network of nodes can cope with significantly
larger mini-batches of the data per iteration.

55

Chapter 4. Distributed Kernel K-means

Figure 4.3: Graphical representation of the two different mini-batch par-
allelization approaches of Patch clustering and DKK. A system of 4 nodes
with limited amount of memory per node Rn (represented as the area of the
central gray squares) is taken into consideration with respect to a kernel ma-
trix K (in blue) that requires 16Rn available memory. In order to cope with
such matrix the Patch algorithm requires a subdivision of the data into 4
small mini-batches and runs in a single trivially parallel iteration. The pro-
posed DKK algorithm when dealing with the same matrix is able to gather a
global results in two iterations, requiring however just 2 larger mini-batches.
The quality of the global clustering result is expected to be higher for the
DKK algorithm since it take into consideration N2

2 kernel elements whereas
the patch algorithm take into consideration a smaller fraction of them i.e.
N2

4

56

Chapter 5

GPU Accelerated DKK for
Clustering MD Data

In the previous chapter we introduced a novel clustering engine, namely Dis-
tributed Kernel K-means (DKK). We showed how starting from a proper
reformulation of the original kernel k-means algorithm is possible to devise
an efficient distribution strategy that together with the proposed two-fold
approximation is able to reduce dramatically the computational burden and
the memory footprint of exact kernel methods. It is worth observing how-
ever that, even if the number of kernel evaluations in the proposed DKK
algorithm is cut down to N × sNB , the performances still depend heavily
on the actual implementation of such kernel matrix evaluation step. This
observation is particularly relevant if one desires to perform clustering over
molecular dynamics trajectories, indeed as we discussed in Chapter 2 such
scenario require a similarity measure based on Minimum Root Min Square
Displacement e.g. gaussian kernel in the form of:

K(xi, xj) = e−
RMSD(xi,xj)

2

σ2

The evaluation step of such kind of complex kernel matrix or sub-matrix
can represents a major bottleneck in the proposed algorithm affecting the
overall performances.

In this chapter we tackle the problem proposing an accelerated version
of the DKK algorithm which is able to run on state-of-the-art heterogeneous
computational platforms. At first we discuss an offload acceleration strategy
carefully designed to exploit the iterative nature of the mini-batch algorithm.
Even though such acceleration strategy can be implemented in principle for
all sort of offload accelerators (general purpose GPUs (gpGPUs) as well
as Intel Many Integrated Core architectures) we focus the attention in the
second part of the chapter on the design of an actual CUDA implementation
for nVIDIA Graphic Processing Units (GPUs). The reason for this choice
has to be found in both the popularity of such accelerators on the market and

57

Chapter 5. GPU Accelerated DKK for Clustering MD Data

on the great control that CUDA offers to the developer allowing low-level
memory optimizations.

5.1 Offload acceleration strategy

In the following section we discuss how the mini-batch structure of the algo-
rithm can be exploited in order to design an effective acceleration strategy.
We will consider an offload acceleration model where the host processor and
the target device have separate memory address spaces and communicate
via a bus with limited bandwidth (e.g. PCIe) with respect to the processor-
memory standard bus.

As already discussed the bottleneck of the computation in real appli-
cation scenarios is usually the kernel matrix evaluatoin. The evaluation of
such large kernel matrix or sub-matrix perfectly fits the massively parallel
architecture of nowadays accelerators, therefore it is a reasonable choice to
offload that portion of the computation. One of the key elements for an ef-
ficient acceleration scheme is the overlapping in time between the host and
the target workload [63].

There is no hope to find an overlapping scheme within the inner loop
of the algorithm since the entire procedure depends on the kernel matrix
elements to be completed, therefore we concentrate our efforts on the outer
loop. Each i-th iteration depends on the previous ones, in order to initialize
the set of labels ui. This is what prevents the algorithm to be trivially
parallel forcing to run just one mini-batch per time. However if one considers
the first two steps of each outer loop iteration i.e. mini-batch fetch Xi

and kernel matrix evaluation Ki it is clear that they can be performed
independently for each i. We exploit this feature, instructing the target
device to compute the kernel matrix K(i+1) while the host processor executes
the inner loop of the algorithm on the i-th mini-batch.

The offload procedure is detailed in Fig. 5.1. The overall performance
gain for such acceleration strategy however heavily depends on the acceler-
ator side implementation of the kernel matrix evaluation. For this reason
the following section deals with the details of a CUDA implementation for
the Root Mean Square Deviation (RMSD) kernel matrix evaluation.

5.2 Fast RMSD kernel evaluation with CUDA

Hereafter we present an efficient many-core implementation for the kernel
matrix evaluation in case of a Gaussian kernel with optimal RMSD metric.

First, we briefly introduce the quaternion-based algorithm (QCP) orig-
inally developed by Theobald in [64] to compute the minimum RMSD be-
tween two conformations. An efficient and original many-core implementa-
tion is then discussed. With this respect we focused our efforts on the design

58

5.2. Fast RMSD kernel evaluation with CUDA

Figure 5.1: (a) Pictorial description of the proposed acceleration scheme.
The diagram is divided in two parts: a host processor side on the left, and a
target device side on the right. We illustrate how multiple CPU threads can
be used to overlap host and device workload. A CPU thread is bound to
the device, it is responsible for data fetching from disk, for host-device data
transfer and for device control. It instructs the device to compute the kernel
matrix elements needed by the next i+ 1-th iteration of the outer loop. All
the other available threads cooperate and are responsible for the current i-th
iteration consuming the kernel matrix elements provided by the accelerator.
In this sense device and host work in a producer-consumer pattern. (b) We
detailed how a 3-stage pipeline can be used on the device in order to overlap
the kernel computation with the host to device (H2D) and device to host
(D2H) slow communications needed to transfer the dataset on the device
and the kernel matrix back to host respectively.

59

Chapter 5. GPU Accelerated DKK for Clustering MD Data

of ad-hoc memory layout for data structures enhancing memory coalescence.

5.2.1 The QCP algorithm for minimum RMSD

Let us consider two conformations A and B of a macromolecule made of
Na atoms. Each conformation is represented by a Na× 3 coordinate matrix
i.e. Ai,· = (xAi , y

A
i , z

A
i);Bi,· = (xBi , y

B
i , z

B
i) ∀i ∈ [0, Na − 1]. For sake of

simplicity, without loss of generality, we assume that each conformation is
self-centered, i.e. translated into the origin. We introduce here three central
quantities for the quaternion-based algorithm:

Si,j = Ai,·
TBj,· =


Sxx Sxy Sxz

Syx Syy Syz

Szx Szy Szz


i,j

(5.1)

GA = Tr(ATA) (5.2)

GB = Tr(BTB) (5.3)

Minimum RMSD can be written as a minimization problem of the mean
square error over the set of orthogonal rotations R:

RMSD2 = min
R

‖A−BR‖2F
Na

It can be shown [64] that such minimization problem can be solved look-
ing for the largest positive eigenvalue λM of:

H =


Sxx + Syy + Szz Syz − Szy Szx − Sxz Sxy − Syx

Syz − Szy Sxx − Syy − Szz Sxy + Syx Szx + Sxz

Szx − Sxz Sxy + Syx −Sxx + Syy − Szz Syz + Szy

Sxy − Syx Szx + Sxz Syz + Szy −Sxx − Syy + Szz


which can be found looking for the largest positive root of the characteristic
equation:

P (λ) = λ4 − 2 Tr(STS)λ2 − 8|S|λ+ |H|= 0 (5.4)

As suggested by Theobald, the Newton-Raphson iterative method can be
effectively used to obtain a numerically stable solution for such problem. The
eigenvector corresponding to λM is a quaternion equivalent to the optimal
rotation and the RMSD can be computed as:

60

5.2. Fast RMSD kernel evaluation with CUDA

RMSD =

√
GA +GB − 2λM

Na
(5.5)

It is worth observing that since all the coefficients in Eq.5.4 depend on
the elements of the matrix S the entire procedure can be carried out with
few FLoating point OPerations (FLOP) once that the summations involved
in the evaluation of S, GA and GB are computed.

5.2.2 Design of an effective CUDA implementation

The kind of computational platform we are considering is described in
Fig.5.2: a many-core architecture where cores are grouped into multipro-
cessors featuring a hierarchical memory structure. A software abstraction
layer such as CUDA allows us to express parallelism for such a machine in a
Single Instruction Multiple Threads (SIMT) fashion i.e. each core within a
given multiprocessor executes the same instruction on a different subset of
the data selected according to the executing thread index. We assume the
threads to be organized in a 2D blocks grid formed by square blocks of B×B
threads. A runtime scheduler will be responsible for the threads scheduling
so that threads belonging to the same block are executed together on the
same multiprocessor.

We assume one control unit per multiprocessor. According to the SIMT
execution model, the control unit fetches one operation and instructs all
the cores within the multiprocessor to execute it on their own operands.
Therefore, avoiding execution branches within a thread block should be a
major concern in order to avoid code serialization.

We assume also that load/store operations on global memory are strongly
affected by the access pattern i.e. threads within a block should address con-
tiguous portions of global memory in order to perform a load/store operation
in a single transaction. This is exactly the case for general purpose GPU
architectures therefore the design of a proper memory layout for the data
structures is of paramount importance.

In order to design a proper data structure and in agreement with CUDA
specifications we finally assume that vector types are available together with
optimized vector instructions e.g. two float variables can be stored as a single
float2 variable in order to take advantage of a single vectorized load/store
instruction.

Let now consider a set of conformations X = {Xi}∀i ∈ [0, N − 1], we
are interested in computing the Gaussian kernel matrix with optimal RMSD

metric on such dataset i.e. Ki,j = exp−RMSD(Xi,Xj)
2

σ2 . Since the evaluation
of a single matrix element with the previously introduced QCP algorithm is
computationally cheap we expose parallelism by computing more than one
kernel matrix elements per time. We designed an implementation where
each thread is responsible for the evaluation of a single entry in the kernel

61

Chapter 5. GPU Accelerated DKK for Clustering MD Data

Figure 5.2: Simple block diagram for a many-core computational platform
hardware together with a pictorial description of a software abstraction layer
exposing SIMT parallelism. A runtime scheduler is responsible for the map-
ping of the thread blocks onto the hardware multiprocessors. More than one
thread block can be scheduled to run concurrently on a single multiproces-
sor in order to hide memory latency. The hierarchical memory structure is
illustrated, from top to bottom the memory size reduces and the bandwidth
increases.

matrix but all the threads within a block collaborate to load the needed data
into shared memory in order to guarantee coalesced memory access to global
memory. We recall that each sample Xi is represented by a Na × 3 matrix
containing the coordinates of each atom. In the following the coordinate
of the generic j-th atom will be indicated as (xij , y

i
j , z

i
j) so that a subscript

represent the atom index whereas a superscript stands for the sample index.

As shown in Fig.5.2, let T i,jl,m be the thread (l,m) within the block (i, j)
of our blocks grid. Such thread will be responsible for the evaluation of the
kernel element KiB+l,jB+m. As described above in order to carry out such
computation the following intermediate quantities need to be computed:

SiB+l,jB+m = (XiB+l)
TXjB+m (5.6)

Gi = Tr(XT
i Xi) (5.7)

62

5.2. Fast RMSD kernel evaluation with CUDA

Gj = Tr(XT
j Xj) (5.8)

Therefore we have to store in the block shared memory the atoms of the
conformations Xn ∀n ∈ [iB, i(B + 1) − 1] ∪ [jB, j(B + 1) − 1]. Assuming
4 bytes per float this accounts for 4 × 6BNa bytes to be stored in shared
memory. Being the size of shared memory limited, storing all these variables
can dramatically affect performances. Specifically, the more resources each
block is demanding, the less blocks can be scheduled concurrently on each
multiprocessor to mask memory latency. In order to overcome such prob-
lem, we propose to divide each frame into atom chunks of size fB where f
represents the size of the vector type used. The atom chunks can be pro-
cessed one after the other lowering the amount of shared memory needed
per block to 4× 6fB2.

Let us now discuss how data can be arranged so as to have as much
coalesced memory accesses as possible. Each block of threads need to loop
over atom chunks for two different frame chunks i.e. frames [iB, i(B+1)−1]
and frames [jB, j(B+1)−1]. In Fig.5.3, we illustrate an hierarchical memory
layout that exploits such information to allow the retrieval of an atom chunk
for the needed frames in 6 perfectly coalesced load instructions.

Once an atom chunk for the needed frames is loaded into the shared
memory, each thread of the block can update its current quantities as follows:

SiB+l,jB+m
?,• ← SiB+l,jB+m

?,• +

a+fB−1∑
n=a

?iB+l
n •jB+m

n ; ?, • = [x, y, z] (5.9)

Gi ← Gi +

a+fB−1∑
n=a

(xin)2 + (yin)2 + (zin)2 (5.10)

Gj ← Gj +

a+fB−1∑
n=a

(xjn)2 + (yjn)2 + (zjn)2 (5.11)

In Fig.5.4 we show how with a simple rotational index such update can be
performed avoiding shared memory bank conflicts among the block threads.

At this stage all the main quantities needed to perform the minimum
RMSD computation are available and each thread can straightforwardly
perform the rest of the computation using its own registers. The entire
procedure is detailed in Alg.3. It is worth noting that to avoid execution
branches the Newton-Raphson method is implemented with a fixed number
of iterations. We implemented the proposed algorithm in CUDA and we
tested it in a real application scenario as it will be described in the experi-
mental part of the thesis i.e. chapter 7.

63

Chapter 5. GPU Accelerated DKK for Clustering MD Data

Figure 5.3: Hierarchical memory layout for a set of frame conformations
designed in order to achieve memory coalescent access while performing an
RMSD matrix computation. We recall that superscripts refer to frame in-
dices whereas subscripts refer to atom indices within a frame. (top) Block
diagram illustrating the layout. Frames are stored in frame chunks of size
B i.e. each frame chunk contains all the Na atoms of B consecutive frames.
The atoms themselves are stored in chunks of size fB i.e. each atom chunk
contains the same set of fB atoms for all the B frames. Finally, the atom
coordinates are stored as three consecutive blocks for the x, y and z com-
ponents. (bottom) Detailed view of one atom chunk for B = 2 and f = 2
together with a pictorial description of the three coalescent load instructions
needed to read it.

64

5.3. Implementation parameters

Figure 5.4: Example showing how to implement a rotational index to avoid
shared memory bank conflicts while computing the summations described
in Eq.5.9, 5.10 and 5.11. We recall that superscripts refer to frame indices
whereas subscripts refer to atom indices within a frame. (left) A straightfor-
ward implementation of the summation will cause all the threads to work on
the same atom at each iteration. This cause shared memory bank conflicts
that strongly affect performances. (right) A simple rotational atom index
is used so that each thread work on a different atom while computing the
summation: ridx = n + tIdx.x + tIdx.y%B.

5.3 Implementation parameters

A final remark has to be done on the implementation parameters i.e. f
and B. Tuning such parameters depending on the hardware is crucial in
order to get peak performances. Among the two, choosing f is simpler:
looking at the specifications of the hardware one can verify the existence of
a vectorized load instruction and choose f accordingly (e.g. if the hardware
provide a 64-bit vectorized load instruction one can safely set f = 2). In
order to properly choose the block size B we rather suggest to look at two
different hardware properties: the available shared memory and the number
of threads scheduled together W (i.e. warp size for nVidia GPUs). We
obviously want the number of threads per block B2 to match an integer
multiple ofW and we would like to reduce the amount of memory required by
each block in order to increase the relative occupancy of the multiprocessors.

B2 = iW, i > 1 (5.12)

4× 6fB2 << M (5.13)

For instance, in the experimental section later discussed where an nVidia
GTX980 board is used, we set f = 2 since an 8-byte vectorized load instruc-
tion is available and B = 8 requiring 3kB of shared memory per block over
the available 96kB.

65

Chapter 5. GPU Accelerated DKK for Clustering MD Data

5.4 Discussion

We close this chapter commenting on the fact that nVIDIA GPUs are by far
the most common many-core accelerators on the market and that all major
Molecular Dynamics (MD) simulations software tools [65, 66], are nowadays
offering a CUDA accelerated version of their code. It should be therefore
clear the importance for post-processing tools to be able to run natively on
GPU accelerated architectures. The proposed DKK algorithm together with
the accelerated implementation presented in this chapter perfectly fulfill this
requirement.

It is also worth stressing the fact that up to our knowledge the low level
MD data structure optimization proposed here is novel and represents an
advancment with respect to other proposed CUDA RMSD implementations
e.g. [67].

66

5.4. Discussion

Algorithm 3: Gaussian kernel evaluation with minimum RMSD met-
ric, pseudocode for a many core implementation.

input:
dataset X, number of atoms Na, block size B, vector type size f
block index bIdx, thread index: tIdx
register variables:
Sxx, Sxy, Sxz, Syx, Syy, Syz, Szx, Szy, Szz, Gi, Gj
shared memory variables:
buffers for frames [iB, i(B + 1)− 1]: ix, iy, iz
buffers for frames [jB, j(B + 1)− 1]: jx, jy, jz
output:
Kernel matrix K

1 tID = tIdx.y*B+tIdx.x
2 offi = bIdx.y * 3BNa/f
3 offj = bIdx.x * 3BNa/f

4 for r ← 0, NafB do

5 ix[tID] = X[offi+tID]
6 iy[tID] = X[offi+B*B+tID]

7 iz[tID] = X[offi+2*B*B+tID]
8 load in the same way jx, jy, jz

9 offi += B*B*3
10 offj += B*B*3
11 sync block threads
12 for n ← 0, fB − 1 do
13 r = (n+tIdx.x+tIdx.y)%B
14 Sxx += ix[tIdx.y*B+r]*jx[tIdx.x*B+r]

15 update in the same way Sxy, Sxz, Syx, Syy, Syz, Szx, Szy, Szz
16 Gi = Gi + ix[tIdx.y*B+r]2+iy[tIdx.y*B+r]2+iz[tIdx.y*B+r]2

17 Gj = Gj + jx[tIdx.x*B+r]2+jy[tIdx.x*B+r]2+jz[tIdx.x*B+r]2

18 end
19 sync block threads

20 end
21 compute c0, c1, c2, c3, c4 according to Eq.5.4
22 for iterations ← 0,MAX ITERATIONS do
23 λ -= (c4*λ4 + c3*λ3 + c2*λ2 + c1*λ + c0)/(4*c4*λ3 + 3*c3*λ2

+ 2*c2*λ + c1)

24 end
25 msd = (Gi+Gj-2*λ)/Na

26 K[bIdx.y*B+tIdx.y,bIdx.x*B+tIdx.x] = exp(-msd/σ2)

67

Chapter 6

A Principal Paths Finding
Algorithm in Kernel Space

The previous two chapters introduced two rather technological advance-
ments in the field of Unsupervised Learning (UL) for Molecular Dynamics
(MD). Both the Distributed Kernel K-means (DKK) algorithm and its ac-
celerated version were developed following the requirements of the clustering
problems applied to MD datasets i.e. to large datasets not embeddable in a
vector space requiring an expensive distance matrix evaluation. In chapter 3
a further connection between MD and UL was highlighted: there we showed
how MD not only pushes the technological aspects of UL as an increasingly
demanding domain of application but is also able to inspire totally new UL
principles.

With this respect in the same chapter, starting from the concept of
Minimum Free Energy Path (MFEP) we introduced the one of Principal
Paths in Data Space as a natural solution to the problem of inferring a
smooth path connecting a starting sample to an ending one, locally passing
through the middle of the data.

Hereafter we show how a kernel based method can be derived in order
to approximate such kind of paths. We introduce a novel regularized cost
function starting from the standard kernel k-means cost by addition of a
1D topology imposed as a set of harmonic restraints together with fixed
boundary conditions (i.e. fixed starting and ending cluster centers). The
minimization of such cost naturally leads to an Expectation Maximization
(EM) algorithm that will be discussed both in the original and in a kernel
space. From an algorithmical standpoint one may think at a Principal Path
as a regularized path, with fixed boundaries, attracted towards the local
center of mass of the data.

As it will be clear, the quality and the smoothness of the solution found
by such algorithm is ruled by the regularization parameter. Informally we
can think to this central parameter as the one that controls the trade-off be-

69

Chapter 6. A Principal Paths Finding Algorithm in Kernel Space

tween the path smoothness and how much the path passes through the data.
A large portion of the chapter is therefore dedicated to the model selection
phase of such parameter. More specifically, a Bayesian maximal evidence
principle that allows blindfolded in sample model selection is derived.

Throughout the chapter the following notation will be used:

• N is the number of samples.

• NC is the number of cluster prototypes.

• φ(·) : Rd → Rd′ is the possibly non-linear transformation mapping the
d-dimensional input space into a d′-dimensional transformed one.

• X is the N × d matrix of samples xi arranged in a row wise fashion
i.e. Xi,· = xi.

• K is the N ×N kernel matrix defined as Ki,j = 〈φ(xi), φ(xj)〉.

• W is the NC × d′ matrix of cluster prototypes wi arranged in a row
wise fashion.

• |wi| represents the cardinality of the i-th cluster.

• ui ∈ [1, NC] is the label associated with the i-th sample xi.

• w0 and wNC+1 represents the boundary conditions of the algorithm
i.e. the starting and ending points of the inferred path.

6.1 The cost function

We now give a formal definition of the newly defined principal path learning
problem by introducing a regularized cost function to be optimized. As
usual in the context of regularized functional optimization we write a cost
having the following form:

Ω(W, u,X, γ, λ) = γΩX(W, u,X) + λΩW (W) (6.1)

More specifically, the primal problem that we aim to optimize in order to
infer a smooth transition path from the starting point w0 to the ending point
wNC+1 is the following:

min
W

γ

2

N∑
i=1

NC∑
j=1

‖φ(xi)− wj‖2δ(ui, j) +
λ

2

NC∑
i=0

‖wi+1 − wi‖2 (6.2)

As anticipated, this functional represents a regularized version of the stan-
dard kernel k-means cost already discussed in chapter 2. Here the first and
last clusters, namely w0 and wNC+1 are kept fixed as boundary conditions

70

6.1. The cost function

Figure 6.1: An example of index permutation Q to initialize a 1D topol-
ogy i.e. an NC-segments curve. The initial cluster centers can be picked
with standard k-means initialization algorithms such as k-means++ while
the permutation Q can be derived by some rational such as for example a
shortest path algorithm on top of a fully connected topology.

and a 1D topology is forced by the proposed quadratic regularization cost
ΩW which introduces a set of harmonic restraints connecting subsequent
cluster prototypes (wi+1, wi).

The resulting one-dimensional topology is assumed to be set beforehand
by means of a simple permutation Q : Z+

NC
→ Z+

NC
of the cluster indices

as detailed in Fig.6.1. For the sake of convenience in the following, without
loss of generality we will assume Q to be the identity so that Q(i) = i.

We stress the fact that, as in the case of kernel k-means, Ω is a non-
convex function with respect to W mainly because of the hard-assignment
of latent labels i.e. δ(ui, j). The two hyperparameters γ and λ regulate the
trade-off between data-fitting and smoothness of the inferred path as shown
in Fig.6.2(a). It is worth noting that for the sole purpose of optimization,
only the ratio s = λ

γ is relevant, being γ a simple scaling factor. Hereafter we
will refer to s as regularization parameter; why keeping γ and λ separated
during the derivation will be clear later when a Bayesian model selection
framework will be introduced.

Lemma 1. The primal cost function has the following compact trace for-
mulation:

Ω(W, u,X, γ, λ)

=
γ

2
Tr(WTAX(u)W − 2CTW + DX)+

+
λ

2
Tr(WTAWW − 2BTW + DW)

(6.3)

Proof. Eq.6.3 is derived by construction, having defined the following ma-
trices:

71

Chapter 6. A Principal Paths Finding Algorithm in Kernel Space

• The NC × d′ boundary condition matrix:

Bi,· =


w0 if i = 1

wNC+1 if i = NC

0 othrewise

• The NC×d′ centroid matrix: Ci,· =
∑N

j=1 φ(xj)δ(ui, j), where δ(ui, j)
is the Kronecker delta.

• The NC × NC hessian matrix of the standard k-means cost function

i.e. AXi,j =

{
|wi|, if i = j

0 otherwise
.

• The NC ×NC Toeplitz matrix:

AW =



1 −1
2 0 . . . 0

−1
2 1 −1

2

. . .
...

0
. . .

. . .
. . . 0

...
. . . −1

2 1 −1
2

0 . . . 0 −1
2 1


• The d′ × d′ matrix DX = D + BTABB− 2BTCB where

Di,j =
∑
k

φ(xk)iφ(xk)j

,

ABi,j =


|w0|, if i = 1

|wNC+1|, if i = NC

0 otherwise

CBi,· =


∑N

j=1 φ(xj)δ(ui, 0), if i = 1∑N
j=1 φ(xj)δ(ui, NC + 1), if i = NC

0 otherwise

• The d′ × d′ matrix DW = BTB

72

6.2. EM optimization

6.2 EM optimization

We now derive an optimization algorithm for Eq.6.3 in the spirit of the EM
procedure originally proposed by Bottou and Bengio [32] in the context of
k-means clustering. In the following we assume the transformation φ(·) :
Rd → Rd′ to be either explicitly known or not present at all. In the next
section we will then prove that the derived algorithm can be carried out
with the only notion of the kernel matrix K.

E-step assuming a set Wt of prototypes at a given iteration t, we set
the latent labels u to be equal to the one minimizing Ω(Wt, u,X, γ, λ) i.e.
minimizing ΩX(Wt, u,X) since ΩW (Wt) does not depend on u:

ui,t+1 ← arg min
j
‖φ(xi)− wj,t‖2 (6.4)

We stress the fact that this is exactly the E-step usually performed in a
standard kernel k-means implementation.

M-step having computed the updated labels ut+1 we now minimize Ω
with respect to the set of prototypes W keeping ut+1 fixed. Computing the
partial derivative and setting it to zero

∂Ω(W, ut+1,X, γ, λ)

∂W
= (γAX(ut+1) + λAW)W − (γC + λB) = 0

we obtain:

(γAX(ut+1) + λAW)W = γC + λB (6.5)

.

This is a linear system of the Toeplitz type in d′NC unknowns that need
to be solved at each iteration of the algorithm. The system can be solved
exactly by Levinson-Durbin recursion method [68] in Θ((d′NC)2) time. In
the following sections we will also explore some approximated techniques
useful in those cases for which the computational cost of an exact solver is
prohibitive. Hereafter, without loss of generality, we assume to solve the
given system by inversion:

W = (γAX(ut+1) + λAW)−1(γC + λB) (6.6)

thus obtaining the following update equation for the cluster prototypes:

Wt+1 ← (γAX(ut+1) + λAW)−1(γC + λB) (6.7)

The following lemma proves the invertibility of the matrix A.

Lemma 2. The matrix A = γAX + λAW is invertible.

73

Chapter 6. A Principal Paths Finding Algorithm in Kernel Space

Proof. Being A a tridiagonal matrix with Ai,i = γ|wi|+λ and with off-
diagonal elements Ai, j = −λ

2 , its eigenvalues µi are bounded by the well
known Gershgorin Circle Theorem:

γ|wi|≤ µi ≤ γ|wi|+2λ

Assuming non-empty clusters i.e. |wi|≥ 0 and recalling that λ ≥ 0 this result
shows that in non-trivial cases i.e. γ > 0, the matrix A is positive-definite
therefore is also invertible.

6.3 EM optimization algorithm in kernel space

We now show how the EM algorithm introduced in the previous section can
be carried out without an explicit notion of the transformed space implied
by φ(·). As usual in the context of kernel methods we start by proving the
following representer theorem:

Theorem 1. A representer theorem of the form:

wi =
∑
j

αi,jφ(xj) (6.8)

holds true at each iteration step of the EM-procedure described by Eq.6.4-6.7.

Proof. Let us rewrite Eq.6.7 expanding the matrix product:

wi,j =
∑
l

[A−1]i,l[γC + λB]l,j

=
∑
l

[A−1]i,l
∑
m

(γ[φ(xm)]jδ(um, l)+

+ λ[φ(xm)]jδ(um, 0)δ(i, 1)+

+ λ[φ(xm)]jδ(um, NC + 1)δ(i,NC))

So that:

wi =
∑
l,m

[A−1]i,l(γδ(um, l)+

+ λδ(um, 0)δi,1 + λδ(um, NC + 1)δi,NC)[φ(xm)]

Setting αi,j =
∑

l[A
−1]i,l(γδ(um, l) + λδ(um, 0)δi,1 + λδ(um, NC + 1)δi,NC)

closes the proof.

The following two corollaries complete the derivation of the EM opti-
mization algorithm in kernel space.

74

6.3. EM optimization algorithm in kernel space

Figure 6.2: (a) Pictorial description of γ and λ trade-off: if γ >> λ (blue)
the path found is noisy due to an overfitting effect, for λ >> γ (green)
the path found approach a trivial straight line connecting the boundary
points. Meaningful paths emerge for values of γ and λ in the middle of
such range. (b) Typical output of the algorithm in kernel space, with latent
labels represented as a color gradient.

Corollary 1.1. The primal cost expressed by Eq.6.3 has the following dual
formulation in terms of the dual variables αi,j arranged in a vector shape
(α)iN+j = αi,j:

Ω(α, u,K, γ, λ) =
γ

2
(αT ÃXα− 2αT K̃δ + Tr(DX))+

+
λ

2
(αT ÃWα− 2αT K̃αB + Tr(DW)) (6.9)

where ÃX = AX⊗K, ÃW = AW⊗K and K̃ = INC
⊗K, (δ)iN+j = δ(ui, j)

and αB is the dual vector holding the representation of the boundaries w0

and wNC+1.

Corollary 1.2. The following self-consistent procedure for updating the la-
tent labels holds true:

ui ← arg min
j

∑
l,m

αj,lαj,mKl,m − 2
∑
l

αj,lKi,l (6.10)

αi,j ←
∑
l

[A−1]i,l(γδ(um, l) + λδ(um, 0)δi,1 + λδ(um, NC + 1)δi,NC) (6.11)

Proof. Eq.6.10 can be obtained by substituting Eq.6.8 into Eq.6.4. Eq.6.11
is obtained together with the representer theorem proof in the appendices
and is here reported for the sake of clarity.

75

Chapter 6. A Principal Paths Finding Algorithm in Kernel Space

Given a kernel matrix K, a number of prototypes NC , a value for the
hyperparameters γ and λ and an initial set of labels ut0 , Eq.6.10-6.11 can be
iterated till convergence. As shown in Fig.6.2(b), the output of the algorithm
will be a final set of labels utf from which an approximated version of the
clusters prototypes in the original data space can be retrieved for example
by a medoid approximation.

Empty clusters We close this section with a remark about empty-clusters.
Indeed let us assume that at a given iteration t of the algorithm one of the
NC clusters has cardinality |wtj |= 0 i.e. there is no data samples assigned
to it. This situation can easily arise when the number of clusters NC is too
high or when the value of the regularization parameter s is so high that some
of the clusters centers are pulled away from the data. One can easily deal
with such scenario in linear space (where the coordinates of wj are readily
available) simply avoiding to update the empty cluster in that iteration i.e.
wtj ← wt−1

j . However in kernel space (where the prototypes are implicitly
represented with the label vector u) if none of the samples are assigned to
cluster wj then one loses completely the capability of keeping track of it.
For this reason we propose to deal with such situation simply removing the
empty prototype wj from the topology connecting its previous cluster center
wj−1 to the next one wj+1 so that N t

C ← N t
C − 1

6.4 Approximated algorithm in kernel space

We discuss in the following how the M-step of the EM procedure minimizing
Eq.6.3 can be carried out approximately without directly solving the linear
system described by Eq.6.7. Two different approaches will be explored, first
we will expand the recursive relation up to O(s2) terms and secondly we will
present an approach based on fixed point iterations.

6.4.1 Approximation up to O(s2)

Let us explicitly write the maximization step deriving Ω(W, u,X, γ, λ) with
respect to a given prototype wj :

∂Ω

∂wj
= −γ

∑
i

(φ(xi)− wj)δ(ui, j)−
λ

2
(wj+1 − wj)+

+
λ

2
(wj − wj−1)

= −γ|wj |
Cj,·
|wj |

+ (γ|wj |+λ)wj −
λ

2
(wj+1 + wj−1)

76

6.4. Approximated algorithm in kernel space

now setting ∂Ω
∂wj

= 0 the following equation is derived:

wj = ψ(wj+1, wj−1)

= (1− Sj)
Cj,·
|wj |

+
1

2
Sj(wj+1 + wj−1)

(6.12)

with Sj = s
|wj |+s . It should be clear how such formulation of the M-step has

a recursive nature, as expected for a linear system of the Toeplitz type, :
wj−1 = ψ(wj−2, wj)

wj = ψ(wj−1, wj+1)

wj+1 = ψ(wj , wj+2)

Now explicitly recurring Eq.6.12 retaining just the terms up to O(s2)
the following approximated M-step can be obtained:

wj ≈ (1− Sj)
Cj,·
|wj |

+
1

2
Sj(

Cj+1,·
|wj+1|

+
Cj−1,·
|wj−1|

) (6.13)

Recalling the definition of Cj,· =
∑

i φ(xi)δ(ui, j) it is trivial to observe that
Eq.6.13 represents a convex combination between the centroid of cluster j
and the average of the centroids of clusters j + 1 and j − 1. Such convex
combination is ruled by the regularization parameter s so that for s → 0
one recover the standard k-means M-step:

wj ≈
Cj,·
|wj |

and for s→∞ one obtains:

wj ≈
1

2
(
Cj+1,·
|wj+1|

+
Cj−1,·
|wj−1|

)

The resulting EM procedure, obtained replacing Eq.6.7 with Eq.6.13 is
the same as the one used for regular k-means clustering where a further
smoothing step is introduced i.e.

• Update labels: ui ← arg minj‖φ(xi)− wj‖2

• Update centroids: wj ←
∑
i φ(xi)δ(ui,j)
|wj |

• Smoothing step: wj ← (1− Sj)wj +
Sj
2 (wj+1 + wj−1)

77

Chapter 6. A Principal Paths Finding Algorithm in Kernel Space

We now prove that the expectation step of the procedure as described
by Eq.6.4 can be carried out without the explicit notion of φ(x):

ui ← arg min
j
‖φ(xi)− wj‖2

= arg min
j

2(Sj − 1)〈φ(xi),
Cj
|wj |
〉 − Sj〈φ(xi),

Cj−1

|wj−1|
+

Cj+1

|wj+1|
〉+

+ (1− Sj)2〈 Cj
|wj |

,
Cj
|wj |
〉+

S2
j

4
〈 Cj−1

|wj−1|
+

Cj+1

|wj+1|
,
Cj−1

|wj−1|
+

Cj+1

|wj+1|
〉+

− (1− Sj)Sj〈
Cj
|wj |

,
Cj−1

|wj−1|
+

Cj+1

|wj+1|
〉

(6.14)

observing that 〈 Ci|wi| ,
Cj
|wj |〉 = 1

|wi||wj |
∑

l,mKl,mδ(ul, i)δ(um, j) prove that Eq.6.14

can be carried out with the only notion of the kernel matrix K.

6.4.2 Approximation by fixed point iterations

We present here an alternative approach to the problem of approximating
the M-step of the algorithm in kernel space. In the the previous section we
showed indeed how an approximated M-step can be obtained by stopping
the recursion of Eq.6.12 at O(s2). Whereas we propose here to disentangle
such recursive system evaluating the left-hand side at iteration T + 1 and
the right-hand side at iteration T :

wT+1
j−1 = ψ(wTj−2, w

T
j)

wj,T+1 = ψ(wTj−1, w
T
j+1)

wT+1
j+1 = ψ(wTj , w

T
j+2)

(6.15)

i.e. we treat the iterations of the proposed algorithm as fixed point iterations
which will converge to the solution starting from the initial guess w0

j .

We now postulate that at a given iteration T of the algorithm we can
approximately represent the prototype wTj as a weighted linear combination
of the samples :

wTj ≈ ŵTj =

N−1∑
i=0

α̂Ti φ(xi) (6.16)

Where the hat over the coefficients indicate that they are not the one ob-
tained analytically in the demonstration of the representer theorem for the
exact algorithm. The following approximate M-step is derived:

wT+1
j = ψ(ŵTj−1, ŵ

T
j+1) = (1− Sj)

Cj
|wj |

+
Sj
2
{ŵTj−1 + ŵTj+1} (6.17)

78

6.4. Approximated algorithm in kernel space

As usual one can show that such step can be carried out implicitly in kernel
space

uTi ← arg min
j
‖φ(xi)− wTj ‖2

= arg min
j

2(Sj − 1)〈φ(xi),
Cj
|wj |
〉 − Sj〈φ(xi), ŵ

T
j−1 + ŵTj+1〉+

+ (1− Sj)2〈 Cj
|wj |

,
Cj
|wj |
〉+

S2
j

4
〈ŵTj−1 + ŵTj+1, ŵ

T
j−1 + ŵTj+1〉+

− (1− Sj)Sj〈
Cj
|wj |

, ŵTj−1 + ŵTj+1〉

(6.18)

We can therefore control the accuracy of the EM-like procedure choosing
different representations ŵj i.e. different approximated weight vectors α̂·,j .
In the following paragraphs we list some possibilities detailing their com-
putational complexity. One should appreciate how the approach presented
here has a different nature with respect to the one presented in the previous
section. Indeed the approximated algorithm derived here is formulated in
terms of the dual variables α̂·,j .

Centroid representation: one can set wTj ≈ ŵ
T
j =

CTj
|wj | , this is equivalent

to the following definition for the approximated weight vector α̂:

α̂i,j =

Nc−1∑
j=0

1

|wj |
δ(yi, j) (6.19)

A graphical representation of the derived M-step is shown in Fig.6.3. Such
approximation will be valid in the limit of s → 0 i.e. small values for the
regularization parameter so that the cluster prototypes are not expected to
move too much from the standard kernel k-means solution. Indeed substi-

tuting ŵTj =
CTj
|wj | in Eq.6.18 one can easily verify that the O(s2) approxima-

tion described by Eq.6.14 is obtained. Therefore such simple representation
does not introduce any computational overhead but does not improve the
accuracy of the algorithm neither.

Medoid representation: Another possibility is to approximate wTj sim-
ply with the closest sample in kernel space i.e. setting the weight vector α̂
to be:

α̂i,j =

{
1 if ‖φ(xi)− wTj ‖2< ‖φ(xl)− wTj ‖2,∀j ∈ [0, NC − 1], ∀l ∈ [0, N − 1]

0 otherwise

(6.20)

79

Chapter 6. A Principal Paths Finding Algorithm in Kernel Space

Figure 6.3: On the left a graphical rapresentation of the exact M-step is
shown. On the right instead the approximated M-step obtained by stopping
the recursion up to O(s2) terms or equivalently approximating wTj ≈ ŵ

T
j =

CTj
|wj | is shown.

Such medoid representation introduce an additional O(NCN) computational
cost but evaluating it in term of accuracy gain is not trivial. Indeed the ap-
proximation will be accurate provided a sufficient dense dataset i.e. provided
that prototypes are not too far form data samples.

Min squared weighted representation: The best solution to the repre-
sentation problem in kernel space should be learning the weight vector α̂·,j
minimizing the square distance between the approximate representations
and the actual prototypes i.e.:

α̂T·,j = arg min
α̂T·,j

1

2
‖
N−1∑
i=0

NC−1∑
j=0

(wTj − αTi,jφ(xi))δ(u
T
i , j)‖2

= arg min
α̂T·,j

1

2
‖
N−1∑
i=0

NC−1∑
j=0

((1− Sj)
CT−1
j

|wj |
+
Sj
2

(ŵT−1
j−1 + ŵT−1

j+1)+

− αTi φ(xi))δ(u
T
i , j)‖2

(6.21)

Deriving with respect to a generic α̂l,j and setting the derivative to 0 we
have:

N−1∑
i=0

δ(uTi , j)α̂
T
i,j〈φ(xl), φ(xi)〉 = |wj |{(1− Sj)〈φ(xl),

CT−1
j

|wj |
〉+

+
Sj
2
〈φ(xl), ŵ

T−1
j−1 + ŵT−1

j+1 〉}, ∀j ∈ [0, NC − 1] (6.22)

Therefore, for each prototype wj we would need to solve a linear system in
|wj | unknowns. This is the most accurate representation that we can get
in kernel space however (assuming a constant cluster cardinality of N

Nc
) it

requires O(N
3

N2
C

) operations. It is important to notice that even though this

80

6.5. Manifold selection: filtering data

solution is theoretically valuable, in practice does not offer any computa-
tional advantages with respect to the exact algorithm.

A priori sparse min squared weighted representation: In order to
reduce the computational complexity of the minimum squared weighted rep-
resentation introduced in the previous paragraph, one can restrict ŵj to the
subspace spanned by a subset L ⊂ X of landmarks i.e.:

wTj ≈ ŵTj =
∑
i:xi∈L

α̂Ti,jφ(xi) (6.23)

The set of landmarks can be selected once at the beginning of the algorithm
or it can be selected by a given rational at each iteration e.g. so that the
number of landmarks per cluster is constant. One can easily prove that the

computational overhead for such a representation is reduced to O(|L|
3

N2
C

).

6.5 Manifold selection: filtering data

In chapter 3 we introduced the concept of Principal Path in Data Space
as a local version of Principal Curves (PCs). Where local implies the fact
that the path is not required to pass through the entire set of data. For
example in a constellation-like dataset, as the one depicted in Fig.6.4(a),
the desired path lies on a local manifold that does not involve the whole
dataset. However the introduced algorithm, being derived as a regularized
version of kernel k-means, is intrinsically global. Thus, to focus on sub-
manifolds connecting w0 to wNC+1 we discuss here a possible pre-filtering
scheme on the dataset to be applied before the actual run of the algorithm.
Note that, in case a global manifold is desired this filtering procedure can
be safely turned off.

The filtering procedure can be summarized by the following points:

(a) Select boundary points i.e. w0 and wNC+1.

(b) Extract a set of Nf medoids M = {mi} ⊂ X with kernel k-means++
algorithm [39].

(c) Build a penalized k-nearest-neighbor graph represented by a penalized
distance matrix among M with penalty factor p:

dp(mi,mj) =

{
d(mi,mj) mi ∈ nnk(mj)

pd(mi,mj) otherwise
.

(d) Run Dijkstra algorithm over the penalized distance matrix dp(mi,mj)
in order to find the shortest path connecting w0 to wNC+1. Such path
will be represented as an ordered subset of medoids S ⊂M.

81

Chapter 6. A Principal Paths Finding Algorithm in Kernel Space

(e) Remove from M the points that are too close to the path’s medoids S
with respect to an arbitrary threshold T i.e.

∀mi ∈ (M \ S) : M←M \mi if d(mi,S) < T

.

(f) Label the samples according to the closest medoid. The data to be
filtered out will be the one associated with medoids in the set M \ S.

The different filtering phases are illustrated on a synthetic constellation-
like dataset in Fig.6.4(a)-(f) and Fig.6.5(a)-(f) for different choices of the
boundary conditions.

6.6 Model selection via Bayesian evidence maxi-
mization

In the following section we discuss how γ and λ can be selected through the
Bayesian framework of Maximal Evidence. At first we show how the pri-
mal problem introduced by Eq.6.3 can be framed in the context of Bayesian
inference as a posterior maximization problem. In doing so we also repro-
duce the steps originally introduced by MacKay [24] in order to derive an
analytical expression for the Bayesian evidence in our problem of interest.

We then give a proper Bayesian interpretation for both γ and λ parame-
ters, as it will be clear this will give us useful insights about the very nature
of the two hyperparameters allowing, as it will be discussed in the experi-
mental section to heuristically set γ thus reducing the dimensionality of the
parameter space.

We will then discuss the needed approximations to numerically evaluate
the analytical evidence expression in order to define a useful protocol for
model selection both in linear and kernel space. We stress here the fact
that, even though the Maximal Evidence framework was successfully applied
to several supervised learning problems, its application in the unsupervised
domain is unexplored and may represent a major contribution to the field.

6.6.1 From cost minimization to posterior maximization

As a starting point we show how the cost function minimization process can
be regarded as a Bayesian posterior maximization problem for the model
described by the set of prototypes W. We can think to Ω as an energy
function to be minimized, thus taking inspiration from classical statistical
mechanics we set the energy to be proportional to the negative logarithm of

82

6.6. Model selection via Bayesian evidence maximization

Figure 6.4: (a)-(f) Filtering phases as described in section 6.5 in order to
focus on the sub-manifold implied by the choice of boundary conditions.

Figure 6.5: Same filtering phase with a different choice of boundary condi-
tions. This shows how the filtering scheme is able to select different local
sub-manifolds in a constellation-like dataset.

83

Chapter 6. A Principal Paths Finding Algorithm in Kernel Space

the posterior probability P (W|X, γ, λ) i.e.

P (W|X, γ, λ) = P (X|W, γ, λ)P (W|γ, λ)
1

P (X|γ, λ)

=
e−Ω(W,X,γ,λ)

Z(γ, λ)

=
e−γΩX(W,X)

ZX(γ)

e−λΩW (W)

ZW (λ)

ZX(γ)ZW (λ)

Z(γ, λ)

(6.24)

where Z, ZX and ZW are the partition functions obtained integrating out
all the degrees of freedom respectively of the global cost, of the k-means cost
and of the regularizer cost:

Z(γ, λ) =

∫
e−Ω(W,X,γ,λ)dW

ZD(γ) =

∫
e−γΩX(W,X)dW

ZW (λ) =

∫
e−λΩW (W)dW

Comparing the first and the last lines of Eq.6.24 we can obtain the
following definition for the likelihood of the data:

L(γ,W) = P (X|W, γ, λ) =
e−γΩX(W,X)

ZX(γ)
(6.25)

,

for the prior probability of the model:

P (W, λ) =
e−λΩW (W)

ZW (λ)
(6.26)

,

and for the evidence:

E(γ, λ) = P (X|γ, λ) =
Z(γ, λ)

ZX(γ)ZW (λ)
(6.27)

.

Hereafter we will refer to the maximum posterior solution as WMP:

WMP = arg max
W

P (W|X, γ, λ) = arg min
W

Ω(W,X, γ, λ)

We have now introduced all the quantities needed to infer both the
model, i.e. set of prototypes W, and the hypothesis i.e. set of parame-
ters (γ, λ) starting from the training data X. Thus the two level Bayesian
inference procedure that we aim at can be summarized as follow:

84

6.6. Model selection via Bayesian evidence maximization

• 1st Level: starting from a given hypothesis (γ, λ) infer the best model
WMP through a maximum posterior criterion (i.e. minimum cost)
using the algorithm introduced in the previous sub-section.

• 2nd Level: Infer the best parameters (γ, λ) with a maximum posterior
criteria on the hypothesis set. Assuming a flat prior probability (i.e.
stopping the inference at this second level) such maximum posterior
criteria is equivalent to a maximum evidence criteria as shown by:

(γ, λ)ME = max
γ,λ

P (γ, λ|X)

= max
γ,λ

P (X|γ, λ)P (γ, λ)

P (X)

= max
γ,λ

E(γ, λ)

6.6.2 Bayesian interpretation of γ and λ

Before going on with the numerical evaluation of the evidence just intro-
duced we take advantage of the Bayesian reformulation of the problem to
get insights about the nature of the algorithm hyperparameters.

Bayesian interpretation of γ

Observing Eq.6.25 the interpretation of γ is straightforward. Indeed :

P (X|W, γ, λ) =
N∏
i=1

P (xi|W, γ, λ)

=
N∏
i=1

exp(−
∑
j

γ‖xi − wj‖2δ(ui, j))

(6.28)

i.e. Assuming that each cluster j is generated sampling a gaussian distribu-
tion centered around wj , then γ represents the variance of such distribution.
It is worth observing that this result was already implicitly derived in chap-
ter ?? as one of the motivations behind the choice of kernel k-means as
a valuable clustering algorithm for MD trajectories. There indeed we de-
rived the kernel k-means cost function starting from a maximum likelihood
principle, assuming a likelihood in the form of Eq.6.25 due to the natural
smoothness of the energy surface from which MD data are sampled.

Bayesian interpretation of λ

The interpretation of λ starting from the Bayesian prior definition given in
Eq.6.26 is slightly more involved than the one for γ. Let us start rewriting

85

Chapter 6. A Principal Paths Finding Algorithm in Kernel Space

Figure 6.6: (a) Pictorial representation of the Bayesian interpretation of γ
as the variance of a gaussian mixture model with gaussians centered around
the cluster prototypes. (b) Pictorial representation of the Bayesian interpre-
tation of λ as the variance of a gaussian prior centered around the straight
line connecting the starting and the ending cluster prototypes.

the regularized cost function completing the square:

ΩW (W) = Tr(WTAWW −BTW + DW)

= Tr((W − 1

2
AW

−1B)TAW(W − 1

2
AW

−1B)+

+ DW −
1

4
BTAW

−1B)

Substituting such formulation of the regularized cost into Eq.6.26 we obtain:

P (W, λ) ∝ e−λTr((W−W#)TAW(W−W#) (6.29)

where we have defined the matrix W# as:

W# =
1

2
AW

−1B

. . . w#
1 . . .
...

. . . w#
i . . .
...

. . . w#
NC

. . .


=

1

2
AW

−1



. . . w0 . . .

. . . 0 . . .
...

. . . 0 . . .

. . . wNC+1 . . .


Eq.6.29 tells us that λ represents the variance of a gaussian prior centered

around W#. To better understand the meaning of such result we take
advantage of the fact that the analytical inversion of tridiagonal matrices in

86

6.6. Model selection via Bayesian evidence maximization

the form of AW is known [69], indeed we have:

(
1

2
AW

−1)1,j =
NC + 1− j
NC + 1

(
1

2
AW

−1)j,NC =
j

NC + 1

(6.30)

it follows that:

w#
i =

NC + 1− i
NC + 1

w0 +
i

NC + 1
wNC+1 (6.31)

i.e. the regularizer cost function describes a gaussian prior with variance λ
centered around the straight line connecting the boundaries w0 and wNC+1.

For the sake of clearness a pictorial description of both γ and λ bayesian
interpretation is given in Fig.6.6.

6.6.3 Numerical evidence evaluation in Linear Space

Now that the learning problem is well framed in the framework of Bayesian
inference we discuss here how it is possible to practically evaluate the (log)-
evidence introducing some approximations since a straightforward applica-
tion of the analytical derivation is unfeasible.

For the sake of clarity we write here the logarithmic equation for the
evidence:

logE(γ, λ) = logZ(γ, λ)− logZX(γ)− logZW (λ) (6.32)

it is thus clear that one needs to evaluate the three terms Z(γ, λ), ZX(γ),
ZW (λ). In the following we discuss the evaluation of all the three terms.

partition function ZW among the three partition functions ZW (λ) is the
simplest to evaluate, indeed being ΩW a quadratic form with respect to W,
such integral can be evaluated analytically as per:

ZW (λ) =

(
(2π)NC

det(λAW)

) d
2

e
λ
8

Tr(BTAW
−1B)e−λTr(DW)

taking the logarithm and retaining only the terms depending on λ we have:

logZW = −dNC

2
log λ+

λ

8
Tr(BTAW

−1B)− λTr(DW)

k-means partition function ZX The evaluation of the k-means parti-
tion function is not as straightforward as the previous one since the k-means

87

Chapter 6. A Principal Paths Finding Algorithm in Kernel Space

cost function ΩX is not quadratic. We propose here a quadratic approxima-
tion around the unregularized k-means maximum posterior solution WUMP

obtained by minimizing ΩX(W,X):

ΩX(W,X) ≈ ΩX(WUMP ,X)+Tr(
1

2
(W−WUMP)TAX|WUMP

(W−WUMP))

.

At this point the evaluation of ZX is reduced to a standard gaussian
integral:

ZX(γ) ≈

(
(2π)NC

det(γAX|WUMP
)

) d
2

e−γΩX(WUMP ,X)

taking the logarithm and retaining only the terms depending on γ and on
WUMP we have:

logZX(γ) = −dNC

2
log(γ) − d

2
log det AX(WUMP) − γΩX(WUMP ,X)

Regularized k-means partition function Z The last partition function
that need to be evaluated in this context is the global one, including both the
contribution from the standard k-means and the one coming from the regu-
larization term. As for ΩX we are dealing with a non-convex cost function
Ω, therefore we proceed with the same kind of quadratic approximation. In
this case however the expansion will be centered around the maximum pos-
terior solution obtained minimizing the regularized cost function i.e. WMP

so that:

Z(γ, λ) ≈
(

(2π)NC

det(γAX + λAW)|WMP

) d
2

e−Ω(WMP ,X,γ,λ) (6.33)

taking the logarithm and retaining only the terms depending on γ, λ
and WMP we have:

logZ(γ, λ) ≈ −d
2

log det(γAX+λAW)|WMP
−γΩX(WMP ,X)−λΩW (WMP)

Approximate log evidence Substituting the partial results obtained
above in Eq.6.32 we have:

88

6.6. Model selection via Bayesian evidence maximization

logE(γ, λ) ≈ −d
2

log det(γAX + λAW)|WMP
+

− γΩX(WMP ,X)− λΩW (WMP) +
dNC

2
log(γ)+

+
d

2
log det AX|WUMP

+γΩX(WUMP ,X) +
dNC

2
log λ+

− λ1

8
Tr(BTAW

−1B + λDW) (6.34)

It is worth noting that this final formulation depends on both γ, λ indepen-
dently and cannot be rewritten in terms of the single regularization parame-
ter s = λ

γ . This proves that in order to properly address the model selection
with a Bayesian framework the max-search for the evidence function has to
be performed on the bidimensional space γ × λ. This is an intrinsic, unde-
sired property of the Bayesian framework (which can be found also in the
simplest case of mean inference [70]). It is straightforward to demonstrate
that on the line described by λ

γ = const all the hypothesis are equivalent (i.e.
the solution to the 1st level inference is unique) however the evidence is not
flat on such line. In other words, even though the original cost function is
scale invariant, there is a preferred scale that one has to choose in order to
properly select the hypothesis through a max evidence framework. Eq.6.34
was here derived assuming an explicit knowledge of the transformed input
space φ(·) : Rd → Rd′ , indeed one needs to know the dimensionality d′ in
order to evaluate it. The same result however can be derived in kernel space,
indeed as we are going to demonstrate in the following section Eq.6.34 holds
true replacing the dimensionality of the input space d′ with an estimate of
the kernel matrix rank r.

6.6.4 Numerical evidence evaluation in Kernel Space

Starting from the dual formulation of the problem given by Eq.6.9 we now
discuss how it is possible to evaluate the Bayesian evidence in kernel space,
without an explicit notion of the transformation φ(·). We will follow closely
the procedure carried out in the previous section, so as a first step one needs
to evaluate the following three partition functions:

Z(γ, λ) =

∫
e−Ω(α,X,γ,λ)dα

ZD(γ) =

∫
e−γΩX(α,X)dα

ZW (λ) =

∫
e−λΩW (α)dα

89

Chapter 6. A Principal Paths Finding Algorithm in Kernel Space

where we replaced the integration over the phase space spanned by W with
an integration of the space spanned by the dual variables α.

As for the primal derivation, also here the integral needed to evaluate
ZW (λ) is a known gaussian integral:

ZW (λ) =

(
(2π)NNC

det(λÃW)

) 1
2

e
λ
8

(K̃αB)T Ã−1
W (K̃αB)e−λTr(DW)

The exact evaluation of ZX(γ) and Z(γ, λ) instead is not feasible due
to the non-convexity of ΩX and Ω. We therefore proceed with a quadratic
approximation around the unregularized maximum posterior solution αUMP

and the maximum posterior solution αMP respectively:

ZX(γ) ≈

(
(2π)NNC

det(γÃX|αUMP
)

) 1
2

e−γΩX(αUMP ,X)

Z(γ, λ) ≈

(
(2π)NNC

det(γÃX + λÃW)|αMP

) 1
2

e−Ω(αMP ,X,γ,λ)

Now taking the logarithm and neglecting all the terms which do not
depend on γ and λ one derives the following equation for the approximated
evidence in kernel space:

logE(γ, λ) ≈ −1

2
log det(γÃX + λÃW)|αMP

+

− γΩX(αMP ,X)− λΩW (αMP)+

+
1

2
log det γÃX|αUMP

+γΩX(αUMP ,X)+

+
1

2
log detλÃW −

λ

8
(K̃αB)T Ã−1

W(K̃αB) + λTr DW (6.35)

It is worth noting that the condition of ÃW and ÃD matrices strongly
depend on the condition of K. Since we cannot assume K to be non-singular
in general we have to discuss how Eq.6.35 can be evaluated when this is not
the case. In particular we will discuss in the following how to correctly
evaluate the terms where a determinant computation is needed.

We start observing that:

γÃX + λÃW = (γAX + λAW)⊗K

for the associative property of the Kronecker product.

90

6.6. Model selection via Bayesian evidence maximization

In order to deal with singular K matrices in the following we will replace
the determinant operator with the pseudo-determinant defined as:

pdet(•) = lim
ε→0

det(•+ εI)

εsz(•)−rk(•)

= lim
ε→0

∏
i(µ
•
i + ε)

εsz(•)−rk(•)

=
������
εsz(•)−rk(•) ∏

µ•i>0 µ
•
i

������
εsz(•)−rk(•)

It is a known result [71] that the eigenvalues of A ⊗K are given by all
possible products {µAi µKj } of the A and K eigenvalues. Therefore, being
A a full-rank matrix and being K a positive semi-definite matrix of rank
rk(K) = |µKi > 0|= r we have:

pdet(A⊗K) =
∏

µAi µ
K
j >0

µAi µ
K
j

=
∏
µKj >0

(µA1 µ
K
j . . . µ

A
sz(A)µ

K
j)

=
∏
µKj >0

(µA1 . . . µAsz(A))(µ
K
j)sz(A)

= det(A)r pdet(K)sz(A)

The evaluation of the determinant terms appearing in Eq.6.35 is now
straightforward:

1

2
log pdet(γÃX|αMP

+λÃW) =
r

2
log det(γAX|αMP

+λAW)+

+
NC

2

r∑
i=1

logµKi (6.36)

1

2
log pdet γÃX|αKMP

=
rNC

2
log(γ) +

r

2
log det AD|αKMP+

+
NC

2

r∑
i=1

logµKi (6.37)

1

2
log pdetλÃW =

rNC

2
log(λ) +

r

2
log det AW +

NC

2

r∑
i=1

logµKi (6.38)

91

Chapter 6. A Principal Paths Finding Algorithm in Kernel Space

Substituting Eq.6.36-6.38 into Eq.6.35, it reduces to the equation for the
approximate evidence in the primal space (i.e. Eq.6.34) where the dimen-
sionality of the transformed space d′ is replaced by the rank r of K.

It is worth noting that r is the only spectral property of the kernel matrix
that actually enters in the evaluation of the evidence. Indeed the sum of
the log-eigenvalues of K represents a constant value with respect to γ and
λ and can be safely ignored in the model selection phase. Interestingly, r
can be interpreted as an estimate for the dimensionality of the underlying
vector space. The numerical evaluation of such quantity however is not
trivial due to the finite precision of float representations. With this respect
in the experimental section we will show how the numerical evaluation of
such parameter can be carried out setting the threshold for the non-zero

eigenvalue to be: µKx :
∑x
i=1 µ

K
i∑N

i=1 µ
K
i

= 0.99.

6.7 Discussion

In chapter 3 we introduced the concept of Principal Path in data space start-
ing from the one of MFEP in statistical mechanics. Such link was reinforced
and more formally formulated in this chapter by the newly introduced cost
function Eq.6.3. This should be clear for example taking a look to the Plain
Elastic Band method for finding Minimum Energy Path (MEP) introduced
in chapter 3. Indeed there a chain of R simulation replicas were evolved
according to the total potential energy:

Û(x1, . . . , xR) =

R∑
i=0

U(xi) +
k

2

R−1∑
i=0

(xi+1 − xi)2

Comparing this equation to Eq.6.3 clearly highlights the connection with
statistical mechanics. The proposed cost function can be interpreted as
a Plain Elastic Band where the potential energy of the molecular system
Û(x1, . . . , xR) is replaced by the kernel k-means cost function ΩX(W,X) on
the underlying data space X. A major difference here regards the nature
of the two functions, indeed PEB deals with a potential energy function.
Whereas the nature of the proposed cost, being defined over sampled data,
is closer to the one of free energy.

We would like also to underline here a further connection to the field
of statistical mechanics and more specifically to MD. Indeed one can easily
verify that the maximization step of the approximate EM procedure up to
O(s2) i.e. Eq.6.13 is equivalent to the string evolution equation for the
String Method [49] discussed in chapter 3. Recalling the connection just
made among ΩX and the potential energy of a molecular system one can
further speculate that the E-step of the proposed method is equivalent to
the mean force estimate step of the SM as depicted in Fig.6.7. Interestingly

92

6.7. Discussion

in the work by Maragliano et al. the algorithm is only described in terms of
Gradient Descent (GD) and a variational formulation is missing. A major
difference with String Methods however is that, there the string evolution
is performed online i.e. while the MD simulation is running here instead we
deal a posteriori with the sampled data.

Figure 6.7: Schematics description of the connection between the standard
EM procedure derived for our algorithm (in blue) and the string method for
finding MFEP along MD simulations (in orange).

In the context of 1D manifold learning the proposed algorithm is closely
related to the Elastic Map [56] framework discussed in chapter 3, indeed also
there one defines a regularized functional form of the standard k-means cost.
Our algorithm however presents some major differences such as: the presence
of just one regularization parameter with no angular terms, the generaliza-
tion to kernel space, the development of a Maximal Evidence principle for
blindfolded in-sample model selection and the addition of fixed boundary
conditions w0 and wNC+1.

We would like to stress here this last aspect recalling that is particu-
larly relevant especially in the model selection phase. Indeed adding fixed
boundaries significantly reduces the space of available curves that can be
produced by the algorithm. Moreover such boundary conditions allowed us
to successfully apply the maximal evidence framework where a Bayesian in-
terpretation of the parameters is straightforward. As a matter of fact we
have shown that the proposed minimization primal problem can be rewrit-
ten as a maximum posterior problem where the prior is centered around a
linear segment connecting the two endpoints. As it will be clear in the ex-
perimental section indeed a straight path connecting w0 to wNC+1 is what is
obtained if the regularization constant is pushed to infinity. In elastic maps,
conversely, if the corresponding regularization constant is pushed to infinity
the result is that all the clusters collapse in the same average point. Our ap-
proach is consistent with classical supervised learning methods where linear
entities (linear separators, linear regressors) are the typical priors obtained
in the limit of infinite regularization (for instance induced by the infinite
variance of the gaussian basis functions). All these features allowed us to
completely characterize the method in terms of hyperparameters.

Another less closely related method in the context of 1D manifold learn-
ing is the Self Organizing Map (SOM) [59] also discussed briefly in chapter

93

Chapter 6. A Principal Paths Finding Algorithm in Kernel Space

3. One indeed can use such method to obtain paths as well, however such
family of algorithms deals with global manifold learning and more impor-
tantly does not have a functional formulation relying just on an optmization
one.

94

Part III

Experiments

95

Chapter 7

Experiments on Clustering
with DKK

The proposed Distributed Kernel K-means (DKK) method was completely
implemented using C++, the distribution strategy was achieved via MPI
(i.e. Message Passing Interface) and the offload acceleration was imple-
mented with a combination of CUDA and OpenMP (to manage multiple
threads on the host processor). In the following chapter we present a set of
experiments where the algorithm was tested on datasets that are standard
in the Machine Learning (ML) field as well as on 2D toy datasets in or-
der to better understand its behavior. Lastly we challenge it against a real
application scenario coming from the Molecular Dynamics (MD) domain.

We already pointed out while deriving the method in chapter 4 how
the proposed algorithm is controlled via two fundamental parameters: B
and s. We will investigate in this section how these parameters affect the
approximation degree of the obtained clustering results. The other free
parameters intrinsic to kernel k-means are the number of clusters NC and
the kernel parameter/s. In this regard we decided to run the algorithm with
a Gaussian kernel of a given variance σ. For the considered datasets, where
NC is unknown a priori, we propose the use of an elbow criterion on the cost
function (i.e. so as that an increase in NC corresponds to a decrease of the
cost function lesser than 1%). Regarding σ, we decided to work most of the
time in a linear regime by setting it to 4 to 6 times the maximum pairwise
distance in the dataset. In this way, we are alleviating the model selection
phase and we are retrieving results which can be safely compared with the
ones coming from linear k-means (see how k-means can be obtained as a
limiting case of kernel k-means in chapter 2).

97

Chapter 7. Experiments on Clustering with DKK

7.1 The datasets

For the sake of clarity we list hereafter all the datasets used in this experi-
mental section together with their specifications.

2D toy Synthetic dataset containing 4 clusters of 10000 elements in a 2D
feature space. Each cluster is generated by sampling a Gaussian distribution
with center and width carefully selected in order to facilitate its visualization
i.e. (σ = [0.1, 0, 1], µ = [0.5, 0.2]), (σ = [0.1, 0, 1], µ = [0.8, 0.8]) and (σ =
[0.1, 0, 1], µ = [0.2, 0.7]).

MNIST Standard dataset of handwritten digits used as benchmark for
classification algorihtms [72]. It is composed by a training set of 60000
samples and a test set of 30000 samples. Each sample represents an image
of 28 x 28 pixels in gray scale with 8-bit color depth. This accounts for
a 784 dimensional feature space with integer features in the range [0, 255].
The only preprocessing we propose here is a normalization on the features
obtained dividing them by 255.

Noisy MNIST Synthetic dataset in-house generated by starting from
MNIST and adding uniform noise on 20% of the features randomly selected
with uniform distribution . Each sample in the training set is perturbed
20 times in order to obtain a final dataset of 1200000 samples in a 784
dimensional normalized feature space.

RCV1 Reuters Corpus Volume I is a collection of manually labeled docu-
ments used as standard benchmark for classification in the domain of mul-
tilingual text categorization [73]. It is composed of 23149 training samples
and 781265 test samples. Among the various formats available we used here
its expression as normalized log TF-IDF (i.e. logarithmic term frequency-
inverse document frequency) vectors in a sparse 47236 dimensional feature
space. As already proposed in [74] we preprocessed the dataset removing
samples with multiple labels and categories with less then 500 samples. Af-
ter doing this we obtained a dataset of 193844 samples all coming from the
test samples which we divided in 188000 training samples and 5844 test sam-
ples to maintain the original ratio. Moreover, to deal with the sparsity of
the feature space we performed a dimensionality reduction step via random
projection on a dense 256 dimensional space.

20 Newsgroup Another standard dataset in the field of text classification
[75] is composed of 18828 documents divided into 11314 training samples
and 7514 test samples evenly divided among 20 newsgroups. We expressed
the dataset as normalized TF-IDF vectors in a sparse 101631 dimensional

98

7.2. The quality measures

feature space. As already explained for the RCV1 dataset we deal with the
sparsity of the feature space by means of a random projection on a dense 256
dimensional space. This is the only preprocessing needed for our purposes.

MD data As anticipated, we used MD as an appealing clustering scenario
in which to leverage the features of the proposed algorithm. Microsecond-
long trajectories of the binding mechanism of a drug, specifically a transi-
tion state analogue named DADMe-immucillin-H, to the Purine Nucleoside
Phosphorylase (PNP) enzyme were employed [76].

7.2 The quality measures

When possible, we compared the clustering labels coming from the proposed
procedure with the classification training labels. We will consider mainly the
following two quality measures:

Clustering accuracy Let u be the set of labels obtained as a clustering
result and let y be the set of the actual classes given as training or test. The
clustering accuracy is defined as

µ(y, u) =
N−1∑
i=0

δ(ψ(yi), ui)

N
(7.1)

Where ψ(ui) is a mapping function which maps each clustering label to an
actual training or test class. We propose here the use of a simple majority
voting scheme to obtain such a mapping.

Normalized Mutual Information Let now be ni =
∑N−1

j=0 δ(ui, j), mi =∑N−1
j=0 δ(yi, j) and oi,j =

∑N−1
k=0 δ(uk, i)δ(yk, j) the normalized mutual infor-

mation is a quality measure defined as:

NMI(y, u) =

∑
i,j oi,j log(

Noi,j
nimj

)

(
∑

i ni log(niN))(
∑

imi log(miN))
(7.2)

7.3 The platforms

We tested our implementation on a variety of different platforms in order
to better describe the versatility and the potential impact of the proposed
algorithm, we list them here:

99

Chapter 7. Experiments on Clustering with DKK

IBM-BG/Q - Cineca/FERMI Cluster of 10240 computing nodes equipped
with two octacore IBM PowerA2, 1.6 GHz processors each, for a total of
163840 cores. The available memory amounts to 16 GB / core and the
internal network features a 5D toroidal topology.

IBM NeXtScale - Cineca/GALILEO Cluster of 516 computing nodes
equipped with two octacore Intel Haswell 2.40 GHz processors for a total of
8256 cores. The available memory amounts to 8 GB / core and the internal
network features Infiniband with 4x QDR switches.

State of the art Workstation Modern heterogeneous desktop machine
equipped with two Intel E-6500 esacore processors, 64 GB of memory and a
GTX 980 nVIDIA Graphic Processing Unit (GPU).

7.4 Assessing the degree of approximation

As a first step to assess the proposed clustering algorithm we consider the
2D toy dataset. We aim at better illustrating and helping the visualization
of the evolution of the cluster centers along with the iterations of the outer
loop. Incidentally, we want to highlight the consequences of a poor sampling
strategy (concept-drift) and to give a rationale for understanding its quality.

In figure 7.1 the evolution of the cluster centers is followed for two dif-
ferent sampling strategies i.e. stride sampling and block sampling. Even
though the final result is the same for such simple dataset it should be clear
that the stride sampling strategy is superior in representing the structure of
the dataset within each mini-batch. The underlying question is how could
one assess the quality of the sampling strategy in a real case scenario where
direct visualization is not possible. In figure 7.2(b) we try to answer by look-
ing at the behaviour of the cluster center displacement. We can comment
that if such quantity is constantly small with respect to the average cluster
size, the mini-batches can be regarded as good representative of the entire
dataset structure. In contrast, high values or spikes in the same quantity
may reflect a poor sampling strategy.

Observing figure 7.2(a) we rather note that the inner loop of the proposed
algorithm (i.e. the minimization of the partial cost Ω(Xi,W)) does indeed
help minimize the global objective function Ω(X,W).

We consider now the MNIST dataset in order to assess the degree of
approximation introduced by the mini-batch approach and by the a priori
sparse representation of the cluster centers. We ran our algorithm on the
60000 training samples of MNIST with B = [1, 2, 4, 8], s ∈ [0.025, 1.0] and
we monitored the resulting clustering centers against the 10000 test samples
in order to compute the clustering accuracy µ. Results as well as execution
times are presented in figure 7.3. We observe that the algorithm is generally

100

7.4. Assessing the degree of approximation

Figure 7.1: 2D Toy dataset. (top row) From left to right the evolution of
the cluster centers across different iterations of the outer loop in the case of
a poorly designed block sampling strategy. (bottom row) From left to right
the evolution of the cluster centers across different iterations of the outer
loop in the case of a proper stride sampling strategy where each mini-batch
correctly captures the underlying structure of data.

Figure 7.2: 2D Toy dataset. (a-top panel) Partial cost function
Ω(Xi,W),∀i ∈ [0, 3] vs number of iterations, different colors represent dif-
ferent mini-batches. (a-bottom panel) Global cost function Ω vs number
of iterations. It is worth noting how the inner loop iterations within each
mini-batch help to bring down the global cost function. (a) Average cluster
centers displacement vs outer loop iterations for the two different sampling
strategies illustrated in Fig.7.1, we propose this as a control observable to
assess the quality of the sampling when direct visualization is not feasible.

101

Chapter 7. Experiments on Clustering with DKK

robust across a wide range of the two parameters. The clustering accuracy
slightly decreases when the number of mini-batches increase and once B is
fixed it decreases almost monotonically with s dropping to low values when
s < 0.2. As expected, this suggests us to position ourselves to the top-left
part of the graph i.e. few mini-batches and s ≈ 1.

Figure 7.3: (top panel) Cluster Accuracy vs s. (bottom panel) Execution
time vs s. Clustering performed on 60000 MNIST training samples evaluated
against the 10000 provided test samples. Different colors represent different
values of B ∈ [1, 2, 4, 8]. As described in the main text this graph can help
understand how to perform model selection for the set of newly introduced
parameters (B, s) picking a target execution time and looking at µ for the
compatible sets of parameters.

Both B and s are trade-off parameters that have to be fixed. The strat-
egy we suggest here is to fix a desired execution time on a given architecture.
The available memory for the execution can lead to a first value for B us-
ing equation 4.16. As a starting point, the value of s can be fixed at its
maximum. This set of parameters i.e. (Bmin, 1.0) should be optimal for
the computational resources available i.e. minimum number of mini-batches
without sparse representation of the cluster centroids. One can evaluate the
expected execution time for the algorithm running it on a single mini-batch,
if the expected execution time does not match the initial requirements then
one can first slowly decrease s and, if this is not sufficient (i.e. expected exe-
cution time too high for s < 0.2), then increase the number of mini-batches.
The approximation degree introduced can be self consistently checked using
a single mini-batch and taking as a reference the results obtained for the

102

7.5. Scaling behaviour

optimal set of parameters (Bmin, 1.0).

This rationale should guide the user to finely tune the trade-off param-
eters also on a large dataset.

7.5 Scaling behaviour

We aim here at assessing the original distribution strategy that we proposed
in the previous section. In order to do so we tested our algorithm both
on the IBM BG/Q and on the IBM NeXtScale machines above described,
against the standard MNIST dataset.

100 1000
Number of processors

10

100

1000

E
x

ec
u

ti
o

n
 t

im
e

(s
)

Figure 7.4: Execution time vs NP for two different distributed architectures.
IBM BG/Q in black/circles and IBM NeXtScale in red/squares.

We decided to set B = 1 in order to run the code in single batch mode
since, as already explained, our distribution strategy does not involve the
outer loop of the proposed method i.e. increasing the number of mini-batches
would have only added a multiplicative constant to the execution time equal
to B.

In Fig.7.4 the strong scaling plot for both machines is showed, the algo-
rithm exhibits near to perfect scaling for a wide range of NP i.e. 16→ 1024
on IBM BG/Q and 16→ 256 on IBM NeXtScale. The discrepancy from the
ideal behaviour outside this range can be ascribed to the portion of code
intrinsically serial (e.g. fetching and initialization phases) which becomes a
prominent cost as described by Amdahl’s law.

103

Chapter 7. Experiments on Clustering with DKK

Figure 7.5: σ model selection for 20 newsgroup dataset. Maximum clustering
accuracy obtained for σ = 10.

7.6 Standard datasets analysis

We present here the tests we performed on a state-of-the-art workstation
over a standard dataset coming from the ML community. We show how even
large datasets with up to 106 elements in 784 dimensions can be processed via
a kernel approach on a desktop machine in a reasonable amount of time. The
considered datasets are 20 Newsgroup (11314 samples in 256 dimensions),
MNIST (60000 samples in 784 dimensions), noisy MNIST (1000000 samples
in 784 dimensions) and RCV1 (188000 samples in 256 dimensions). The
results are collected respectively in tables 7.1, 7.2, 7.3 and 7.4.

One can appreciate how for all the datasets the clustering accuracy de-
creases by less then 4% increasing the number of mini-batches from 1 to 4
while the overall execution time is reduced dramatically. As expected the
clustering accuracy slowly decreases while further increasing the number of
mini-batches B. However it should be noted how even for B = 64 one ob-
tains qualitatively reasonable results i.e. with a reduction in the clustering
accuracy of less than 10%.

In order to elucidate the model selection phase of standard kernel k-
means parameters we show in Fig.7.5 and Fig.7.6 how to select σ on the 20
newsgroup dataset and how to select NC on the original MNIST dataset.

As a baseline comparison for the clustering accuracy and the normalized
mutual information we used a standard python implementation of k-means
from the scikit-learn package [77]. Results coming from RCV1 are also
compared with that appearing in the literature [74].

We close with a final note on the results obtained for the noisy MNIST
dataset. Indeed we weren’t able to run the standard implementation of k-
means on the target workstation due to memory constraint therefore baseline
comparison values for µ and NMI are not available. This however should also
highlight the strength of the proposed algorithm in enabling kernel based
clustering on large collection of data even on regular desktop machines.

104

7.6. Standard datasets analysis

Figure 7.6: Cluster number model selection for MNIST original dataset.
The elbow criterion indicated that NC = 128 is a reasonable choice after
which the numerical derivative δΩ

δNC
drops to zero.

Ñ µ NMI Execution time

Baseline 13.56± 0.66 0.075± 0.005 −

1 13.66± 0.39 0.068± 0.002 15.04± 0.88

4 12.72± 0.38 0.055± 0.004 6.31± 1.12

16 9.90± 0.56 0.051± 0.004 4.63± 0.74

64 8.92± 0.24 0.050± 0.002 4.15± 2.20

Table 7.1: 20 Newsgroup results and timings for different Ñ

Ñ µ NMI Execution time

Baseline 84.5± 0.62 0.693± 0.012 −

1 86.47± 0.37 0.737± 0.006 655.23± 82.92

4 82.63± 0.91 0.680± 0.011 133.63± 4.40

16 81.45± 0.653 0.670± 0.010 32.17± 2.48

64 78.39± 0.95 0.626± 0.015 9.51± 0.58

Table 7.2: MNIST results and timings for different Ñ

105

Chapter 7. Experiments on Clustering with DKK

Ñ µ NMI Execution time

Baseline − − −

32 64.19± 1.03 0.541± 0.005 2334.31± 25.63

64 60.97± 0.3 0.506± 0.001 1243.81± 23.43

Table 7.3: Noisy MNIST results and timings for different Ñ

Ñ µ NMI Execution time

Literature 16.59± 0.62 0.2737± 0.0063 −

Baseline 15.16± 0.81 0.091± 0.0052 −

4 17.41± 0.83 0.147± 0.006 797.65± 53.48

16 16.52± 0.74 0.145± 0.001 170.96± 4.94

64 16.15± 0.60 0.132± 0.001 77.20± 3.96

Table 7.4: RCV1 results and timings for different Ñ

7.7 Comparison with mini-batch SGD

As discussed in chapter 4 a closely related mini-batch technique already
available in literature is the mini-batch Stochastic Gradient Descent (SGD)
version of k-means proposed by Sculley [40]. A comparison about the cluster-
ing accuracy achieved by the two algorithms for the original MNIST dataset
is shown in Fig.7.7. It is worth noting that the proposed DKK algorithm
performs better as the number of minibatches B decreases whereas the per-
formances of the SGD procedure proposed by Sculley are almost constant.
Moreover, and as expected, our algorithm is less sensitive to noise, indeed
the clustering accuracy variance is much lower in comparison to that of the
SGC procedure.

In order to be as fair as possible about the comparison we used for both
algorithms the same intial set of centroids obtained by a kernelized version
of the k-means++ initialization scheme. Moreover since the output of our
kernel based method is in the form of medoids M rather than actual cluster
prototypes W we performed a set of experiments also applying a medoid
approximation to the output of the SGD algorithm.

106

7.7. Comparison with mini-batch SGD

Figure 7.7: Clustering Accuracy µ vs number of mini-batches B for the
proposed algorithm (blue line) and the SGD k-means procedure proposed
by Sculley (red line). Comparison performed on the original MNIST dataset
with NC = 10, σ = 4dmax to mimic a linear behavior. Our algorithm
was used to generate the initial cluster centroids that both algorithms used
as starting points. Clustering accuracy evaluated on the original test set,
the SGD performances were evaluated both without (top-panel) and with
(bottom-panel) a medoid approximation on the output centroids.

107

Chapter 7. Experiments on Clustering with DKK

7.8 MD application Scenario

As previously anticipated, we tested the proposed CUDA accelerated im-
plementation of the algorithm on a real application scenario in the domain
of MD. Microsecond-long trajectories of the binding mechanism of a drug,
specifically a transition state analogue named DADMe-immucillin-H, to the
PNP enzyme were employed. It is worth stressing the fact that such long
trajectories well represent a good and relatively novel application domain
for clustering and ML in general. The CUDA implementation enabled us to
run the DKK on the entire dataset, consisting of 106 frames, in less than 20
seconds.

In this section we analyze the behavior of the clustering algorithm in
terms of the quality of the obtained results in the MD domain. Basically,
we compared the results obtained by the current implementation with re-
spect to the results obtained in [1]. In that paper the binding process of a
drug to its target was simulated and we used an in house clustering tool to
get intermediate states of the protein/ligand complex formation along the
binding routes. There, a k-medoids algorithm was used and the binding
process was completely characterized.

Here we ran the same kind of analysis systematically verifying that the
same, or very similar, intermediates could be obtained. For the analysis of
the structures, we extracted the medoids from each cluster. The same atoms
as per [1] were used for the clustering. To define the number of clusters we
used the same elbow criterion as in [1] trying the clustering in the (4, 40)
range; in the end we obtained 20 clusters as an optimal value (see Fig.7.8).

For each run we initialized 5 times the algorithm with the kernel k-
means++ method and kept the solution with minimum cost. To assess
the accuracy of the approximated algorithm we split the dataset in 4 mini-
batches each comprising about 250000 samples, thus drastically limiting
the kernel matrix size with respect to a full run. We did not sparsify the
clusters representation i.e. s = 1. We used the strided sampling because
data was batch available and when possible this sampling should guarantee a
propoer sampling of the underling data structure. As previously anticipated,
we evaluated the quality of the results by the capability of the solution
to capture the key events of the simulations. In Fig.7.9(a) we summarize
the meaning of the medoids in structural terms using the same naming
conventions appeared in [1] and associate them with the respective cluster
id.

Overall those medoids well recapitulate the binding process giving the
same synthetic description obtained in [74] despite the mini-batch approx-
imation. In particular, we show Fig.7.9(b) the distance matrix computed
across the medoids. We reordered the columns based on the manual classi-
fication induced by visual inspection. Results show clearly the three main
macro-sections of the simulation namely the bound state, the entrance paths

108

7.8. MD application Scenario

Figure 7.8: Clusters number model selection for molecular dynamics data.
The elbow criterion indicated that 20 clusters were sufficient to correctly
represent the data

Figure 7.9: (a) Table summarizing medoids for MD data and their labeling
(b) Medoids RMSD matrix. On the axis the medoid identifiers. On the
upper left is well visible the macroarea of the bound states. Then, this area
extends to the right including the entrance paths, and lastly, on the lower
right corner, the unbound states.

109

Chapter 7. Experiments on Clustering with DKK

Achieved FLOPs 2.6TFLOPS

Achieved occupancy 96%

Warp execution efficiency 99%

Shared memory efficiency 100%

Global memory load efficiency 100%

Global memory store efficiency 62%

Overall speed up (20 cores + GPU
vs 20 cores)

6.5×

Table 7.5: CUDA implementation performances - nVidia GTX980

and the out unbound states.

GPU performances

A detailed analysis of the algorithm in terms of major GPU performance
metrics is presented in Table 7.5. Such performance analysis was done while
the algorithm was clustering the MD dataset on a state-of-the-arte worksta-
tion (equipped with an nVidia GTX 980) using the visual profiler distributed
by nVIDIA on an average of 60 CUDA kernel invocations. The efficacy of
the proposed memory layout for the input trajectory should be clear given
the high values of Shared memory efficiency and Global memory load effi-
cency. The high value of achived occupancy also tells us that the latency
due to memory load / store operations is successfully hided by the execution
of concurrent warps. A comment has to be done on the relatively low value
of the achieved Global memory store efficiency. Indeed one should consider
to redesign the memory layout of the output kernel matrix K in order to
maximize such value however the satisfactory results already obtained dis-
couraged us to pursue such optimization.

110

Chapter 8

Experiments on the Principal
Path Finding Algorithm

The proposed technique for finding Principal Paths in data space introduced
in chapter 6 was implmented in MATLAB. In the following chapter a set of
five experiments is presented in order to fully characterize such algorithm.
Results will also prove how the concept of Principal Paths introduced in
chapter 3 is robust and cognitively sound.

Synthetically generated bi-dimensional and tri-dimensional datasets are
used in order to validate both the algorithm and the model selection pro-
cedure in a fully controlled environment. A comparison with Dijkstra’s
algorithm on the standard handwritten digits dataset MNIST follows, high-
lighting the energy relevance of the path found by the proposed method
with respect to the one usually found by shortest path approaches. The
noise robustness of the algorithm is then assessed against a noisy version of
the Sheffield Face Dataset. As already anticipated in chapter 6 we then com-
pare the proposed method with the closely related manifold-learning tech-
niques of one-dimensional Self Organizing Map (SOM) and one-dimensional
Elastic Map on dynamical systems exhibiting chaotic behaviour underlying
the stability of the manifold captured by our algorithm. To conclude,a real
application scenario coming from the Molecular Dynamics (MD) domain is
presented.

The algorithm was run in its exact version i.e. solving the Toeplitz
system of equations appearing in the M-step by direct inversion of the A
matrix. We heuristically set the filter parameters to: Nf = 200, k = 5,
T = 0.1 maxi,j d(mi,mj), a choice that proved to work on all the tested
datasets. Moreover to avoid a bi-dimensional search for the global maximum
of Bayesian evidence we also decided to heuristically set the value of 1

γ being
driven by the simple Bayesian interpretation of the parameter as described
in the appendices. Hereafter all the evidence curves are therefore plotted
against the single regularization parameter s = λ

γ .

111

Chapter 8. Experiments on the Principal Path Finding Algorithm

8.1 The datasets

For the sake of clarity we list hereafter all the datasets used in this experi-
mental section together with their specifications.

Toys Several synthetic dataset will be used:

• A gaussian bi-dimensional model with 1500 samples drawn from 4
gaussians having the following parameters: (σ = [0.2, 0, 2], µ = [0, 0]),
(σ = [0.1, 0, 1], µ = [0, 0.3]), (σ = [0.05, 0, 05], µ = [0.25, 0.75]) and
(σ = [0.1, 0, 1], µ = [0.3, 0.6]).

• A noisy bi-dimensional circle dataset with 1500 samples generated
adding a gaussian noise of variance σ = 0.2 on a circle of radius 1.

• A noisy bi-dimensional sinusoidal dataset with 1500 samples generaed
adding a gaussian noise of variance σ = 0.2 on a sin function evaluated
between (0, 2π).

• A curl tri-dimensional dataset with 1500 samples generated by adding
a gaussian noise of variance σ = 0.2 on a curve parametrized as
(cos(t), sin(t), t), t ∈ (0, 2π)

MNIST Standard dataset of handwritten digits used as benchmark for
classification algorihtms [72]. It is composed by a training set of 60000
samples and a test set of 30000 samples. Each sample represents an image
of 28 x 28 pixels in gray scale with 8-bit color depth. This accounts for
a 784 dimensional feature space with integer features in the range [0, 255].
The only preprocessing we propose here is a normalization on the features
obtained dividing them by 255.

Sheffield Face Dataset Standard dataset fo face orientation detection
[78]. Data consist of 564 images of 220 x 220 pixels with 256-bit grey-scale.
Images of 20 different individuals, each in a range of poses from profile to
frontal views.

Lorenz Noisy Trajectory A tri-dimensional synthetic dataset with 1500
samples generated by numerical integration of the well known Lorenz system
of equation [79] : 

ẋ = σ(y − x)

ẏ = x(ρ− z)− y
ż = xy − βz

where a gaussian noise of variance σ = 0.1 was added to the exact trajectory.

112

8.2. A quality measure for Principal Paths

Dimensionless Chua Noisy Trajectory A tri-dimensional synthetic
dataset with 1500 samples generated by numerical integration of the well
known Chua dimensionless system of equations [80]:

ẋ = α(y − θ(x))

ẏ = x− y + z

ż = −βy

where a gaussian noise of variance σ = 0.1 was added to the exact trajectory.

8.2 A quality measure for Principal Paths

In order to define a proper quality measure for Principal Paths according to
what we have discussed in chapter 3 we start from the notion of Principal
Curve (PC) as originally introduced by Hastie and Stuetzle in [52]. We
recall that the output model of the proposed algorithm is a path in the form
of a polygonal chain of segments pi; i ∈ [1, NC + 1] having the following
definition:

p
i
(t) = twi+1 + (t− 1)wi; t ∈ [0, 1] (8.1)

Starting from such path, as shown in Fig.8.1, we divide the data into Voronoi
partitions defined as:

Vi = {x ∈ X|i = arg min
j
d(x, p

j
)}

d(x, p
i
) = inf

t∈[0,1]
||p

i
(t)− x||

(8.2)

Now, being inspired by the k-segments algorithm for PCs [53] we can intro-
duce the following k-segments scoring function:

Ωks =

NC+1∑
i=0

∑
x∈Vi

d(x, p
i
) (8.3)

which is an extension of the k-means cost function where the distance of each
point to its closest prototype is replaced by the distance of each point to
its closest segment. It should be understood here that such scoring function
embedding the notion of orthogonal projection of the data on the curve p(t),
naturally represents a good proxy for assessing how much the path is close
to a local portion of the PC.

In the following we will take advantage of such quality measure also to
validate the maximal evidence framework introduced. Indeed, even though
such Bayesian framework represents a powerful method to perform in-sample
model selection more conventional out-of-sample approach to select the reg-
ularization parameter s = λ

γ are possible.

113

Chapter 8. Experiments on the Principal Path Finding Algorithm

Figure 8.1: Visualization of the Voronoi regions implied by the polygonal
chain path learned by the algorithm. The gray areas project onto a path
vertex shared by two segments i.e. they can be assimilated to one of the two
implied Voronoi regions without difference.

Figure 8.2: (a) Standard out-of-sample model selection scheme. (b) In-
sample model selection scheme by means of Bayesian evidence maximization.

For example one could use standard Cross Validation to perform model
selection as depicted in Fig.8.2(a). In order to do so, we can run the algo-
rithm on a training set (i.e. dataset uniformly sub-sampled at 75%) obtain-
ing several models for different values of s. The best model is then picked
as the one that minimize the proposed k-segment scoring function on the
cross validation set (i.e. remaining 25% of data).

It is worth noting that even though cross validation can always be used
when the dataset is sufficiently large to be safely separated in a training set
and a cross validation set, the in-sample ME approach should be preferred
since it also offers a solid theoretical framework for model interpretation i.e.
the Bayesian inference framework discussed before.

114

8.3. A note on the initialization of the algorithm

8.3 A note on the initialization of the algorithm

Being Ω a non-convex cost function to be optimized, the results of the al-
gorithm heavily depend on the initialized paths. Hereafter in all the set of
experiments we took advantage of a softening procedure in order to solve
such issue. We train several models, starting with a high value of the regular-
ization parameter s and slowly decreasing it. At each step of the procedure
the algorithm is run up to convergence and the resulting path is used as
initialization for the following iteration. The evidence of each model is eval-
uated using Eq.6.34 in order to obtain a model selection curve E vs s. The
entire softening procedure together with an example of such evidence curve
is detailed in Fig.8.3.

It is worth observing that such softening procedure is well motivated in
the Bayesian framework previously introduced. Indeed setting s to a very
high value and slowly decreasing it corresponds to start with a straight path
connecting w0 to wNC+1 which slowly feels the data and relaxes towards
them. i.e. We use as an initial guess for the path the center of the gaussian
prior P (W) as discussed in chapter 6.

8.4 Maximal Evidence Assessment

As a first assessment of the proposed maximal evidence framework we present
the experiments performed in linear space on a bi-dimensional gaussian
dataset keeping the boundary points fixed and increasing the number of
clusters NC = {10, 20, 40}. In-sample model selection via maximal evidence
is compared with a standard out of sample cross validation minimizing the
k-segment scoring function. Results are shown in Fig.8.4. Several comments
can be done starting from such figure. First of all it should be noticed how
the model selected by the two procedures are not only qualitatively similar
but corresponds to similar values of s. So the Bayesian maximal evidence
approach is able to select models which are close to those selected by a
standard cross-validation technique without requiring held-out data. It is
also possible to observe how the models selected by Bayesian inference are
always smoother i.e. corresponds to slightly higher value of s. This should
not be surprising since such Bayesian methods are usually known to exhibit
an oversmoothing behavior.

Let us now comment on the stability of the results with respect to the
usual k-means parameter NC . Such parameter is of paramount importance
while performing standard clustering and its selection phase is usually con-
ducted via heuristic principle such as the elbow criteria used in the previous
chapter. Here instead we show how the proposed regularization together
with the maximal evidence model selection solve the problem in the case of
Principal Path learning. Indeed as it is evident from the figure the paths

115

Chapter 8. Experiments on the Principal Path Finding Algorithm

Figure 8.3: Schematic representation of the softening procedure used in
the experiments. The procedure starts on the bottom-right panel (a) and
proceed counterclockwise till (d). On the top panel an Evidence vs s curve
is shown. One can appreciate how the max evidence solution (highlighted
with a red background) is found before reaching too low values of s which
would correspond to undesired rough paths.

116

8.4. Maximal Evidence Assessment

found by the algorithm are stable across the whole range of NC . It is inter-
esting to notice how an increased number of clusters causes the peak of the
evidence to shift right towards smoother solutions preventing the scattering
of the cluster centers. The same analysis was conducted on several other
bi-dimensional toy models always leading to good learned paths as depicted
in Fig.8.5. The effectiveness of the proposed filter in selecting sub-manifolds
of interest is also highlighted in Fig.8.5. For example the algorithm is able to
focus on a semicircle in finding a path connecting two diametrically opposed
points in the circular dataset.

We want now to discuss the validity of the kernel formulation of both the
algorithm and the maximal evidence framework. For this purpose we run
another set of experiments on a tri-dimensional curl dataset always keeping
fixed the boundary conditions and increasing the number of clusters on a
wider range NC = (10, 40, 80). The same considerations on the stability of
the solution previously done holds true also in this case as should be clear by
looking at Fig.8.7. As a second step we run the alorithm in kernel space with
the same boundary conditions and for the same values of NC . A gaussian
kernel with variance σ = 5dmax was used to mimic a linear behavior (as
already done in the previous experimental chapter on Distributed Kernel
K-means (DKK)). The rank of the kernel matrix r was estimated forcing
the percentage of variance on the non-zero eigenvalues of K to be 99% as
depicted in Fig.8.8(a).

Comparing Fig.8.7 with Fig.8.8(b) one can qualitatively appreciate how
the algorithm is able to retrive similar paths when running both in linear
and kernel space. One should not be worried about the small fluctuations
appearing in the kernel found paths. Indeed we stress the fact that in kernel
space the output of the algorithm is given just in term of labels u and the
path is visualized with a medoid approximation step. Moreover we stress
the fact that the maximal evidence approach was able to retrive the exact
same values of sME in both spaces thus validating the theoretical derivation
detailed in chapter 6.

A more quantitative comparison is illustrated in Fig.8.6 where the evo-
lution of the algorithm both in linear and kernel space is compared at each
iteration. The average displacement between the centroids found in linear
space and the medoids found in kernel space is rapidly going to almost 0
values showing how the algorithm is able indeed to retrieve the same model
in both scenarios. We stress the fact that the large discrepancies appear-
ing for high values of s should be ascribed to the representation problem in
kernel space and the fluctuations on the labels to the finiteness of σ.

117

Chapter 8. Experiments on the Principal Path Finding Algorithm

Figure 8.4: Results obtained for the same gaussian 2D toy dataset with
increasing number of clusters NC as specified. The stability of the algorithm
and of the ME model selection phase should be appreciated observing how
the obtained path does not change qualitatively with different values of NC .
It is also worth noting how Bayesian evidence has a smoother behaviour for
large values of NC with respect to the proposed k-segment scoring function
thus making it a better choice for blind-folded model selection.

118

8.4. Maximal Evidence Assessment

Figure 8.5: Results obtained for three different bi-dimensional toy datasets.
On the right both filtered out data (light blue) and kept data (dark blue)
are visualized together with the inferred models. On the left model selection
curves for the proposed max-evidence approach (red) and a standard cross-
validation technique with k-segment scoring function (green) are shown. The
number of clusters NC is fixed to 20.

119

Chapter 8. Experiments on the Principal Path Finding Algorithm

Figure 8.6: Comparison of the algorithm in linear and kernel space on the
tri-dimensional curl dataset. Both fraction of equal labels (green) and the
average centroids displacement (red) are plotted against the iterations of the
algorithm. Vertical dotted lines highlights how the value of s is decreasing
across iterations due to the softening procedure used. The red vertical dotted
lines represents the iteration where the maximal evidence model was found.

8.5 A comparison with shortest path

Here we present the results obtained on the standard MNIST dataset of
handwritten digits [81] aimed at elucidanting the difference between the
usual shortest path and a principal path. The purpose of the experiments
here is thus to asses the ability of the algorithm in finding energetically min-
imal transition paths. In doing so we aim at describing a morphing process
leading, from a given starting sample representing a digit, to a final sample
representing a different one. We run the algorithm in linear space (to facil-
itate visualization) with NC = 18, using the softening procedure described
before and selecting the best model via the maximal evidence approach. The
value of γ was heuristically set so that 1

γ = d̄
N . In Fig.8.9 we show three of

such models, for three different morphing processes i.e. 6 → 3, 7 → 4 and
6 → 9. It is interesting to notice how the inferred transition paths seems
to embed the notion of morphing distance, minimizing the moves needed to
convert the starting digit into the final one. For example in Fig.8.9(a) while
converting a 6 into a 3, the algorithm suggests a transition path initially
closing the upper-right part of the 6 to form an 8, later transforming it into
a 3 by left-opening its double loop.

In order to better understand whether the inferred transition paths are
energetically relevant we try to reconstruct the FES of the underlying mor-
phing process as depicted in Fig.8.10. Given a model W we assume the data
X to be generated by a gaussian process with probability P (X|W) given by
Eq.6.25. Let us use the following reaction coordinate to describe the samples

120

8.5. A comparison with shortest path

Figure 8.7: Principal paths found by the linear space algorithm on the
tri-dimensional curl toy dataset together with the respective evidence vs
s curves. The maximal evidence value sME is shown. From left to right
the number of clusters increases in the range NC = (10, 40, 80). One can
appreciate the stability of the algorithm and of the model selction phase
against such parameter.

121

Chapter 8. Experiments on the Principal Path Finding Algorithm

Figure 8.8: (a) Numerical estimation of r on a 3D dataset (N = 1500).
Percentage of variance at 99% on the eigenvalues of K is used. Different
graphs represents estimates for different value of the rbf kernel parameter
σ. As expected the estimated dimensionality of the underlying input space
decrease with the increase of σ from a value close to N to the actual value
of the input when σ = 5dmax. (b) Principal paths found by the kernel space
algorithm on the tri-dimensional curl toy dataset together with the respec-
tive evidence vs s curves. The maximal evidence value sME is shown. From
left to right the number of clusters increases in the range NC = (10, 40, 80).

122

8.6. Assessing noise tolerance

Figure 8.9: Three morphing paths inferred from MNIST handwritten digits
for three different boundary conditions. Intermediate metastable states are
visible in all three processes: (a)6→ 8→ 3 (b) 7→ 9→ 4 (c) 6→ 5→ 9.

generated by such process:

t(x) =

∑i
j=0‖wj+1 − wj‖+

〈wi−x,wi+1−wi〉
‖wi+1−wi‖∑

j‖wj+1 − wj‖

. This reaction coordinate describes the evolution of the process along the
manifold and represents a parameterization of the principal path starting
from the source node and reaching the destination node. We can now esti-
mate the states occupancy probability p(t) as:

p(t∗) =

∫
dxP (x|W)δ(t(x), t∗) ≈ 1

N

N∑
i=1

δ(t(x), t∗)

, the free energy F (t) can be easily estimated as the negative logarithm of
such occupancy probability.

We compare the implied FES for a path obtained by Dijkstra’s shortest-
path algorithm and a max-evidence path obtained by the proposed method
for both a bi-dimensional toy Fig.8.11 and the MNIST dataset Fig.8.10.
It should be clear how the proposed algorithm is superior in finding an
energetically relevant description of the underlying process. Indeed in both
examples the implied FES of the regularized path describe an energetically
favorable process evolving through several meta-stable states separated by
low energy barriers.

8.6 Assessing noise tolerance

In order to verify the robustness of the proposed algorithm against noise
we conduct an experiment on the Sheffield Face Database. We artificially
perturb the data introducing three levels of additive gaussian noise on 20,
40 and 80 percent of pixels. For each sample and for each noise level we
generate 20 independent noisy samples. The algorithm was run in linear
space and the value of γ was heuristically set so that 1

γ = d̄
N . As shown

in Fig.8.12 the algorithm together with the max-evidence model selection

123

Chapter 8. Experiments on the Principal Path Finding Algorithm

Figure 8.10: Reconstruction of the state occupancy probability p(t) and of
the FES F (t) for a morphing path 7→ 5 inferred from the MNIST dataset
of handwritten digits. Paths obtained by the proposed algorithm together
with the max-evidence model selection approach (red) are compared with
the shortest path algorithm connecting w0 to wNC+1 (green).

was able to reconstruct a meaningful transition path starting from a noisy
profile-view sample to a noisy frontal-view sample of the same subject. We
stress the fact that such result was obtained in the pixel space of the images
without any pre-processing or featurization step.

Interestingly enough, the inferred transition path can be separated in
three clear phases: a denoise of the profile view, the face rotation from
profile to frontal view and a final noise injection to reach the end point of
the path.

8.7 Manifold reconstruction

Lastly we validated the proposed technique against standard manifold learn-
ing algorithms in the description of strange attractors geometry.

We force the proposed algorithm to look for a closed path (w0 = wNC+1)
describing the entire dataset, that is without applying the filtering phase.
The algorithm was run in linear space and the value of γ was heuristically
set so that 1

γ = d̄.

124

8.8. MD application scenario

Figure 8.11: Reconstruction of the state occupancy probability p(t) and of
the FES F (t) for a bi-dimensional toy model. Paths obtained by the pro-
posed algorithm together with the max-evidence model selection approach
(red) are compared with the shortest path algorithm connecting w0 to wNC+1

(green).

The inferred max-evidence path is compared with the one obtained by a
one-dimensional toroidal SOM as implemented in [82] and the one obtained
by a one-dimensional toroidal Elastic Map as implemented in [58]. Results
for increasing values of NC are shown in Fig.8.13. The three algorithms
obtain relatively comparable results for low values of NC but it should be
clear how the proposed technique results more stable when the number of
clusters increase. Indeed, thinking to the principal path as an invariant
manifold, in Fig.8.13(c) one can appreciate how the length of the found
paths by our algorithm remains constant for a wide range of NC whereas
this is not the case for the other methods.

8.8 MD application scenario

We close this section with an application scenario coming from the MD
domain. The dataset is the same used in the previous chapter to test and

125

Chapter 8. Experiments on the Principal Path Finding Algorithm

Figure 8.12: Model selection curve (a) together with the inferred transition
path (b) and its medoids approximation (c) from a noisy profile-view image
to a noisy frontal-view image in the Sheffield faces database.

validate the accelerated version of DKK. In this case we aim at describing the
binding process of the drug namely DADMeimmucillin-H to its target, the
Purine Nucleoside Phosphorylase (PNP) enzyme. The process was already
studied in literature [1], thus allowing us to validate the obtained binding
path. In Fig.8.14 three medoids of the inferred binding path are shown
corresponding respectively to an unbound state, an intermediate entering
state and the final bound state.

The found path is in good agreement with previous results, with the
further significant advantage of having obtained this result in a completely
automated way.

126

8.8. MD application scenario

Figure 8.13: Inferred close paths describing the Lorenz attractor (a) and the
dimensionless Chua attractor (b) for increasing values of NC . (c) Simple
generalization error measure i.e. curve length vs NC . Results from the
proposed algorithm (red), 1D SOM (green) and 1D Elastic Map (black) are
shown.

127

Chapter 8. Experiments on the Principal Path Finding Algorithm

Figure 8.14: Pictorial description of the inferred binding path of the transi-
tion state analoge DADMeimmucillin-H to the PNP enzyme.

128

Part IV

Conclusions

129

Chapter 9

UL in the Context of MD:
Findings and Perspectives

The thesis represented an extensive research in the multidisciplinary domain
formed by the cross contamination of Unsupervised Learning (UL) and MD.
We proved throughout the work how those two research fields are coming
close creating a breeding ground for valuable new concepts and methods.

9.1 UL applied to MD: Distributed Kernel K-means

We discussed how Clustering can represent a valuable tool in the automatic
analysis of long molecular trajectories in order to infer humanly interpretable
models. With this respect we identified the kernelized version of k-means
as a possible clustering algorithm meeting the special requirements of MD
data. Starting from this consideration we therefore presented a novel en-
gine to perform large scale kernel k-means clustering namely, DKK. We
discussed how a two-fold approximation technique where the splitting of
data into mini-batches is paired with a sparse representation of the cluster
centroids can be used to effectively reduce the number of kernel matrix eval-
uations and how such approximation can be paired with an efficient strategy
to scatter the computation across nodes in a distributed High Performance
Computing (HPC) system. Remarkably, an adaptive strategy based on the
available memory resources is proposed in order to naturally set the pa-
rameters controlling the two-fold approximation thus avoiding a burdening
of the model selection phase. Moreover the nature of the proposed algo-
rithm was exploited to accelerate the computation pairing the CPU with a
general purpose GPUs (gpGPUs) and proposing an efficient CUDA imple-
mentation for the evaluation of Root Mean Square Deviation (RMSD) based
kernel matrices. The resulting algorithm enabled us to run a set of exper-
iments obtaining state of the art results not only in a real MD application
scenario where µs long trajectories were successfully analyzed, but also on

131

Chapter 9. UL in the Context of MD: Findings and Perspectives

standard Machine Learning (ML) datasets where good clustering accuracy
was achieved even in heavily approximated regimes. The set of experiments
also highlighted a near to perfect strong scaling behavior of the algorithm
on different HPC platforms, a particularly desirable feature in the big data
era of ever growing datasets.

9.2 MD inspiring UL: Principal Paths

A second relevant portion of the thesis was devoted to the problem of find-
ing Principal Paths in data space. The notion of Principal Path was at first
introduced transposing the notion of Minimum Free Energy Path (MFEP)
proper of statistical mechanics to the domain of Unsupervised data anal-
ysis. Discussing how the MFEP is approached within MD simulations we
intuitively defined Principal Paths as smooth paths connecting a starting
sample to an ending one, locally passing through the middle of the data.
Such intuitive definition was then formalized introducing an actual func-
tional to be minimized in the form of a regularized k-means cost. With this
respect an EM-like optimization algorithm was derived both in linear and
kernel space. Moreover the Bayesian framework of maximal evidence was
successfully applied to the new learning problem obtaining operative equa-
tions in both spaces thus enabling in-sample model selection with the result
of virtually having no free hyperparameter except the number of clusters
(that represent a mere discretization step of the learnt curve).

We found, through several experiments, that the proposed functional
coupled with such maximal evidence approach is able to systematically cap-
ture one dimensional manifolds that well fit the intuitive definition of Prin-
cipal Paths. A particularly remarkable feature of the developed technique
is its intrinsic robustness with respect to the number of clusters used to
approximate the path, in this context we found the algorithm to be more
stable with respect to other well known methods such the SOM or Elastic
Maps. Interestingly enough we also found that the description implied by
a Principal Path, gives insights into how to morph, at low energy cost, a
starting data sample into an ending one thus validating the analogy with
the MFEP.

9.3 Future perspectives

The first natural prosecution of the work presented here would be an ex-
tension of the DKK engine to find Principal Paths on large scale datasets.
Indeed being the algorithm introduced for the principal path finding prob-
lem a regularized version of kernel k-means it could fit the distribution /
acceleration scheme developed for DKK without requiring a significant com-
putational overhead.

132

9.4. A general remark about MD and UL

More significantly, being the proposed techniques kernel-based, several
possibilities arise considering the variety of kernel functions and similarity
measures that can be used. For example a particular appealing perspective,
following the success of deep neural networks, would be exploring the pos-
sibility of deep kernels [83] in order to obtain a deep learning realization of
the proposed algorithms.

9.4 A general remark about MD and UL

We close the thesis with a final, general remark about MD and UL. Let us
observe how the central problem in MD can be identified with the one of
FES reconstruction where one aims at studying a process of interest esti-
mating the underlying FES. On the other hand the central problem of UL
is the one of learning a non trivial representation of the data estimating the
underlying manifold. It should therefore be clear how both the problems
relates with the core problem of statistical inference i.e. estimating an un-
known probability density (as a state occupancy probability in MD or as a
Generative model in UL) starting from a set of observations.

We can conclude saying that the connection among MD and
UL highlighted throughout the work is deep and has its foundation
in the statistical nature at the heart of both fields.

133

Acronyms

CV Collective Variable.

DKK Distributed Kernel K-means.

EM Expectation Maximization.

FES Free Energy Surface.

GD Gradient Descent.

gpGPU general purpose GPU.

GPU Graphic Processing Unit.

HPC High Performance Computing.

MD Molecular Dynamics.

MEP Minimum Energy Path.

MFEP Minimum Free Energy Path.

ML Machine Learning.

MSM Markov State Model.

NG Neural Gas.

PC Principal Curve.

PNP Purine Nucleoside Phosphorylase.

RMSD Root Mean Square Deviation.

SGD Stochastic Gradient Descent.

135

Acronyms

SIMT Single Instruction Multiple Threads.

SOM Self Organizing Map.

UL Unsupervised Learning.

136

Glossary

A

accelerate sampling techniques techniques aimed at overcoming the
problem of sampling rare-events (e.g. umbrella sampling, meta-
dynamics, ...). An artificial bias potential is usually introduced to
lower the energy barriers..

B

Boltzmann distribution Equilibrium probability distribution of the occu-
pancy of micro-states for a closed system of fixed volume in thermal
equilibrium with a heat bath..

C

canonical ensamble It represents the phase space of a system with fixed
volume, in thermal equilibrium with a heat bath. A Molecular
Dynamics simulation is assumed to sample the canonical ensamble
when a proper thermostat is used..

centroid The centroid of a given set of samples is defined as that point in
space obtained as the mathematical average of all those samples..

clustering Unsupervised Learning task of grouping unlabeled samples into
groups according to a given similarity measure.

collective variable A collective variable is defined as a given function θ(x)
of the system coordinates meant to be used as a reduced represen-
tation for the simulated process. It can be as simple as a dihedral
angle, even though in real application scenarios more sophisticated
and computationally expensive descriptors are often used..

conformational frame See frame (Molecular Dynamics).

D

dimensionality reduction Unsupervised Learning task of inferring a low
dimensional embedding for the data samples.

E

137

Glossary

empirical potential See force field.
ergodicity A process is said to be ergodic if the whole phase space is accessi-

ble and is explored during its time evolution so that thermodinamic
average of quantities can be replaced with time average..

expectation maximization Iterative algorithm where a set of learnable
parameters is optimized taking advantage of some hidden or latent
variables. The following two steps are iterated up to convergence:
an expectation step (E-step) where the latent variables are evalu-
ated to compute the expected value of the objective function and
a maximization step (M-step) where such expected value is maxi-
mized with respect to the learnable parameters..

F

force field (Molecular Dynamics) Functional form and set of param-
eters that allow the potential energy of a molecular system to be
evaluated at each step of a Molecular Dynamics simulation. The
set of parameters is usually empirical even though parameters from
reliable quantum chemistry simulations can be exploited..

frame (Molecular Dynamics) Given a molecular system of Na atoms, a
conformational frame is the set of the 3Na atom coordinates.

free energy (Helmholtz) Thermodinamical quantity mesuring the avail-
able work of a system at constant volume and in thermal equilibrium
with a heat bath. Formally defined as A = U − TS where U is the
internal energy of the system, T the temperature and S the entropy.
A spontaneous process at constant T is supposed to minimize A..

free energy surface Assuming a scalar collective variable z, the free energy
surface of a system with respect to such collective variable is defined
as F(z) = −kBT logP (z) +A..

G

gradient descent Iterative optimization algorithm where an objective func-
tion is locally minimized with steps proportional to the negative
gradient of the objective function at the current evaluation point..

H

hyper parameters Parameters of a learning machine that are not opti-
mized during the training phase but are assumed to be known a
priori. When the hyper parameters are not know an extra model
selection phase is needed..

K

kernel methods (Machine Learning) Class of Machine Learning algo-
rithms that do not require an explicit vector space for the data

138

Glossary

samples. A kernel matrix (i.e. similarity matrix) is instead suffi-
cient to carry out the entire procedure.

kinetic model Model of a biochemical process (e.g. catalytic mechanism
of an enzyme) as a series of macroscopic states and transition prob-
abilities among them that relates to the actual reaction rates..

L

likelihood Probability of observing the data D given a set of parameters γ
and a set of hyperparameters H: P (D|γ,H). It is usually seen as
a function of the parameters to be maximized in order to obtain a
useful learning paradigm..

M

manifold learning Unsupervised Learning task of inferring the low dimen-
sional support of the probability distribution that generated the
samples (assuming its existence).

medoid Closest data sample to a given centroid. Provided that the data
are dense enough it can be used as approximation to the centroid
in those cases where an explicit vector space is not available..

metastable state A metastable state corresponds to a local minimum of
the free energy for a spontaneous process at constant volume and
in thermal equilibrium with a heat bath..

model selection Selecting the best model with respect to the hyper pa-
rameters. Different models are usually trained for different values of
the hyper parameters and the resulting models are scored by means
of some rational..

O

overfitting Learning a model that matches too closely the available training
data so that it fails to generalize and to make predictions on unseen
data..

P

phase space The space of conformations available to the system (e.g. for
a Molecular Dynamics simulation of a system with Na atoms the
phase space is represented by the 6D vector space of xi, pi∀i ∈
[1, Na]).

posterior Probability that a model parametrized by γ generated the data
D provided the set of hyper parameters H: P (γ|D,H). Maximizing
the posterior is a common learning procedure in the framework of
Bayesian inference..

139

Glossary

principal curve intuitively defined as smooth one-dimensional curve that
pass through the middle of the data. It can be viewed as the result
of a 1D manifold learning problem. .

prior Representing with γ the set of learnable parameters of a given model,
the prior P (γ) is the probability distribution expressing the avail-
able a priori knowledge on such set of parameters..

protein-ligand binding Process through which a small molecule (ligand)
binds a portion of a target protein (binding site) by means of weak
interactions. The binding event usually leads to a change of confor-
mation for the target protein in order to serve a biological purpose
(e.g. activation / inhibition of a biochemical reaction).

R

rare event (Molecular Dynamics) A transition between two metastable
states separated by an energy barrier with ∆F >> kBT . Indeed
it is known from Arrhenius law that the probability of escaping a
free energy minimum by thermal fluctuations is exponentially small
with respect to the height of the barrier..

regularization Penalty on model’s complexity usually introduced to pre-
vent overfitting or smoother solutions..

S

stochastic gradient descent A gradient descent procedure where an em-
pirical objective function obtained as a summation of single sample
contributions is optimized one term at a time in stochastic order..

T

thermostat (Molecular Dynamics) Stochastic force added to the force
field of a molecular system in order to simulate thermal fluctua-
tions. It provides a way to thermalize the system thus allowing
the simulation (under certain circumstances) to sample the correct
equilibrium probability distribution of micro-states..

trajectory (Molecular Dynamics) Set of time-ordered conformational
frames obtained via a Molecular Dynamics simulation..

140

List of Figures

1.1 (a) Supervised learning paradigm where a Learning Machine
is paired with a supervisor providing labels yi for each training
sample xi. The learning procedure is described as the prob-
lem of minimizing the expected loss starting from the training
samples. (b) UL paradigm where a Learning Machine is fed
with unlabelled samples. In this context one may speculate
that a good learning procedure is the one that minimizes the
expected representation error. For example, as explained in
the main text, one can minimize a regularized empirical rep-
resentation error. 16

3.1 Pictorial representation of chain of states methods for find-
ing the Minimum Energy Path (MEP). The replicas are ini-
tialized on a straigth path connecting xa and xb and evolve
towards a piece-wise approximation of the MEP. 33

3.2 (a)Schematic representation of the constitutive elements of
a one-dimensional elastic map i.e. vertices vi, edges ei and
2-star subgraphs si. (b) Schematic representation of a one-
dimensional elastic map for PC learning. 37

4.1 (a) Pictorial description of the algorithm to highlight its dou-
ble loop structure. The iterations of the outer loop are fixed
once B is set whereas the inner loop runs up to convergence.
(b) Visualization of two possible sampling strategies to divide
the dataset into mini-batches. (c) From left to right we visu-
alize the effect of the two-fold approximation proposed on the
number of kernel matrix elements that need to be evaluated.
With standard kernel k-means the symmetry of the matrix
can be exploited to evaluate just N2

2 elements, introducing
the mini-batch approximation one needs to evaluate N × N

B
elements, introducing also the a priori sparse representation
of cluster centers the number of kernel evaluations is cut to
N × sNB . 46

141

List of Figures

4.2 (a) Distribution scheme for the principal quantities needed to
complete an inner loop iteration. Each node holds a set of
entire rows for K̃, K, F and u. Each node holds a local copy
of g too, however the local information about this vector is
partial. The overall information can be retrieved by means
of an all-to-all reduction. (b) From left to right the main
steps of an inner loop iteration are illustrated. At first, each
node is computing its portion of F together with a partial
g(p) starting from its K(p) and u(p). Then, the global g
is retrieved with an all-to-all reduction step. In the third
stage each node uses that information together with F(p) to
compute its slice of u. As a final step an all-to-all gathering
step spread the updated labels across the network. At this
point it is possible to go on with the next iteration as all
the information needed is available to each node. It is worth
noting how, along the entire procedure, all the nodes are peers
ensuring automatically a good workload balance. 52

4.3 Graphical representation of the two different mini-batch par-
allelization approaches of Patch clustering and DKK. A sys-
tem of 4 nodes with limited amount of memory per node Rn
(represented as the area of the central gray squares) is taken
into consideration with respect to a kernel matrix K (in blue)
that requires 16Rn available memory. In order to cope with
such matrix the Patch algorithm requires a subdivision of the
data into 4 small mini-batches and runs in a single trivially
parallel iteration. The proposed DKK algorithm when deal-
ing with the same matrix is able to gather a global results in
two iterations, requiring however just 2 larger mini-batches.
The quality of the global clustering result is expected to be
higher for the DKK algorithm since it take into consideration
N2

2 kernel elements whereas the patch algorithm take into

consideration a smaller fraction of them i.e. N2

4 56

142

List of Figures

5.1 (a) Pictorial description of the proposed acceleration scheme.
The diagram is divided in two parts: a host processor side
on the left, and a target device side on the right. We illus-
trate how multiple CPU threads can be used to overlap host
and device workload. A CPU thread is bound to the device,
it is responsible for data fetching from disk, for host-device
data transfer and for device control. It instructs the device
to compute the kernel matrix elements needed by the next
i + 1-th iteration of the outer loop. All the other available
threads cooperate and are responsible for the current i-th it-
eration consuming the kernel matrix elements provided by the
accelerator. In this sense device and host work in a producer-
consumer pattern. (b) We detailed how a 3-stage pipeline can
be used on the device in order to overlap the kernel computa-
tion with the host to device (H2D) and device to host (D2H)
slow communications needed to transfer the dataset on the
device and the kernel matrix back to host respectively. 59

5.2 Simple block diagram for a many-core computational plat-
form hardware together with a pictorial description of a soft-
ware abstraction layer exposing Single Instruction Multiple
Threads (SIMT) parallelism. A runtime scheduler is respon-
sible for the mapping of the thread blocks onto the hardware
multiprocessors. More than one thread block can be sched-
uled to run concurrently on a single multiprocessor in order
to hide memory latency. The hierarchical memory structure
is illustrated, from top to bottom the memory size reduces
and the bandwidth increases. 62

5.3 Hierarchical memory layout for a set of frame conformations
designed in order to achieve memory coalescent access while
performing an RMSD matrix computation. We recall that
superscripts refer to frame indices whereas subscripts refer to
atom indices within a frame. (top) Block diagram illustrating
the layout. Frames are stored in frame chunks of size B i.e.
each frame chunk contains all the Na atoms of B consecutive
frames. The atoms themselves are stored in chunks of size
fB i.e. each atom chunk contains the same set of fB atoms
for all the B frames. Finally, the atom coordinates are stored
as three consecutive blocks for the x, y and z components.
(bottom) Detailed view of one atom chunk for B = 2 and f =
2 together with a pictorial description of the three coalescent
load instructions needed to read it. 64

143

List of Figures

5.4 Example showing how to implement a rotational index to
avoid shared memory bank conflicts while computing the sum-
mations described in Eq.5.9, 5.10 and 5.11. We recall that
superscripts refer to frame indices whereas subscripts refer to
atom indices within a frame. (left) A straightforward imple-
mentation of the summation will cause all the threads to work
on the same atom at each iteration. This cause shared mem-
ory bank conflicts that strongly affect performances. (right)
A simple rotational atom index is used so that each thread
work on a different atom while computing the summation:
ridx = n + tIdx.x + tIdx.y%B. 65

6.1 An example of index permutation Q to initialize a 1D topol-
ogy i.e. an NC-segments curve. The initial cluster centers
can be picked with standard k-means initialization algorithms
such as k-means++ while the permutation Q can be derived
by some rational such as for example a shortest path algo-
rithm on top of a fully connected topology. 71

6.2 (a) Pictorial description of γ and λ trade-off: if γ >> λ
(blue) the path found is noisy due to an overfitting effect, for
λ >> γ (green) the path found approach a trivial straight line
connecting the boundary points. Meaningful paths emerge for
values of γ and λ in the middle of such range. (b) Typical
output of the algorithm in kernel space, with latent labels
represented as a color gradient. 75

6.3 On the left a graphical rapresentation of the exact M-step is
shown. On the right instead the approximated M-step ob-
tained by stopping the recursion up to O(s2) terms or equiv-

alently approximating wTj ≈ ŵ
T
j =

CTj
|wj | is shown. 80

6.4 (a)-(f) Filtering phases as described in section 6.5 in order to
focus on the sub-manifold implied by the choice of boundary
conditions. 83

6.5 Same filtering phase with a different choice of boundary con-
ditions. This shows how the filtering scheme is able to select
different local sub-manifolds in a constellation-like dataset. . 83

6.6 (a) Pictorial representation of the Bayesian interpretation of
γ as the variance of a gaussian mixture model with gaussians
centered around the cluster prototypes. (b) Pictorial repre-
sentation of the Bayesian interpretation of λ as the variance of
a gaussian prior centered around the straight line connecting
the starting and the ending cluster prototypes. 86

144

List of Figures

6.7 Schematics description of the connection between the stan-
dard Expectation Maximization (EM) procedure derived for
our algorithm (in blue) and the string method for finding
MFEP along MD simulations (in orange). 93

7.1 2D Toy dataset. (top row) From left to right the evolution
of the cluster centers across different iterations of the outer
loop in the case of a poorly designed block sampling strategy.
(bottom row) From left to right the evolution of the cluster
centers across different iterations of the outer loop in the case
of a proper stride sampling strategy where each mini-batch
correctly captures the underlying structure of data. 101

7.2 2D Toy dataset. (a-top panel) Partial cost function Ω(Xi,W),∀i ∈
[0, 3] vs number of iterations, different colors represent differ-
ent mini-batches. (a-bottom panel) Global cost function Ω
vs number of iterations. It is worth noting how the inner
loop iterations within each mini-batch help to bring down
the global cost function. (a) Average cluster centers displace-
ment vs outer loop iterations for the two different sampling
strategies illustrated in Fig.7.1, we propose this as a control
observable to assess the quality of the sampling when direct
visualization is not feasible. 101

7.3 (top panel) Cluster Accuracy vs s. (bottom panel) Execution
time vs s. Clustering performed on 60000 MNIST training
samples evaluated against the 10000 provided test samples.
Different colors represent different values of B ∈ [1, 2, 4, 8].
As described in the main text this graph can help understand
how to perform model selection for the set of newly introduced
parameters (B, s) picking a target execution time and looking
at µ for the compatible sets of parameters. 102

7.4 Execution time vs NP for two different distributed architec-
tures. IBM BG/Q in black/circles and IBM NeXtScale in
red/squares. 103

7.5 σ model selection for 20 newsgroup dataset. Maximum clus-
tering accuracy obtained for σ = 10. 104

7.6 Cluster number model selection for MNIST original dataset.
The elbow criterion indicated that NC = 128 is a reasonable
choice after which the numerical derivative δΩ

δNC
drops to zero. 105

145

List of Figures

7.7 Clustering Accuracy µ vs number of mini-batches B for the
proposed algorithm (blue line) and the Stochastic Gradient
Descent (SGD) k-means procedure proposed by Sculley (red
line). Comparison performed on the original MNIST dataset
with NC = 10, σ = 4dmax to mimic a linear behavior. Our al-
gorithm was used to generate the initial cluster centroids that
both algorithms used as starting points. Clustering accuracy
evaluated on the original test set, the SGD performances were
evaluated both without (top-panel) and with (bottom-panel)
a medoid approximation on the output centroids. 107

7.8 Clusters number model selection for molecular dynamics data.
The elbow criterion indicated that 20 clusters were sufficient
to correctly represent the data 109

7.9 (a) Table summarizing medoids for MD data and their la-
beling (b) Medoids RMSD matrix. On the axis the medoid
identifiers. On the upper left is well visible the macroarea of
the bound states. Then, this area extends to the right includ-
ing the entrance paths, and lastly, on the lower right corner,
the unbound states. 109

8.1 Visualization of the Voronoi regions implied by the polygonal
chain path learned by the algorithm. The gray areas project
onto a path vertex shared by two segments i.e. they can be
assimilated to one of the two implied Voronoi regions without
difference. 114

8.2 (a) Standard out-of-sample model selection scheme. (b) In-
sample model selection scheme by means of Bayesian evidence
maximization. 114

8.3 Schematic representation of the softening procedure used in
the experiments. The procedure starts on the bottom-right
panel (a) and proceed counterclockwise till (d). On the top
panel an Evidence vs s curve is shown. One can appreciate
how the max evidence solution (highlighted with a red back-
ground) is found before reaching too low values of s which
would correspond to undesired rough paths. 116

8.4 Results obtained for the same gaussian 2D toy dataset with
increasing number of clusters NC as specified. The stability of
the algorithm and of the ME model selection phase should be
appreciated observing how the obtained path does not change
qualitatively with different values of NC . It is also worth not-
ing how Bayesian evidence has a smoother behaviour for large
values of NC with respect to the proposed k-segment scoring
function thus making it a better choice for blind-folded model
selection. 118

146

List of Figures

8.5 Results obtained for three different bi-dimensional toy datasets.
On the right both filtered out data (light blue) and kept data
(dark blue) are visualized together with the inferred mod-
els. On the left model selection curves for the proposed max-
evidence approach (red) and a standard cross-validation tech-
nique with k-segment scoring function (green) are shown. The
number of clusters NC is fixed to 20. 119

8.6 Comparison of the algorithm in linear and kernel space on
the tri-dimensional curl dataset. Both fraction of equal la-
bels (green) and the average centroids displacement (red) are
plotted against the iterations of the algorithm. Vertical dot-
ted lines highlights how the value of s is decreasing across
iterations due to the softening procedure used. The red ver-
tical dotted lines represents the iteration where the maximal
evidence model was found. 120

8.7 Principal paths found by the linear space algorithm on the
tri-dimensional curl toy dataset together with the respective
evidence vs s curves. The maximal evidence value sME is
shown. From left to right the number of clusters increases in
the range NC = (10, 40, 80). One can appreciate the stability
of the algorithm and of the model selction phase against such
parameter. 121

8.8 (a) Numerical estimation of r on a 3D dataset (N = 1500).
Percentage of variance at 99% on the eigenvalues of K is used.
Different graphs represents estimates for different value of the
rbf kernel parameter σ. As expected the estimated dimension-
ality of the underlying input space decrease with the increase
of σ from a value close to N to the actual value of the input
when σ = 5dmax. (b) Principal paths found by the kernel
space algorithm on the tri-dimensional curl toy dataset to-
gether with the respective evidence vs s curves. The maximal
evidence value sME is shown. From left to right the number
of clusters increases in the range NC = (10, 40, 80). 122

8.9 Three morphing paths inferred from MNIST handwritten dig-
its for three different boundary conditions. Intermediate metastable
states are visible in all three processes: (a)6 → 8 → 3 (b)
7→ 9→ 4 (c) 6→ 5→ 9. 123

8.10 Reconstruction of the state occupancy probability p(t) and of
the FES F (t) for a morphing path 7 → 5 inferred from the
MNIST dataset of handwritten digits. Paths obtained by the
proposed algorithm together with the max-evidence model
selection approach (red) are compared with the shortest path
algorithm connecting w0 to wNC+1 (green). 124

147

List of Figures

8.11 Reconstruction of the state occupancy probability p(t) and of
the FES F (t) for a bi-dimensional toy model. Paths obtained
by the proposed algorithm together with the max-evidence
model selection approach (red) are compared with the short-
est path algorithm connecting w0 to wNC+1 (green). 125

8.12 Model selection curve (a) together with the inferred tran-
sition path (b) and its medoids approximation (c) from a
noisy profile-view image to a noisy frontal-view image in the
Sheffield faces database. 126

8.13 Inferred close paths describing the Lorenz attractor (a) and
the dimensionless Chua attractor (b) for increasing values of
NC . (c) Simple generalization error measure i.e. curve length
vs NC . Results from the proposed algorithm (red), 1D SOM
(green) and 1D Elastic Map (black) are shown. 127

8.14 Pictorial description of the inferred binding path of the tran-
sition state analoge DADMeimmucillin-H to the PNP enzyme. 128

148

Bibliography

[1] Sergio Decherchi, Anna Berteotti, Giovanni Bottegoni, Walter Rocchia,
and Andrea Cavalli. The ligand binding mechanism to purine nucleoside
phosphorylase elucidated via molecular dynamics and machine learning.
Nature communications, 6, 2015.

[2] Ignasi Buch, Toni Giorgino, and Gianni De Fabritiis. Complete recon-
struction of an enzyme-inhibitor binding process by molecular dynamics
simulations. Proceedings of the National Academy of Sciences, 108(25),
2011.

[3] Ron O Dror, Albert C Pan, Daniel H Arlow, David W Borhani, Paul
Maragakis, Yibing Shan, Huafeng Xu, and David E Shaw. Pathway and
mechanism of drug binding to g-protein-coupled receptors. Proceedings
of the National Academy of Sciences, 108(32), 2011.

[4] Vijay S Pande, Kyle Beauchamp, and Gregory R Bowman. Everything
you wanted to know about markov state models but were afraid to ask.
Methods, 52(1), 2010.

[5] Eric H Lee, Jen Hsin, Marcos Sotomayor, Gemma Comellas, and Klaus
Schulten. Discovery through the computational microscope. Structure,
17(10), 2009.

[6] Hans C Andersen. Molecular dynamics simulations at constant pressure
and/or temperature. The Journal of chemical physics, 72(4), 1980.

[7] Shuichi Nosé. A unified formulation of the constant temperature molec-
ular dynamics methods. The Journal of chemical physics, 81(1), 1984.

[8] William G Hoover. Canonical dynamics: equilibrium phase-space dis-
tributions. Physical review A, 31(3), 1985.

[9] Daan Frenkel and Berend Smit. Understanding molecular simulation:
from algorithms to applications, volume 1. Academic press, 2001.

[10] Lev Davidovich Landau and Evgenii M Lifshitz. Statistical Physics: V.
5: Course of Theoretical Physics. Pergamon press, 1969.

149

Bibliography

[11] Davide Branduardi, Francesco Luigi Gervasio, and Michele Parrinello.
From a to b in free energy space. The Journal of chemical physics,
126(5), 2007.

[12] Svante Arrhenius. Über die reaktionsgeschwindigkeit bei der inversion
von rohrzucker durch säuren. Zeitschrift für physikalische Chemie, 4(1),
1889.

[13] Alessandro Laio and Francesco L Gervasio. Metadynamics: a method
to simulate rare events and reconstruct the free energy in biophysics,
chemistry and material science. Reports on Progress in Physics, 71(12),
2008.

[14] Alessandro Barducci, Giovanni Bussi, and Michele Parrinello. Well-
tempered metadynamics: a smoothly converging and tunable free-
energy method. Physical review letters, 100(2), 2008.

[15] Glenn M Torrie and John P Valleau. Nonphysical sampling distribu-
tions in monte carlo free-energy estimation: Umbrella sampling. Jour-
nal of Computational Physics, 23(2), 1977.

[16] Yuqing Deng and Benôıt Roux. Calculation of standard binding free
energies: Aromatic molecules in the t4 lysozyme l99a mutant. Journal
of Chemical Theory and Computation, 2(5), 2006.

[17] Jeff Wereszczynski and J Andrew McCammon. Statistical mechan-
ics and molecular dynamics in evaluating thermodynamic properties of
biomolecular recognition. Quarterly reviews of biophysics, 45(1), 2012.

[18] Vladimir Vapnik. Statistical learning theory. 1998. Wiley, New York,
1998.

[19] Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. Manifold regular-
ization: A geometric framework for learning from labeled and unlabeled
examples. Journal of machine learning research, 7(Nov), 2006.

[20] Gunnar Carlsson. Topology and data. Bulletin of the American Math-
ematical Society, 46(2), 2009.

[21] Robert Tibshirani. Regression shrinkage and selection via the lasso.
Journal of the Royal Statistical Society. Series B (Methodological),
1996.

[22] Theodoros Evgeniou, Massimiliano Pontil, and Tomaso Poggio. Regu-
larization networks and support vector machines. Advances in compu-
tational mathematics, 13(1), 2000.

150

Bibliography

[23] Bernhard Schölkopf and Alexander J Smola. Learning with kernels:
support vector machines, regularization, optimization, and beyond. MIT
press, 2002.

[24] David JC MacKay. Bayesian interpolation. Neural computation, 4(3),
1992.

[25] James MacQueen et al. Some methods for classification and analysis
of multivariate observations. In Proceedings of the fifth Berkeley sym-
posium on mathematical statistics and probability, volume 1. Oakland,
CA, USA., 1967.

[26] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al.
A density-based algorithm for discovering clusters in large spatial
databases with noise. In Proceedings of the Second International Con-
ference on Knowledge Discovery and Data Mining, volume 96, 1996.

[27] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmenta-
tion. IEEE Transactions on pattern analysis and machine intelligence,
22(8), 2000.

[28] Jon M Kleinberg. An impossibility theorem for clustering. In Advances
in neural information processing systems, 2003.

[29] Shai Ben-David and Margareta Ackerman. Measures of clustering qual-
ity: A working set of axioms for clustering. In Advances in neural
information processing systems, 2009.

[30] Reza Bosagh Zadeh and Shai Ben-David. A uniqueness theorem for
clustering. In Proceedings of the twenty-fifth conference on uncertainty
in artificial intelligence. AUAI Press, 2009.

[31] Stuart Lloyd. Least squares quantization in pcm. IEEE transactions
on information theory, 28(2), 1982.

[32] Leon Bottou, Yoshua Bengio, et al. Convergence properties of the k-
means algorithms. Advances in neural information processing systems,
1995.

[33] Leon Bottou and Yoshua Bengio. Convergence properties of the k-
means algorithms. Advances in neural information processing systems,
1995.

[34] Mark Girolami. Mercer kernel-based clustering in feature space. IEEE
Transactions on Neural Networks, 13(3), 2002.

[35] Alex J Smola and Bernhard Schölkopf. Learning with kernels. GMD-
Forschungszentrum Informationstechnik, 1998.

151

Bibliography

[36] Radha Chitta, Rong Jin, Timothy C Havens, and Anil K Jain. Ap-
proximate kernel k-means: Solution to large scale kernel clustering.
In Proceedings of the 17th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2011.

[37] Leonard Kaufman and Peter Rousseeuw. Clustering by means of
medoids. North-Holland, 1987.

[38] Hae-Sang Park and Chi-Hyuck Jun. A simple and fast algorithm for
k-medoids clustering. Expert systems with applications, 36(2), 2009.

[39] David Arthur and Sergei Vassilvitskii. k-means++: The advantages of
careful seeding. In Proceedings of the eighteenth annual ACM-SIAM
symposium on Discrete algorithms. Society for Industrial and Applied
Mathematics, 2007.

[40] David Sculley. Web-scale k-means clustering. In Proceedings of the 19th
international conference on World wide web. ACM, 2010.

[41] Nikolai Alex, Alexander Hasenfuss, and Barbara Hammer. Patch clus-
tering for massive data sets. Neurocomputing, 72(7), 2009.

[42] Nikolai Alex and Barbara Hammer. Parallelizing single patch pass clus-
tering. In ESANN, 2008.

[43] Stefan Faußer and Friedhelm Schwenker. Parallelized kernel patch clus-
tering. In IAPR Workshop on Artificial Neural Networks in Pattern
Recognition. Springer, 2010.

[44] Gregory R Bowman, Vijay S Pande, and Frank Noé. An introduction to
Markov state models and their application to long timescale molecular
simulation, volume 797. Springer Science & Business Media, 2013.

[45] Inderjit S Dhillon, Yuqiang Guan, and Brian Kulis. Kernel k-means:
spectral clustering and normalized cuts. In Proceedings of the tenth
ACM SIGKDD international conference on Knowledge discovery and
data mining. ACM, 2004.

[46] R Elber and M Karplus. A method for determining reaction paths in
large molecules: Application to myoglobin. Chemical Physics Letters,
139(5), 1987.

[47] Hannes Jónsson, Greg Mills, and Karsten W Jacobsen. Nudged elas-
tic band method for finding minimum energy paths of transitions. In
Classical and quantum dynamics in condensed phase simulations. World
Scientific, 1998.

152

Bibliography

[48] Graeme Henkelman, Blas P Uberuaga, and Hannes Jónsson. A climbing
image nudged elastic band method for finding saddle points and mini-
mum energy paths. The Journal of chemical physics, 113(22), 2000.

[49] Luca Maragliano, Alexander Fischer, Eric Vanden-Eijnden, and Gio-
vanni Ciccotti. String method in collective variables: Minimum free en-
ergy paths and isocommittor surfaces. The Journal of chemical physics,
125(2), 2006.

[50] Luca Maragliano and Eric Vanden-Eijnden. On-the-fly string method
for minimum free energy paths calculation. Chemical physics letters,
446(1), 2007.

[51] Trevor Hastie. Principal curves and surfaces. Technical report, Stanford
University of California, Laboratory for Computational Statistics, 1984.

[52] Trevor Hastie and Werner Stuetzle. Principal curves. Journal of the
American Statistical Association, 84(406), 1989.

[53] Jakob J Verbeek, Nikos Vlassis, and B Kröse. A k-segments algorithm
for finding principal curves. Pattern Recognition Letters, 23(8), 2002.

[54] Jakob J Verbeek, Nikos Vlassis, and Ben Kröse. A soft k-segments
algorithm for principal curves. In International Conference on Artificial
Neural Networks. Springer, 2001.

[55] Balázs Kégl, Adam Krzyzak, Tamás Linder, and Kenneth Zeger. A
polygonal line algorithm for constructing principal curves. In Advances
in Neural Information Processing Systems, 1999.

[56] Alexander N Gorban, Alexander A Pitenko, Andrei Y Zinovyev, and
Donald C Wunsch. Visualization of any data with elastic map method.
2001.

[57] Alexander N Gorban and Andrei Y Zinovyev. Elastic maps and nets for
approximating principal manifolds and their application to microarray
data visualization. 2008.

[58] Alexander N Gorban, Balázs Kégl, Donald C Wunsch, Andrei Y Zi-
novyev, et al. Principal manifolds for data visualization and dimension
reduction, volume 58. Springer, 2008.

[59] Teuvo Kohonen. Self-organized formation of topologically correct fea-
ture maps. Biological cybernetics, 43(1), 1982.

[60] Balázs Kégl, Adam Krzyzak, Tamás Linder, and Kenneth Zeger. Learn-
ing and design of principal curves. IEEE transactions on pattern anal-
ysis and machine intelligence, 22(3), 2000.

153

Bibliography

[61] Edgar Erwin, Klaus Obermayer, and Klaus Schulten. Self-organizing
maps: ordering, convergence properties and energy functions. Biological
cybernetics, 67(1), 1992.

[62] Rong Zhang and Alexander I Rudnicky. A large scale clustering scheme
for kernel k-means. In Pattern Recognition, 2002. Proceedings. 16th
International Conference on, volume 4. IEEE, 2002.

[63] Jason Sanders and Edward Kandrot. CUDA by example: an intro-
duction to general-purpose GPU programming. Addison-Wesley Profes-
sional, 2010.

[64] Douglas L Theobald. Rapid calculation of rmsds using a quaternion-
based characteristic polynomial. Acta Crystallographica Section A:
Foundations of Crystallography, 61(4), 2005.

[65] Berk Hess, Carsten Kutzner, David Van Der Spoel, and Erik Lindahl.
Gromacs 4: algorithms for highly efficient, load-balanced, and scal-
able molecular simulation. Journal of chemical theory and computation,
4(3), 2008.

[66] James C Phillips, Rosemary Braun, Wei Wang, James Gumbart, Emad
Tajkhorshid, Elizabeth Villa, Christophe Chipot, Robert D Skeel,
Laxmikant Kale, and Klaus Schulten. Scalable molecular dynamics
with namd. Journal of computational chemistry, 26(16), 2005.

[67] Vı́ctor A Gil and Vı́ctor Guallar. pyrmsd: a python package for efficient
pairwise rmsd matrix calculation and handling. Bioinformatics, 2013.

[68] James Durbin. The fitting of time-series models. Revue de l’Institut
International de Statistique, 1960.

[69] GY Hu and Robert F O’Connell. Analytical inversion of symmetric
tridiagonal matrices. Journal of Physics A: Mathematical and General,
29(7), 1996.

[70] Sergio Decherchi, Mauro Parodi, and Sandro Ridella. Learning the
mean: A neural network approach. Neurocomputing, 77(1), 2012.

[71] Alexander Graham. Kronecker products and matrix calculus: With
applications (mathematics and its applications) pdf. 1981.

[72] Yann LeCun and Corinna Cortes. The mnist database of handwritten
digits, 1998.

[73] David D Lewis, Yiming Yang, Tony G Rose, and Fan Li. Rcv1: A
new benchmark collection for text categorization research. Journal of
machine learning research, 5(Apr), 2004.

154

Bibliography

[74] Wen-Yen Chen, Yangqiu Song, Hongjie Bai, Chih-Jen Lin, and Ed-
ward Y Chang. Parallel spectral clustering in distributed systems. IEEE
transactions on pattern analysis and machine intelligence, 33(3), 2011.

[75] Thorsten Joachims. A probabilistic analysis of the rocchio algorithm
with tfidf for text categorization. Technical report, Carnegie-mellon
univ pittsburgh pa dept of computer science, 1996.

[76] Meng-Chiao Ho, Wuxian Shi, Agnes Rinaldo-Matthis, Peter C Tyler,
Gary B Evans, Keith Clinch, Steven C Almo, and Vern L Schramm.
Four generations of transition-state analogues for human purine nucle-
oside phosphorylase. Proceedings of the National Academy of Sciences,
107(11), 2010.

[77] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent
Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Pret-
tenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn: Machine
learning in python. Journal of Machine Learning Research, 12(Oct),
2011.

[78] Daniel B Graham and Nigel M Allinson. Characterising virtual
eigensignatures for general purpose face recognition. In Face Recog-
nition. Springer, 1998.

[79] Edward N Lorenz. Deterministic nonperiodic flow. Journal of the at-
mospheric sciences, 20(2), 1963.

[80] Leon O Chua, Chai Wah Wu, Anshan Huang, and Guo-Qun Zhong. A
universal circuit for studying and generating chaos. i. routes to chaos.
IEEE Transactions on Circuits and Systems I: Fundamental Theory
and Applications, 40(10), 1993.

[81] Yann LeCun, Corinna Cortes, and CJC Burges. The mnist dataset of
handwritten digits. 1998.

[82] Juha Vesanto, Johan Himberg, Esa Alhoniemi, Juha Parhankangas,
et al. Self-organizing map in matlab: the som toolbox. In Proceedings
of the Matlab DSP conference, volume 99, 1999.

[83] Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, and Eric P
Xing. Deep kernel learning. In Artificial Intelligence and Statistics,
2016.

155

