9,214 research outputs found

    A Progressive Clustering Algorithm to Group the XML Data by Structural and Semantic Similarity

    Get PDF
    Since the emergence in the popularity of XML for data representation and exchange over the Web, the distribution of XML documents has rapidly increased. It has become a challenge for researchers to turn these documents into a more useful information utility. In this paper, we introduce a novel clustering algorithm PCXSS that keeps the heterogeneous XML documents into various groups according to their similar structural and semantic representations. We develop a global criterion function CPSim that progressively measures the similarity between a XML document and existing clusters, ignoring the need to compute the similarity between two individual documents. The experimental analysis shows the method to be fast and accurate

    XML documents clustering using a tensor space model

    Get PDF
    The traditional Vector Space Model (VSM) is not able to represent both the structure and the content of XML documents. This paper introduces a novel method of representing XML documents in a Tensor Space Model (TSM) and then utilizing it for clustering. Empirical analysis shows that the proposed method is scalable for large-sized datasets; as well, the factorized matrices produced from the proposed method help to improve the quality of clusters through the enriched document representation of both structure and content information

    Experiments in Clustering Homogeneous XML Documents to Validate an Existing Typology

    Get PDF
    This paper presents some experiments in clustering homogeneous XMLdocuments to validate an existing classification or more generally anorganisational structure. Our approach integrates techniques for extracting knowledge from documents with unsupervised classification (clustering) of documents. We focus on the feature selection used for representing documents and its impact on the emerging classification. We mix the selection of structured features with fine textual selection based on syntactic characteristics.We illustrate and evaluate this approach with a collection of Inria activity reports for the year 2003. The objective is to cluster projects into larger groups (Themes), based on the keywords or different chapters of these activity reports. We then compare the results of clustering using different feature selections, with the official theme structure used by Inria.Comment: (postprint); This version corrects a couple of errors in authors' names in the bibliograph

    XML Schema Clustering with Semantic and Hierarchical Similarity Measures

    Get PDF
    With the growing popularity of XML as the data representation language, collections of the XML data are exploded in numbers. The methods are required to manage and discover the useful information from them for the improved document handling. We present a schema clustering process by organising the heterogeneous XML schemas into various groups. The methodology considers not only the linguistic and the context of the elements but also the hierarchical structural similarity. We support our findings with experiments and analysis

    Document Clustering with K-tree

    Get PDF
    This paper describes the approach taken to the XML Mining track at INEX 2008 by a group at the Queensland University of Technology. We introduce the K-tree clustering algorithm in an Information Retrieval context by adapting it for document clustering. Many large scale problems exist in document clustering. K-tree scales well with large inputs due to its low complexity. It offers promising results both in terms of efficiency and quality. Document classification was completed using Support Vector Machines.Comment: 12 pages, INEX 200

    Random Indexing K-tree

    Get PDF
    Random Indexing (RI) K-tree is the combination of two algorithms for clustering. Many large scale problems exist in document clustering. RI K-tree scales well with large inputs due to its low complexity. It also exhibits features that are useful for managing a changing collection. Furthermore, it solves previous issues with sparse document vectors when using K-tree. The algorithms and data structures are defined, explained and motivated. Specific modifications to K-tree are made for use with RI. Experiments have been executed to measure quality. The results indicate that RI K-tree improves document cluster quality over the original K-tree algorithm.Comment: 8 pages, ADCS 2009; Hyperref and cleveref LaTeX packages conflicted. Removed clevere
    corecore