2,580 research outputs found

    Positive Semidefinite Metric Learning Using Boosting-like Algorithms

    Get PDF
    The success of many machine learning and pattern recognition methods relies heavily upon the identification of an appropriate distance metric on the input data. It is often beneficial to learn such a metric from the input training data, instead of using a default one such as the Euclidean distance. In this work, we propose a boosting-based technique, termed BoostMetric, for learning a quadratic Mahalanobis distance metric. Learning a valid Mahalanobis distance metric requires enforcing the constraint that the matrix parameter to the metric remains positive definite. Semidefinite programming is often used to enforce this constraint, but does not scale well and easy to implement. BoostMetric is instead based on the observation that any positive semidefinite matrix can be decomposed into a linear combination of trace-one rank-one matrices. BoostMetric thus uses rank-one positive semidefinite matrices as weak learners within an efficient and scalable boosting-based learning process. The resulting methods are easy to implement, efficient, and can accommodate various types of constraints. We extend traditional boosting algorithms in that its weak learner is a positive semidefinite matrix with trace and rank being one rather than a classifier or regressor. Experiments on various datasets demonstrate that the proposed algorithms compare favorably to those state-of-the-art methods in terms of classification accuracy and running time.Comment: 30 pages, appearing in Journal of Machine Learning Researc

    A Bi-level Nonlinear Eigenvector Algorithm for Wasserstein Discriminant Analysis

    Full text link
    Much like the classical Fisher linear discriminant analysis, Wasserstein discriminant analysis (WDA) is a supervised linear dimensionality reduction method that seeks a projection matrix to maximize the dispersion of different data classes and minimize the dispersion of same data classes. However, in contrast, WDA can account for both global and local inter-connections between data classes using a regularized Wasserstein distance. WDA is formulated as a bi-level nonlinear trace ratio optimization. In this paper, we present a bi-level nonlinear eigenvector (NEPv) algorithm, called WDA-nepv. The inner kernel of WDA-nepv for computing the optimal transport matrix of the regularized Wasserstein distance is formulated as an NEPv, and meanwhile the outer kernel for the trace ratio optimization is also formulated as another NEPv. Consequently, both kernels can be computed efficiently via self-consistent-field iterations and modern solvers for linear eigenvalue problems. Comparing with the existing algorithms for WDA, WDA-nepv is derivative-free and surrogate-model-free. The computational efficiency and applications in classification accuracy of WDA-nepv are demonstrated using synthetic and real-life datasets

    Positive Semidefinite Metric Learning with Boosting

    Full text link
    The learning of appropriate distance metrics is a critical problem in image classification and retrieval. In this work, we propose a boosting-based technique, termed \BoostMetric, for learning a Mahalanobis distance metric. One of the primary difficulties in learning such a metric is to ensure that the Mahalanobis matrix remains positive semidefinite. Semidefinite programming is sometimes used to enforce this constraint, but does not scale well. \BoostMetric is instead based on a key observation that any positive semidefinite matrix can be decomposed into a linear positive combination of trace-one rank-one matrices. \BoostMetric thus uses rank-one positive semidefinite matrices as weak learners within an efficient and scalable boosting-based learning process. The resulting method is easy to implement, does not require tuning, and can accommodate various types of constraints. Experiments on various datasets show that the proposed algorithm compares favorably to those state-of-the-art methods in terms of classification accuracy and running time.Comment: 11 pages, Twenty-Third Annual Conference on Neural Information Processing Systems (NIPS 2009), Vancouver, Canad

    On the use of high-order feature propagation in Graph Convolution Networks with Manifold Regularization

    Get PDF
    Graph Convolutional Networks (GCNs) have received a lot of attention in pattern recognition and machine learning. In this paper, we present a revisited scheme for the new method called "GCNs with Manifold Regularization" (GCNMR). While manifold regularization can add additional information, the GCN-based semi-supervised classification process cannot consider the full layer-wise structured information. Inspired by graph-based label propagation approaches, we will integrate high-order feature propagation into each GCN layer. High-order feature propagation over the graph can fully exploit the structured information provided by the latter at all the GCN's layers. It fully exploits the clustering assumption, which is valid for structured data but not well exploited in GCNs. Our proposed scheme would lead to more informative GCNs. Using the revisited model, we will conduct several semi-supervised classification experiments on public image datasets containing objects, faces and digits: Extended Yale, PF01, Caltech101 and MNIST. We will also consider three citation networks. The proposed scheme performs well compared to several semi-supervised methods. With respect to the recent GCNMR approach, the average improvements were 2.2%, 4.5%, 1.0% and 10.6% on Extended Yale, PF01, Caltech101 and MNIST, respectively.This work is supported in part by the University of the Basque Country UPV/EHU grant GIU19/027

    Functional Regression

    Full text link
    Functional data analysis (FDA) involves the analysis of data whose ideal units of observation are functions defined on some continuous domain, and the observed data consist of a sample of functions taken from some population, sampled on a discrete grid. Ramsay and Silverman's 1997 textbook sparked the development of this field, which has accelerated in the past 10 years to become one of the fastest growing areas of statistics, fueled by the growing number of applications yielding this type of data. One unique characteristic of FDA is the need to combine information both across and within functions, which Ramsay and Silverman called replication and regularization, respectively. This article will focus on functional regression, the area of FDA that has received the most attention in applications and methodological development. First will be an introduction to basis functions, key building blocks for regularization in functional regression methods, followed by an overview of functional regression methods, split into three types: [1] functional predictor regression (scalar-on-function), [2] functional response regression (function-on-scalar) and [3] function-on-function regression. For each, the role of replication and regularization will be discussed and the methodological development described in a roughly chronological manner, at times deviating from the historical timeline to group together similar methods. The primary focus is on modeling and methodology, highlighting the modeling structures that have been developed and the various regularization approaches employed. At the end is a brief discussion describing potential areas of future development in this field

    Tensor Networks for Dimensionality Reduction and Large-Scale Optimizations. Part 2 Applications and Future Perspectives

    Full text link
    Part 2 of this monograph builds on the introduction to tensor networks and their operations presented in Part 1. It focuses on tensor network models for super-compressed higher-order representation of data/parameters and related cost functions, while providing an outline of their applications in machine learning and data analytics. A particular emphasis is on the tensor train (TT) and Hierarchical Tucker (HT) decompositions, and their physically meaningful interpretations which reflect the scalability of the tensor network approach. Through a graphical approach, we also elucidate how, by virtue of the underlying low-rank tensor approximations and sophisticated contractions of core tensors, tensor networks have the ability to perform distributed computations on otherwise prohibitively large volumes of data/parameters, thereby alleviating or even eliminating the curse of dimensionality. The usefulness of this concept is illustrated over a number of applied areas, including generalized regression and classification (support tensor machines, canonical correlation analysis, higher order partial least squares), generalized eigenvalue decomposition, Riemannian optimization, and in the optimization of deep neural networks. Part 1 and Part 2 of this work can be used either as stand-alone separate texts, or indeed as a conjoint comprehensive review of the exciting field of low-rank tensor networks and tensor decompositions.Comment: 232 page

    Tensor Networks for Dimensionality Reduction and Large-Scale Optimizations. Part 2 Applications and Future Perspectives

    Full text link
    Part 2 of this monograph builds on the introduction to tensor networks and their operations presented in Part 1. It focuses on tensor network models for super-compressed higher-order representation of data/parameters and related cost functions, while providing an outline of their applications in machine learning and data analytics. A particular emphasis is on the tensor train (TT) and Hierarchical Tucker (HT) decompositions, and their physically meaningful interpretations which reflect the scalability of the tensor network approach. Through a graphical approach, we also elucidate how, by virtue of the underlying low-rank tensor approximations and sophisticated contractions of core tensors, tensor networks have the ability to perform distributed computations on otherwise prohibitively large volumes of data/parameters, thereby alleviating or even eliminating the curse of dimensionality. The usefulness of this concept is illustrated over a number of applied areas, including generalized regression and classification (support tensor machines, canonical correlation analysis, higher order partial least squares), generalized eigenvalue decomposition, Riemannian optimization, and in the optimization of deep neural networks. Part 1 and Part 2 of this work can be used either as stand-alone separate texts, or indeed as a conjoint comprehensive review of the exciting field of low-rank tensor networks and tensor decompositions.Comment: 232 page
    corecore