
This is the author’s version of a work that was submitted/accepted for pub-
lication in the following source:

Kutty, Sangeetha, Nayak, Richi, & Li, Yuefeng (2011) XML documents
clustering using Tensor Space Model. In Proceedings of the 15th Pacific-
Asia Conference on Knowledge Discovery and Data Mining, Springer, In-
terContinental Shenzhen, Shenzhen. (In Press)

This file was downloaded from: http://eprints.qut.edu.au/41717/

c© Copyright 2011 Springer

The original publication is available at SpringerLink
http://www.springerlink.com

Notice: Changes introduced as a result of publishing processes such as
copy-editing and formatting may not be reflected in this document. For a
definitive version of this work, please refer to the published source:

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/10903818?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.qut.edu.au/view/person/Kutty,_Sangeetha.html
http://eprints.qut.edu.au/view/person/Nayak,_Richi.html
http://eprints.qut.edu.au/view/person/Li,_Yuefeng.html
http://eprints.qut.edu.au/41717/

XML Documents Clustering using a Tensor
Space Model

Sangeetha Kutty, Richi Nayak, and Yuefeng Li

Faculty of Science and Technology
Queensland University of Technology

GPO Box 2434, Brisbane Qld 4001, Australia
{s.kutty, r.nayak, y2.li}@qut.edu.au

Abstract. The traditional Vector Space Model (VSM) is not able to
represent both the structure and the content of XML documents. This
paper introduces a novel method of representing XML documents in a
Tensor Space Model (TSM) and then utilizing it for clustering. Empir-
ical analysis shows that the proposed method is scalable for large-sized
datasets; as well, the factorized matrices produced from the proposed
method help to improve the quality of clusters through the enriched
document representation of both structure and content information.

1 Introduction

Rapid growth of web technologies has witnessed a sudden surge in the num-
ber of XML (eXtensible Markup Language) documents. For instance, English
Wikipedia contains 3.1 million web documents in XML format; the ClueWeb
dataset, used in Text Retrieval Conference (TREC) tracks, contains 503.9 mil-
lion XML documents collected from the web in January and February 2009.
The majority of existing XML document clustering methods utilize either the
structure features [2] or the content features present in the documents. Cluster-
ing methods utilizing only the content features of the documents consider the
documents as a “bag of words” or a Vector Space Model (VSM) and ignore the
structure features [2]; clustering methods utilizing only the structure features of
the documents represent each document as a set of paths (sequences) or trees.

However, these methods, with their single-feature focus, tend to falsely group
documents that are similar in for documents that are similar in both features.
To correctly identify similarity among documents, the clustering process should
use both their structure and their content information. Approaches on clustering
both the structure and the content features of the XML documents are limited.
Approaches using the VSM often fail to scale for even small collections of a
few hundred documents, and in some situations have resulted in poor accuracy
[14]. VSM cannot model both structure and content features of XML documents
effectively as the mapping between the structure and its corresponding content
is lost. The content and structure features inherent in an XML document should
be modeled in a way that the mapping between the content of the path or tree

can be preserved and used in further analysis. In this paper we propose a novel
method that represents the XML documents in a Tensor Space Model (TSM)
and uses the TSM for clustering. In the TSM, storing the content corresponding
to its structure helps to analyze the relationship between structure and content.

Unlike the VSM, which uses a vector to model, TSM is based on the multi-
linear algebraic character level high-order tensors (generalization of matrices)
[13]. Decomposition algorithms are used to analyze the relationships between
various tensor orders (ways or modes). However, existing decomposition algo-
rithms could be used to analyze small size and sparse TSMs. TSMs that are
large and dense cannot be loaded into memory. Consequently, large datasets
with tensor representation cannot be analyzed using these decomposition tech-
niques. In this paper, we propose a randomized tensor decomposition technique
that could upload the large size tensors into memory and decompose them with
significant speedups. Experiments on a real-life dataset containing more than
50K documents show that the proposed method helps to improve the cluster
quality through the enriched document representation of both structure and
content information. The contributions of this paper can be summarized as: (1)
a clustering method, XML document Clustering with TSM (XCT), that utilizes
the tensor model to efficiently combine the content and structure features of
XML documents; and (2) a new tensor decomposition algorithm, Progressive
Tensor Creation and Decomposition (PTCD), for large sized tensors.

2 RELATED WORK

Tensor Space Modeling (TSM) has been successfully used in representing and
analyzing multi-way data in signal processing, web mining and many other fields
[13]. Tensor clustering is a multi-way data analysis task which is currently gain-
ing importance in the data mining community. The simplest tensor clustering
scenario, co-clustering or bi-clustering, in which two orders are simultaneously
clustered, is well established [6]. Another recently proposed approximation based
Combination Tensor Clustering algorithm [7] clusters along each of the orders
and then represents the cluster centers in the tensor. These co-clustering tech-
niques capture only the 2-way relationships among the features and ignore the
dependence of multiple orders in clustering: this may result in loss of information
while grouping the objects.

Several decomposition algorithms, such as Higher Order SVD (HOSVD);
CP, a higher-order analogue of Singular Value Decomposition (SVD) or Princi-
pal Component Analysis (PCA); Tucker and Multi-Slice Projection, have been
reviewed in detail in [5]. Incremental Tensor Analysis (ITA) methods [8] have
been proposed recently to detail with large datasets for efficiently decomposing
sparse tensors (density ≤ 0.001%). However, real-life XML documents repre-
sented in TSM are dense with about 127M non-entries with over 1M terms and
these decomposition algorithms fail to scale. MET [9], a memory-efficient im-
plementation of Tucker proposed to avoid the intermediate blow-up in tensor
factorization, is shown in our results shows not to scale to our medium-sized and

large-sized datasets. In MACH [13], a recently proposed random decomposition
algorithm suitable for large dense datasets, the number of entries in the tensor
is randomly reduced using Achlioptas-McSherry’s technique [1] to decrease the
density of the dataset. However, as discussed in section 5, MACH often ignores
smaller length documents and tends to group most of the smaller length docu-
ments in a single cluster in spite of differences in their structure and content.
To remove this lack of decomposition algorithms suitable for very large-sized
datasets, in this paper we propose a new decomposition algorithm, the Progres-
sive Tensor Creation and Decomposition (PTCD) algorithm, that progressively
unfolds a tensor into a matrix and applies SVD on this generated matrix.

3 The Proposed XCT Method

3.1 Problem Definition and preliminaries

Let there be a collection of XML documents D = {D1, D2, . . . , Dn}, where
Di is an XML document containing tags and data enclosed within those tags.
The structure of Di can be defined as a list of tags showing the hierarchical
relationships between them. The structure of Di is modeled as a rooted, ordered
and node-labeled document tree, DTi = (N,n0, E, f), where (1) N is the set of
nodes that correspond to tags in Di, with the node labels corresponding to tag
names; (2) n0 is the root node which does not have any edges entering in it; (3)
E is the set of edges in DTi; and (4) f is a mapping function f : E → N ×N .
Previous research has shown that, in a dataset, only the content constrained
within the concise common or frequent subtrees (Closed Frequent Induced -
CFI) can be used to group the documents, rather than the entire content of
the XML documents [10]. Therefore the proposed XCT method generates these
CFI subtrees to represent the common subtrees in the dataset and uses these
CFI subtrees to extract the content of the documents corresponding to them.
The process begins by identifying the subtrees that belongs to a document tree.
A subtree CFIj ∈ CFI is present in document tree DTi, if CFIj preserves
the same parent-child relationship as that of DTi. The document content(or
structure-constrained content) contained within the CFIj subtree in DTi, noted
as C(Di, CFIj), is retrieved from the XML document Di, a collection of node
values or terms. The node value of a node (or tag) of a CFIj , C(Ni) in Di is a
vector of terms, {t1, . . . , tk} that the node contains. The term t is obtained after
stop-word removal and stemming.

The next step involves modeling the derived structure and content features
of a tensor model. Firstly,the tensor notations and conventions used in this
paper are akin to the notations used by previous works [5, 8, 13]. Let T ∈
RM1×M2×M3×...×Mn be a tensor of n orders where Mi is an order. In this work,
we focus on the third-order tensor, T ∈ RM1×M2×M3 . Entries of a tensor are
shown using aijk and the subscript (i, j, k) range from I, J,K in each order.
Each element (or entry) of a tensor needs n indices to represent or reference
its precise position in a tensor. For example, the element aijk is an entry value
at the i, j and k orders. Given the documents set D, its corresponding set of

CFI subtrees and the set of terms for each CFI subtree, the collection of XML
documents is now represented as a third-order tensor T ∈ RD×CFI×Terms. The
tensor is populated with the number of occurrences of the structure-constrained
term Termsi that corresponds to the CFIj for document Dk. Two optimization
techniques are applied on the two orders, CFI and Terms, to reduce the size
of the tensor. Fig. 1 provides an overview of the XCT method. It begins with
mining the CFI subtrees using the PCITMinerConst algorithm and then identi-
fying the constrained content within those CFI subtrees for a given document.
Once the structure and content features are obtained for each document, the
documents are represented in the TSM along with their structure and content
features. The next task is to decompose the created TSM to obtain factorized
matrices. Lastly, the K-means algorithm is applied to one of the factorized ma-
trices representing the left singular matrix for the “Document” order UD and
the clusters of documents are obtained.

Input: Document Dataset; D, Document Tree Dataset:DT, Minimum Support:min supp,
Length Constraint: len, NumCluster: c, RI Vectors Length: γ
Output: Clusters: {Clust1 . . . Clustc}
Method:
1. Compute CFI = {CFI1, . . . , CFIp} for DT using the PCITMinerConst algorithm

for the given min supp and len.
2. Form clusters of similar CFI subtrees, CFISC = {(CFI1, . . . , CFIq), . . . , (CFIt, . . . , CFIu)},

where CFISC = {CFISC1, . . . , CFISCh}, k � p using large itemset algorithm.
3. For every document Di ∈ D

a.Identify the CFISC existing in DTi, δ(DTi) = {CFISCl, . . . , CFISCh}
b. For every CFISCj in δ(DTi) retrieve the structure-constrained content in Di,
C(Di, CFISCj) = C(N1), . . . , C(Nm). The set C(Nm) = t1, . . . , tk ∈ Terms, where
Terms is the term list in D.

4. Apply random indexing using the γ length random vectors on the terms collection to
reduce the term space to Terms′

5. Form a tensor T ∈ RD×CFISC×Terms
′
, where each tensor element is the number of

times a term tk occurs in CFISCj for a given document Di.
6. Apply the proposed tensor decomposition algorithm, PTCD to the tensor T and get the

resulting left singular matrices UD, UCFISC and UTerms′ .
7. Apply K-means clustering to UD to generate the c number of clusters.

Fig. 1. High-level definition of XCT

3.2 Generation of Structure Features for TSM

The Prefix-based Closed Induced Tree Miner (PCITMiner) algorithm [10] is
modified to generate the length-constrained CFI subtrees from the document
tree dataset DT . The length constrained CFI subtrees are used in this method
for the following reasons: (1) Extracting all the CFI subtrees is computationally
expensive for datasets with a high branching factor; (2) All CFI subtrees are not
required while utilizing them in retrieving the content. In fact the long sized CFI
subtrees become more specific and result in retrieving distinct terms associated
only with this tree. This may result in a higher number of clusters with uneven
sizes. We call the modified algorithm the PCITMinerConst algorithm.

Fig. 1 illustrates the computationally expensive operation of checking whether
the mined CFI exists in a given document tree due to the graph isomorphism
problem. This step can be optimized by grouping similar subtrees based on their
similarity and then retrieving the content corresponding only to the group of sim-
ilar CFI. A large itemset algorithm for clustering transactional data has been
modified to include subtrees, rather than items, to conduct the grouping of the
CFI trees based on the similarity of the subtrees. The clusters of CFI subtrees,
called Closed Frequent Induced Subtree Cluster (CFISC), become a tensor or-
der for representing and analyzing XML documents. Let CFISC be a set of CFI
subtrees given by {(CFI1, . . . , CFIq)(CFIr, . . . , CFIs)(CFIt, . . . , CFIu)}

3.3 Generation of Content Features for TSM

CFISC is used to retrieve the structure-constrained content from the XML
documents. We now define the coverage of a CFISCj and its constrained content
for the given document Di. Compared with the content features of an XML
document, the structure-constrained content features include the node values
corresponding only to the node labels of the set of CFI subtrees in CFISCj .
Definition 1: Structure-Constrained content features. These features of
a given CFISCj , C(Di, CFISCj) of an XML document Di, are a collection of
node values corresponding to the node labels in the CFISCj where CFISCj is a
cluster of CFI subtrees corresponding to DTi. The node value of a node (or tag)
of a CFISCj ∈ CFISC,C(Ni), in Di is a vector of terms, {t1, . . . , tk} that the
node contains. The term t is obtained after using pre-processing techniques such
as stop-word removal and stemming. Firstly, the CFI subtrees corresponding
to the CFISCj = {CFIr, . . . , CFIs} for a given document Di are flattened
into their nodes {N1, . . . , Nm} ∈ N , where N is the list of nodes in DT. Then
the node values of {N1, . . . , Nm} are accumulated and their occurrences for a
document Di are recorded.

In large datasets, the number of terms in the structure-constrained content is
very large with more than 1M terms and 127M tensor entries for INEX (Initia-
tive for Evaluation of XML retrieval) 2009 Wikipedia even after pre-processing.
To reduce this very large term space, we apply a Random Indexing (RI) tech-
nique which has been favored by many researchers due to its simplicity and low
computationally complexity [12]. In RI, each term in the original space is given
a randomly generated index vector as shown in Fig. 2. These index vectors are
sparse in nature and have ternary values (0 , -1 and 1). Sparsity of the index
vectors is controlled via a seed length that specifies the number of randomly
selected non-zero features.

rij =
√

3

{
+1 with probability 1/6

0 with probability 2/3

−1 with probability 1/6

(1)

We utilize Achlioptas’s proposed equation 1 [1] to generate distribution for
creating the random index vector for every term in the structure-constrained
content of CFISC. For a given document Di, the index vectors of length l for

all the terms corresponding to the given CFISCj are added. We illustrate this
concept of RI on tensor using the Fig. 2, in which we consider a tensor= R3×2×4

(in Fig. 2(a)) with 3 documents, 2 CFISC, 4 terms and 7 non-zero entries. The
entries in the tensor correspond to the occurrences of a given term in the given
CFISC for the document. Using that equation 1, the random index vectors of
length 6 for the 4 terms are generated (see in Fig. 2(b). Let us consider document
D1 with three tensor entries a121 = 1, a123 = 1 and a124 = 1 corresponding to
CFISC1 and three terms Term1, Term3 and Term4. The random vectors (from
Fig. 2(b)) are added to these three terms in D1. The sparse representation of the
resulting vector (a12:) for D1 (given in Fig. 2(c)) contains two non-zero tensor
entries a123 = 1 and a124 = −1. Fig. 2(d) shows the final reduced tensor Tr in
sparse representation containing 6 non-zero entries.This example demonstrates
how our technique can reduce the term space for such a small dataset.

1 -1 0 0 0 0

0 0 1 -1 0 0
-1 1 0 0 0 0

0 -1 1 0 0 0

1 0 0 -1 0 0

0 -1 0 1 0 0T
T

a12:=

a21:=

a31:=

= a121=1; a123=1; a124=1;
a212=1; a213=2;
a312=1; a313=1;

(a) (b) (c)

r= a123=1; a124=-1;
a211=1; a212=-1;
a311=1; a312=-1;

(d)

1 -1 0 0 0 0

Term1=

Term2=

Term4=

Term3=

Fig. 2. Illustration of Random Indexing on a 3-order tensor resulting in a randomly
reduced tensor Tr

It can be seen that the number of entries in Tr, randomly reduced T , is
less in number than its original and maintains the shape of T as it retains the
same similarity between D2 and D3. The index vectors in RI are sparse; hence
the vectors use less memory store and they are added faster. The randomly-
reduced structure-constrained content of CFISC becomes another tensor mode
for representing and analyzing XML documents.

3.4 The TSM Representation, Decomposition and Clustering

Given the tensor T , the next task is to find the hidden relationships between the
tensor orders. The tensor decomposition algorithms enable an overview of the
relationships that can be further used in clustering. However, as already men-
tioned, most of these decomposition algorithms cannot be applied on very large
or dense tensor as the tensors cannot be loaded into memory [13]. To alleviate
this problem, the tensors need to be built and unfolded or matricized incremen-
tally. Fig. 3 shows the process of matricization or unfolding along the mode-1 of
T which results in a matrix T(1) . This means that the mode-1 fibers (higher or-
der analogue of rows and columns) are aligned to form a matrix. Essentially this
means that the mode-1 fibers of T are mapped to the rows of matrix T(1) and
the modes-2 and -3 are mapped to the columns of this matrix. We apply the pro-
posed PTCD as shown in Fig. 4 to progressively build and then decompose the

T(1)T

Fig. 3. Mode-1 matricization of a 3-order tensor

tensor using SVD. The motivation for this new tensor decomposition algorithm
is that the computations by other decompositions store the fully formed ma-
trices, which are dense and hence cannot scale to very large sized tensors. But
PTCD stores the sparse matrices generated progressively and enables further
processing to be performed on the tensor. PTCD builds the tensor progressively
by unfolding the tensor entries for the user-defined block size b to a sparse ma-
trix T′(m) where m ∈ {1, 2, . . . ,M} and M is the number of modes. Then this

unfolded matrix, T′(m) is used to update the final sparse matrix T(m). After up-
dating, all the tensor entries to the final matrix, T(m) is then decomposed to the
user-defined number of required dimensions η using SVD.

Input: Data File: TF , block size: b, number of modes(orders) : M
where m ∈ {1, 2, . . . ,M} and Number of required dimensions: η
Output: Matricized Tensor : T
and left singular matrix with η dimensions for 1-mode : Uη

1. For every T(m) ∈ {T(1),T(2), . . ., T(M) }
a. Initialize T(m) = φ

2. Divide TF into blocks of size b
3. For every block b do

a. Create tensor Tb
b. For m = 1 to M do

T′(m) = Unfold Tb along its mth mode //Matricize the tensor

T(m) =T(m)+T′(m) //Update the Mode-m matricized tensor

4. Compute SVD on T with η dimensions, Tη= UηΣη VT
η

Fig. 4. Progressive Tensor Creation and Decomposition algorithm (PTCD)

Huang et al. [6] have theoretically proved that HOSVD on a tensor simulta-
neously reduces the subspace and groups the values in each order. For the 3-order
tensor T , the left singular matrix on the document order, Uη(D) provides the
clustering results on the data index direction; hence they are the cluster indica-
tors for grouping the documents. Consequently, we apply the K-means clustering
algorithm on the Uη(D) matrix to generate the required number of clusters of
the documents.

4 EXPERIMENTS AND DISCUSSION

Experiments are conducted to evaluate the accuracy and scalability performance
of XCT on the real-life datasets.

4.1 Datasets

Three real-life XML datasets which have extreme characteristics, INEX 2009
Wikipedia documents collection (Wikipedia)1, INEX 2006 IEEE [4](IEEE) and
ACM SIGMOD (ACM)[2, 10], were used after a careful analysis of a number of
datasets. The INEX 2009 document mining track used the Wikipedia dataset

Table 1. Details of the real life datasets

Dataset Names / Attributes Wikipedia IEEE ACM

No. of Docs 54,575 6054 140

No. of tags 34,686 165 38

No. of internal nodes 15,128,407 472,351 2070

Max length of a document 10347 691 45

No. of distinct terms 1,900,072 114,976 7135

Total No. of words 21,480,198 3,695,550 38141

Size of the collection 2.94GB 272MB 1 MB

Presence of formatting tags Yes Yes No

Presence of Schema Yes Yes Yes

Number of Categories 12,803 18 5

with semantically annotated tags to perform the clustering task. This dataset
contains a very large number of documents with deeper structure and a high
branching factor. It also supports multi-label categories in which one document
can have more than one category. On the other hand, IEEE has single-labeled
categories and contains more formatting tags and fewer semantic tags. Finally,
the ACM is a small dataset that contains 140 XML documents correspond-
ing to two DTDs, IndexTermsPage.dtd and OrdinaryIssuePage.dtd (with about
70 XML documents for each DTD), similar to the setup in XProj [2]. This
dataset has been chosen in order to evaluate our method against other repre-
sentations and decomposition algorithms which could work only on this kind of
small datasets.

4.2 Experimental design

Experiments were conducted on the High Performance Computing system, with
a RedHat Linux operating system, 16GB of RAM and a 3.4GHz 64bit Intel Xeon
processor core. Experiments were conducted to evaluate the accuracy of cluster-
ing results of XCT over other clustering techniques, decomposition techniques
and representation. Previous research for XML documents clustering [2] has used
the ACM to cluster the documents into two groups according to their structural
similarity. To compare our work with this earlier research, we conducted our ex-
periments not only with two cluster categories according to structural similarity

1 http://www.inex.otago.ac.nz/tracks/wiki-mine/wiki-mine.asp

but also on 5 categories using expert knowledge considering both the structure
and the content features of XML documents. Due to the small number of terms
in this dataset, the random indexing option for XCT has been disabled.

Following are the representation and the other existing algorithms used for
comparing the outputs of the proposed XCT method.
Structure Only (SO) Representation: An input matrix D × CFI is gener-
ated similar to XProj [2].
Content Only (CO) Representation: The content of XML documents is
represented in a matrix D × Terms with each matrix entry containing term
frequency of terms in D.
Structure and Content Representation (S+C) using VSM: The struc-
ture and the content features for the documents are represented in a matrix by
concatenating the CO and SO representations side by side.
Clustering using CP and Tucker: The left singular matrix resulting from
applying CP or Tucker decomposition on the tensor is used as an input for
k-means clustering.
Clustering using MACH: The MACH decomposition technique has been
applied on the original tensor with random indexing. MACH randomly projects
the original tensor to a reduced tensor with smaller percentage of entries (10%
from the original tensor as specified in [13]) and then uses Tucker decomposition
to decompose the reduced tensor. To compare with XCT, we apply k-means
clustering on the left singular matrix to group the documents.

Moreover, since the INEX dataset has been used by other researchers: we
provide the results cited by other researchers [4, 11] as well in our analysis.

4.3 Evaluation measures

The standard criterion of purity is used to determine the quality of clusters
by measuring the extent to which each cluster contains documents primarily
from one class. The macro and micro purity of the entire clustering solution is
obtained as a weighted sum of the individual cluster purity. In general, the larger
the value of purity,the better the clustering solution is.

Purity =
Documents with the majority label in cluster k

Documents in cluster k
(2)

Micro− Purity =

∑n
k=0 Purity(k) ∗# Documents Found By Class(k)∑n

k=0 # Documents Found By Class(k)
(3)

Macro− Purity =

∑n
k=0 Purity(k))

Total Number of Categories
(4)

4.4 Empirical Analysis

Accuracy of Clustering: Tables 2 and 3 provide the purity results of cluster-
ing on the datasets using XCT, other representations and other decomposition
algorithms. As can be seen from these three tables, the proposed XCT method
not only outperforms our benchmarks but also other INEX submissions in terms

Table 2. Clustering results on Wikipedia and IEEE

#50 clusters #100 clusters
Methods Micro- Macro- Micro- Macro-

purity purity purity purity

XCT 0.13 0.14 0.14 0.13
S+C using VSM 0.13 0.14 0.13 0.14

Clustering using MACH 0.087 0.089 0.089 0.088
CO 0.10 0.12 0.12 0.13
SO 0.09 0.11 0.11 0.10

BilWeb-CO[11] NA NA 0.10 0.13

Methods Micro- Macro-
purity purity

XCT 0.23 0.23

S+C using VSM 0.18 0.14

Clustering using MACH 0.17 0.20

CO 0.10 0.12

SO 0.08 0.10

Nayak et. al [4] NA 0.18

Doucet et. al [4] NA 0.13

Table 3. Results of clustering on ACM

#2 clusters #5 clusters
Methods Micro-purity Macro-purity Micro-purity Macro-purity

XCT 1 1 0.91 0.91
S+C using VSM 0.98 0.98 0.75 0.79

Clustering using MACH 0.97 0.93 0.70 0.75
Clustering using Tucker 0.56 0.48 0.59 0.87

Clustering using CP 0.89 0.93 0.84 0.93
CO 0.97 0.94 0.73 0.78
SO 1 1 0.64 0.72

of the accuracy of their clustering solution. It should be noted that algorithms
such as CP, Tucker could not scale even to the medium-sized dataset, IEEE
and hence their results were not reported but the proposed PTCD was able to
decompose even large dataset as shown in Tables 2 and 3. As the categories in

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0.25

3 4 5 6 7 8 9 10

M
ic

ro
-p

u
ri

ty

Length of CFI subtrees

min_supp_10%

min_supp_20%

min_supp_30%

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0.25

3 4 5 6 7 8 9 10

M
ac

ro
-p

u
ri

ty

Length of CFI Subtrees

min_supp_10%

min_supp_20%

min_supp_30%

Fig. 5. Sensitivity of length constraint on the micro-purity and macro-purity values
for IEEE

IEEE was based on both the structure and the content we utilized this dataset
for analyzing the sensitivity of the length constraint and min supp values on the
purity. We conducted experiments by varying the length constraint(len) of the
CFI subtrees from 3 to 10 for support thresholds from 10% to 30%. From Fig. 5
which indicates that with the increase in the length constraint the micro-purity
and macro-purity values drops especially at 10% and 30% support threshold.
Also, length constraint of over 7 shows a negative impact on the purity. With
longer length patterns the content corresponding to the CFI subtrees becomes
specific and hence results in less accuracy than the content corresponding to

0

1000

2000

3000

4000

5000

6000

7000

8000

2 4 6 8 10

Ti
m

e
(in

 s
ec

s)

Replication factor

INEX 2006 IEEE

ACM SIGMOD

INEX 2009 Wikipedia

(a) XCT

0

50

100

150

200

250

300

350

400

2 4 6 8 10

Ti
m

e
(in

 s
ec

s)

Replication factor

INEX 2006 IEEE

ACM SIGMOD

INEX 2009 Wikipedia

(b) PTCD

0

10

20

30

40

50

60

70

80

2 4 6 8 10

Ti
m

e
(in

 s
ec

s)

Replication factor

INEX 2006 IEEE

ACM SIGMOD

INEX 2009 Wikipedia

(c) Decomposition in
PTCD

Fig. 6. Scalability analysis

shorter subtrees. This shows the suitability of constraining the CFI subtrees as
in PCITMinerConst.

Time complexity analysis: The time complexity of XCT is composed of five
major components, namely frequent mining for CFI subtrees, clustering of CFI
subtrees, random indexing, matricization and decomposition in PTCD. It is
given by O(dsm) + O(drp)+ O(tkγ) + O(drγ) + O(dk′γ) where d represents
the number of documents, s is the number of 1-Length CFI subtrees, m is
the number of PCITMinerConst iterations, r is the number of structure-based
clusters, p is the number of similarity computation iterations, γ is the size of the
random index vector, k and k′ are the non-zero entries per column in the tensor
before random indexing and in the matricized tensor after random indexing
respectively. The time complexity of PTCD is O(drγ)+O(dk′γ), which includes
the cost of matricization along the mode-n and the sparse SVD.

Scalability Test: All the three datasets were used for this analysis withmin supp
at 10%, len at 5, γ at 100 and the number of clusters chosen, 5, 18 and 100 re-
spectively. Also we used 1000 documents each for IEEE and Wikipedia. The
execution time of PCITMinerConst is less than a few 10 milliseconds and hence
it has not been reported as it is not of much significance. We can see from Fig.
6 that both XCT and PTCD scale nearly linearly with the dataset size. The
PTCD algorithm includes two main steps: (1)loading the tensor file into mem-
ory by matricization, and (2) decomposing the matrices using SVD. As it can be
seen from Fig. 6 that minimal time is spent on decomposition and a large chunk
of time on loading the tensor file into memory. Also, it is interesting to note the
PTCD for ACM is greater in comparison to IEEE which indicates that random
indexing option in XCT method helps to reduce the complexity of decomposition
by reducing the term space.

An interesting problem is how to choose the value γ for the seed length
in random indexing. The Johnson- Lindenstrauss result was used to get the
bounds for γ as given by γ =

⌈
4(ε2/2− ε3/3)−1ln n

⌋
. However, we found that

for Wikipedia dataset with ε=0.5, γ is 433 but in the experiments, γ ≈ 100 was
sufficient to obtain good accuracy similar to the results by [3].

5 Conclusion

In this paper, we have proposed a clustering method, XCT, for effectively com-
bining both the structure and the content features in XML documents using
TSM model. The experimental results clearly ascertain that XCT outperforms
other existing approaches in improving accuracy. Also, our proposed decompo-
sition algorithm PTCD has demonstrated that it has potential for decomposing
tensors effectively and could scale for very large datasets. Our future work will
focus on reducing the complexity of XCT and applying it on various types of
other types of semi-structured documents.

References

1. D. Achlioptas and F. Mcsherry. Fast computation of low-rank matrix approxima-
tions. J. ACM, 54(2):9, 2007.

2. C. C. Aggarwal, N. Ta, J. Wang, J. Feng, and M. Zaki. Xproj: a framework for
projected structural clustering of xml documents. In KDD, pages 46–55. ACM,
USA, 2007.

3. E. Bingham and H. Mannila. Random projection in dimensionality reduction:
applications to image and text data. In KDD, pages 245–250, USA, 2001. ACM.

4. L. Denoyer and P. Gallinari. Report on the xml mining track at inex 2005 and inex
2006: categorization and clustering of xml documents. SIGIR Forum, 41(1):79–90,
2007.

5. A. Evrim, B, and Y. lent. Unsupervised multiway data analysis: A literature survey.
IEEE TKDE, 21(1):6–20, 2009.

6. H. Huang, C. Ding, D. Luo, and T. Li. Simultaneous tensor subspace selection
and clustering: the equivalence of high order svd and k-means clustering. In KDD,
pages 327–335, USA, 2008. ACM.

7. S. Jegelka, S. Sra, and A. Banerjee. Approximation algorithms for tensor clustering.
In R. Gavald, G. Lugosi, T. Zeugmann, and S. Zilles, editors, Algorithmic Learning
Theory, volume 5809 of LNCS, pages 368–383. Springer, 2009.

8. S. Jimeng, T. Dacheng, P. Spiros, S. Y. Philip, and F. Christos. Incremental tensor
analysis: Theory and applications. ACM TKDD, 2(3):1–37, 2008.

9. T. G. Kolda and J. Sun. Scalable tensor decompositions for multi-aspect data
mining. In ICDM, pages 363–372, 2008.

10. S. Kutty, R. Nayak, and Y. Li. HCX: an efficient hybrid clustering approach for
XML documents. In DocEng, pages 94–97, USA, 2009. ACM.

11. R. Nayak, C. deVries, S. Kutty, and S. Geva. Report on the XML Mining Track
Clustering Task at INEX 2009. In S. Geva, J. Kamps, and A. Trotman, editors,
Focused Retrieval and Evaluation. Springer, 2010.

12. M. Sahlgren. An introduction to random indexing. In Methods and Applications
of Semantic Indexing Workshop, TKE, 2005.

13. C. E. Tsourakakis. MACH: Fast Randomized Tensor Decompositions. In SDM,
pages 689–700, USA, 2010.

14. A.-M. Vercoustre, M. Fegas, S. Gul, and Y. Lechevallier. A flexible structured-
based representation for xml document mining. In N. Fuhr, M. Lalmas, S. Malik,
and G. Kazai, editors, Advances in XML Information Retrieval and Evaluation,
volume 3977 of LNCS, pages 443–457. Springer, 2006.

