19 research outputs found

    Evolutionary Computation 2020

    Get PDF
    Intelligent optimization is based on the mechanism of computational intelligence to refine a suitable feature model, design an effective optimization algorithm, and then to obtain an optimal or satisfactory solution to a complex problem. Intelligent algorithms are key tools to ensure global optimization quality, fast optimization efficiency and robust optimization performance. Intelligent optimization algorithms have been studied by many researchers, leading to improvements in the performance of algorithms such as the evolutionary algorithm, whale optimization algorithm, differential evolution algorithm, and particle swarm optimization. Studies in this arena have also resulted in breakthroughs in solving complex problems including the green shop scheduling problem, the severe nonlinear problem in one-dimensional geodesic electromagnetic inversion, error and bug finding problem in software, the 0-1 backpack problem, traveler problem, and logistics distribution center siting problem. The editors are confident that this book can open a new avenue for further improvement and discoveries in the area of intelligent algorithms. The book is a valuable resource for researchers interested in understanding the principles and design of intelligent algorithms

    Topology Reconstruction of Dynamical Networks via Constrained Lyapunov Equations

    Get PDF
    The network structure (or topology) of a dynamical network is often unavailable or uncertain. Hence, we consider the problem of network reconstruction. Network reconstruction aims at inferring the topology of a dynamical network using measurements obtained from the network. In this technical note we define the notion of solvability of the network reconstruction problem. Subsequently, we provide necessary and sufficient conditions under which the network reconstruction problem is solvable. Finally, using constrained Lyapunov equations, we establish novel network reconstruction algorithms, applicable to general dynamical networks. We also provide specialized algorithms for specific network dynamics, such as the well-known consensus and adjacency dynamics.Comment: 8 page

    Improving the sustainability of coal SC in both developed and developing countries by incorporating extended exergy accounting and different carbon reduction policies

    Get PDF
    In the age of Industry 4.0 and global warming, it is inevitable for decision-makers to change the way they view the coal supply chain (SC). In nature, energy is the currency, and nature is the source of energy for humankind. Coal is one of the most important sources of energy which provides much-needed electricity, as well as steel and cement production. This manuscript-based PhD thesis examines the coal SC network as well as the four carbon reduction strategies and plans to develop a comprehensive model for sustainable design. Thus, the Extended Exergy Accounting (EEA) method is incorporated into a coal SC under economic order quantity (EOQ) and economic production quantity (EPQs) in an uncertain environment. Using a real case study in coal SC in Iran, four carbon reduction policies such as carbon tax (Chapter 5), carbon trade (Chapter 6), carbon cap (Chapter 7), and carbon offset (Chapter 8) are examined. Additionally, all carbon policies are compared for sustainable performance of coal SCs in some developed and developing countries (the USA, China, India, Germany, Canada, Australia, etc.) with the world's most significant coal consumption. The objective function of the four optimization models under each carbon policy is to minimize the total exergy (in Joules as opposed to Dollars/Euros) of the coal SC in each country. The models have been solved using three recent metaheuristic algorithms, including Ant lion optimizer (ALO), Lion optimization algorithm (LOA), and Whale optimization algorithm (WOA), as well as three popular ones, such as Genetic algorithm (GA), Ant colony optimization (ACO), and Simulated annealing (SA), are suggested to determine a near-optimal solution to an exergy fuzzy nonlinear integer-programming (EFNIP). Moreover, the proposed metaheuristic algorithms are validated by using an exact method (by GAMS software) in small-size test problems. Finally, through a sensitivity analysis, this dissertation compares the effects of applying different percentages of exergy parameters (capital, labor, and environmental remediation) to coal SC models in each country. Using this approach, we can determine the best carbon reduction policy and exergy percentage that leads to the most sustainable performance (the lowest total exergy per Joule). The findings of this study may enhance the related research of sustainability assessment of SC as well as assist coal enterprises in making logical and measurable decisions

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp

    Uncertainty in Artificial Intelligence: Proceedings of the Thirty-Fourth Conference

    Get PDF
    corecore