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Abstract 

 

Improving the sustainability of coal SC in both developed and developing countries by 

incorporating extended exergy accounting and different carbon reduction policies 

 

Ali Roozbeh Nia, Ph.D.  

Concordia University, 2023 

 

In the age of Industry 4.0 and global warming, it is inevitable for decision-makers to change the 

way they view the coal supply chain (SC). In nature, energy is the currency, and nature is the source 

of energy for humankind. Coal is one of the most important sources of energy which provides 

much-needed electricity, as well as steel and cement production. This manuscript-based PhD thesis 

examines the coal SC network as well as the four carbon reduction strategies and plans to develop 

a comprehensive model for sustainable design. Thus, the Extended Exergy Accounting (EEA) 

method is incorporated into a coal SC under economic order quantity (EOQ) and economic 

production quantity (EPQs) in an uncertain environment. Using a real case study in coal SC in 

Iran, four carbon reduction policies such as carbon tax (Chapter 5), carbon trade (Chapter 6), 

carbon cap (Chapter 7), and carbon offset (Chapter 8) are examined. Additionally, all carbon 

policies are compared for sustainable performance of coal SCs in some developed and developing 

countries (the USA, China, India, Germany, Canada, Australia, etc.) with the world's most 

significant coal consumption. The objective function of the four optimization models under each 

carbon policy is to minimize the total exergy (in Joules as opposed to Dollars/Euros) of the coal 

SC in each country. The models have been solved using three recent metaheuristic algorithms, 

including Ant lion optimizer (ALO), Lion optimization algorithm (LOA), and Whale optimization 

algorithm (WOA), as well as three popular ones, such as Genetic algorithm (GA), Ant colony 

optimization (ACO), and Simulated annealing (SA), are suggested to determine a near-optimal 

solution to an exergy fuzzy nonlinear integer-programming (EFNIP). Moreover, the proposed 

metaheuristic algorithms are validated by using an exact method (by GAMS software) in small-

size test problems. Finally, through a sensitivity analysis, this dissertation compares the effects of 

applying different percentages of exergy parameters (capital, labor, and environmental 

remediation) to coal SC models in each country. Using this approach, we can determine the best 

carbon reduction policy and exergy percentage that leads to the most sustainable performance (the 

lowest total exergy per Joule). The findings of this study may enhance the related research of 

sustainability assessment of SC as well as assist coal enterprises in making logical and measurable 

decisions.   
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CHAPTER 1. INTRODUCTION 

 

 

 

1.1. Energy market 

The energy market is a type of commodity market handling process specifically with the 

trade and provision of energy, which may refer to electricity, heat, and fuel products. Major 

commodities being natural gas and electricity while other commodities traded in the energy market 

are oil, coal, carbon emissions (greenhouse gases), nuclear power, solar energy, and wind energy. 

Energy markets are known as a fast-growing and complicated sector considering their significant 

role in the global economies, the necessity of this sector in power and gas supply, and financial 

concerns of energy (Mousavi et al. 2021).  

It is true that the energy market today tends to be maturing and unbalanced, characterized 

by increasing demand and fluctuating supply (Roozbeh Nia et al., 2021). There are tangible signs 

to verify that demand and price are not predetermined and can influence a broad collection of 

market influences and customer behaviors. For example, due to the difficulty in storing and 

transporting energy, current and future prices in energy are rarely linked. This is because energy 

purchased at current prices is difficult to store and sell later. While some scholars have focused on 

the direct issues, there are also unforeseen issues such as the economic environment, business 

events, and global politics (Su et al., 2021). In the last two decades, the global economy and energy 

market has witnessed several uncertainty-inducing events. Examples of such events include: the 

2007–2009 Global Financial Crisis, also known as the Great Recession; the escalating global trade 

disputes, especially the trade tensions between the United States and China that degenerated in 

2018 and 2019; the BREXIT vote and the subsequent negotiations between the United Kingdom 

and the European Union; the March 2020 oil price war between Russia and Saudi Arabia; the 

European sovereign debt crisis; the COVID-19 pandemic that crippled economic activities 

globally; and the ongoing Russia-Ukraine war that has led to the imposition of sanctions on Russia 

by many countries, especially European countries (Ogbuabor et al. 2023). As a result, many 

countries have re-evaluated their energy sources. The fact is that uncertainties in demand and 

energy consumption significantly affect the total supply chain (SC) cost as the penalty cost of 

unsatisfied demand increases (Priyan et al. 2022). In response to this issue, Zadeh (1965) proposed 

"fuzzy set theory (FST)," which translates "ill-defined" data into mathematical terms. 

The energy division is segregated into various sections, each with their own SC problems 

and challenges. The common five sub-sectors in the energy SC division are Oil & gas upstream, 

Oil & gas downstream, Chemicals & petrochemicals, Mining and Power & utilities. (Roozbeh Nia 

et al. 2021). Management of energy is critical for economic success and environmental security 

since energy is connected to many sectors such as industrial manufacture, agricultural production, 

access to water, education, health, population, life quality, etc., (Suganthi and Samuel, 2012). For 

an efficient management of energy, industry and governments must concurrently follow these three 

issues (S´anchez-Dur´an, Luque, and Barbancho, 2019): 

➢ Energy security (consistency of energy infrastructure, and capability of energy suppliers to 

fulfill present and upcoming demand),  
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➢ Energy equity (availability and affordability of energy supply for the population),  

➢ Environmental sustainability (energy productivity and the improvement of energy 

provided by renewable and other low-carbon sources). 

It is estimated that industrial sectors account for over 50% of global energy consumption 

(Safarian, 2023). Moreover, it is reported that the annual consumption of energy in the 

Organisation for Economic Co-operation and Development (OECD) countries have risen by 0.5%. 

In comparison, this amount for non-OECD countries has expanded by about 1%. Moreover, from 

2006 to 2030, energy utilization in the industrial section (non-OECD and OECD countries) grew 

by about 1.4% per annum (U.S. Energy Information, 2020).  

On the one hand, fossil fuel sources including coal, oil, and natural gas have been the main 

energy sources in energy production for a long time. While the share of natural gas has been 

increasing, the share of coal and oil has been gradually decreasing (British Petroleum-BP, 2022; 

Energy Information Administration-EIA, 2022). It is observed that fossil fuels provide more than 

80% of the total energy supply, while renewables account for only 20% (Zakari et al. 2021). On 

the other hand, renewable energy sources have been used in energy production since 1965. In this 

group, geothermal, biomass, and hydro are the leading sources whereas other renewable sources 

are wind and solar (Depren et al. 2022). 

Renewable energy, while undoubtedly a preferred source of energy, can replace fossil fuels 

but not in the short term. A full transition from fossil fuels to renewable, clean energy will not 

happen overnight. It is not an easy task for policymakers to restructure the existing energy 

production structure from fossil fuel sources to renewable sources because of environmental 

concerns. (BP, 2022; Oliveira and Moutinho, 2021). Fossil fuels are extraordinarily energy dense, 

and it is easy to generate energy from fossil fuels and — more importantly — to capture the energy 

produced during fossil fuel combustion. Fossil fuels are a stable and non-toxic energy source 

relative to most other proven energy sources. Additionally, fossil fuels are stable and non-toxic 

that is safe to use in public highways and thoroughfares as well as cargo ships to transport fossil 

fuels. Additionally, concerning providing renewable energy, for instance, each wind turbine needs 

260 tonnes of steel created from 170 tonnes of coking coal. Similarly, while no emissions come 

directly from an electric car, they cannot operate without power generated using fossil fuels like 

coal and natural gas that generate emissions. Therefore, the world still needs fossil fuels for 

utilization of renewable energy. 
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Fig.1.1. Coal consumption by region in 2021 

1.2. Coal SC 

Among fossil fuels, coal is a key fundamental energy source, and has a critical position in 

stabilizing national economies (Kang et al., 2014). Almost all coal is composed of dead plant 

material. As a result of accumulated plant material being buried under anoxic conditions for 

millions of years and being exposed to high temperatures and pressures over that time, coal was 

formed (Australian Government, 2022). Coal is the world’s greatest sole source of electrical 

energy (37%) and will continue the most significant supplier (22%) until 2040. Moreover, coal 

aids non-energies manufacturing such as cement, steel (70%), and aluminium production (60%), 

rare earth element extraction, coal-to-chemicals, carbon fibre manufacture, and industrial 

electrodes (World coal association). Typically, about 630kg of coal are demanded to produce one 

metric ton of steel (Corsa). To produce one ton of cement, approximately 200-450kg of coal is 

required and about 20% of hydrogen production occurs by coal-to-gas processes (World coal 

association). In Fig. 1.1, global coal consumption by region in 2021 is presented (Statistical 

Review of World Energy, 2021). About 75% of coal is found in only five countries (USA, Russia, 

Australia, China, and India), while the biggest coal consumers are China (54%), India (18%), USA 

(6%), Japan (3%), and South Africa (2.3%) (Phengsaart et al., 2023). According to Notes from 

Poland (2022), Poland ranks 9th in the world in coal consumption to generate 70% of electricity, 

by far the highest figure in Europe. In terms of production, China tops the list supplying about 

50% of global coal demand. Other key players in the global coal trade include India (9.9%), 

Indonesia (7.5%), USA (6.4%), Australia (5.9%), Russia (5.3%) and Poland (1.3%) (Phengsaart et 

al., 2023). 

Iran (Persia), in Southwest Asia with an area of 1.64 million square kilometres (0.63 million 

square miles), is the 17th-largest country in the world. Iran has an estimated population of 86.8 

million, making it the 17th-most populous country in the world, and the second largest in the 

Middle East. Iran is the fifth richest country in the world in terms of natural resources such as oil, 

gas, coal, wood, gold, silver, copper, uranium, crude iron, and phosphate. With one percent of the 

world's population, it has more than 7 percent of the world's mineral resources. In terms of energy, 
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6.3% 3.2%
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2.6%

79.7%
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Iran was the fifth-largest crude oil producer in OPEC in 2021 and the third-largest natural gas 

producer in the world in 2020. Iran is also the fourth richest country in the world in terms of fossil 

fuel reserves. It holds some of the world’s largest deposits of proved oil and natural gas reserves, 

ranking as the world’s third-largest oil and second-largest natural gas reserve holder in 2021. At 

the end of 2021, Iran accounted for 24% of oil reserves in the Middle East and 12% in the world 

(EIA, 2022). With these huge amounts of fossil fuel reserves, Iran is considered an "energy 

superpower". 

 

 

Fig. 1.2 Coal mines in Iran (Zadehkabir, 1992) 

 

With about 1.15 billion tons of reserves (ranking 29th in the world), Iranian coal mines can 

deliver up to three million tons of coal concentrate yearly (IEA, clean coal centre, 2020). The coal-

bearing deposits of Iran are spread throughout the central, northern and northwestern regions of 

the country, and occupy a vast area of some 100 thousand sq.km (Zadehkabir, 1992). Due to the 

presence of high oil and natural gas reserves in Iran, thermal coal mines are not considered 

properly. In contrast, steel manufacturers in Iran (and worldwide) have a considerable demand for 

coking coals because it is one of the essential unique inputs for steel production employing blast 

furnaces (Mohanty et al., 2019). Coking coal, also named metallurgical coal, is a type of non-

renewable resource, and it is mainly intended for making coke, a coal-based fuel. For instance, in 

2019, the coal utilisation in the steel sector was around 900 million tons of coal equivalent (Mtce) 

(26.2 exajoules [EJ]) or about 15% of the initial international coal demand (Iron and Steel 

https://www.worldometers.info/coal/coal-reserves-by-country/#iran
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Technology Roadmap). The Tabas Parvadeh Coal Company (TPCCO), located in Tabas city, is the 

biggest coal producer in Iran. Consistent with the statistics published by the Iranian Mines and 

Mining Industries Development and Renovation Organization (IMIDRO), TPCCO extracted 1.232 

million tons of coal from March 21, 2019, to January 20, 2020). Almost the majority of these 

amounts were bought by steel companies in Iran. 

 

1.3. Energy and environmental issues 

On the one hand, energy is essential for economic growth; however, energy consumption 

also negatively influences long-term economic progress by adversely affecting environmental 

quality and human welfare in the developing world. Developing countries strive to become more 

advanced, which increases their energy consumption (Chen et al. 2023). On the other hand, 

reducing energy utilization is crucial for environmental protection and developing sustainable 

resources (Jawad et al., 2018).  

An issue that could impact heavy industry SCs, such as steel, cement, and coal power 

plants, is that these industries form a massive percentage of carbon dioxide (CO2) emissions (Sun 

and Yang, 2021). Coal’s primary gas emissions, such as CO2, SO2, NOX, and smoke dust, can 

contribute to global warming, damaging the ozone layer and creating acid rain (Manisalidis et al., 

2020). Iron and steel manufacturing, for instance, emitted about 2,600 million tons of carbon in 

2019. This number is expected to rise to 2,700 million tons by 2050 if no sustainable development 

scenario is applied (U.S. Energy Information Administration (EIA), 2022). As society becomes 

more aware of the value of the environment, waste disposal (imperfect quality items) and carbon 

dioxide emissions must become leading indicators of coal SC assessment (Mehmood et al., 2015). 

According to the European Union's Joint Research Centre, China is the largest emitter of CO2 in 

the world, with 11680 Mt (11.680 GT) of carbon dioxide emissions in 2020. This is just over 32% 

of the world’s total 2020 emissions. The United States and India released the second- and third-

highest amount of carbon emissions at 4.535 and 2.411 GT (or roughly 12.6% and 6% of total 

global emissions). Moreover, Japan and Iran are the 5th and 6th CO2-emitting countries in the 

world. It should be mentioned that China, the USA, and India are also three of the most populous 

countries on Earth. In general, developed countries and major emerging markets lead in total 

carbon dioxide emissions. 

Various countries worldwide set impressive emission reduction goals for the future to 

tackle climate change and for sustainable development (Malladi and Sowlati, 2020; Sun and Yang, 

2021). In this effort, environmental administrations around the globe agree that pricing carbon 

emissions are the inexpensive and most successful means to achieve their emission reduction goals 

(Environment and Climate Change Canada, 2018). The primary carbon pricing strategies are 

carbon tax, carbon cap, carbon offset, and carbon trade (Malladi and Sowlati, 2020), whereas each 

carbon strategy has different costs and carbon reductions. The benefits of applying each carbon 

emission policy are not equal for companies involved in coal SC. While some carbon policies are 

more environmentally friendly, others are more economically beneficial.  
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1.4. Sustainable SC and Extended Exergy Accounting (EEA) method 

SCs are the operational sequence of interconnected procedures that manage, plan, and 

control goods and services between buyers and vendors (Roozbeh Nia et al., 2020). Besides the 

monetary costs of a coal SC, for instance, miners, washing factories, shippers, and power 

plants/steel producers, there are other charges known as “hidden costs” associated with 

environmental influences and emissions. Both costs should be considered in the entire operational 

costs of the coal SC (Phillips, 2008). Any manufacturing process that reduces “hidden costs,” for 

instance, environmental effects, is recognized as a sustainable procedure. Sustainable SC is the 

administration of material, information, and assets streams in addition to teamwork among 

corporations alongside the SC whereas choosing objectives from entirely three elements of 

sustainable progress, namely, environmental, economic and social, which are come from customer 

and shareholder necessities (Asadi and Sadjadi, 2017; Bui et al., 2020; Mangla et al., 2017). A 

sustainable SC is designated by a company’s ability to decrease the consumption of energy, 

materials, or water and to discover solutions that are further eco-efficient by enhancing the 

administration of their SCs. Sustainable SC management is the improved level of management 

through the integration of environmental and social issues in parallel to the economic issues (Jawad 

et al. 2018). More precisely, sustainable SC management must be expressed to fulfill the 

necessities of the existing generation of businesses without failing the capability of forthcoming 

generations (for example, Industry 4.0) to accomplish their needs (Jabbour et al., 2020).  

Moreover, emerging Industry 4.0 technologies and concerns about global warming show 

that decision-makers need to change their point of view in assessing the SC's performance 

(Roozbeh Nia et al., 2020). Shifting from traditional assessment methods to novel and more 

sustainable methods is one of the critical aspects of the fourth industrial revolution. Extended 

Exergy Accounting (EEA) is an innovative method that can help SCs become more sustainable 

(Aghbashlo et al., 2018). This method integrates the effect of non-energetic manufacturing features 

into the complete loss assessment (Jawad et al., 2018; Sciubba, 2011). EEA is the quantity of initial 

exergy (in Joules; J) aggregate consumed in the manufacture, operation, and discarding procedure 

of certain goods or services. In this thesis, exergy is considered as the maximum useful work that 

can be obtained when a system is brought into stability with its surroundings by means of a 

reversible process (Jawad et al. 2015). It means, Exergy is that portion of Energy available to do 

work (Robinett et al., 2006). The EEA delivers more information than an entirely financial method, 

which cannot support any suggestion about utilizing global resources (Jawad et al., 2016). The 

initial aggregate exergy includes material (M), and energy (E), corresponding exergy of labor (L), 

money (Cap.), and ecological (Env.) remediation costs, of which the last three components are 

counted as the cost correspondence of economic externality and ecological externality (Song et al., 

2019).  

The primary benefit of employing the EEA method in the production system is that this 

method states all outcomes in Joules (instead of dollars); therefore, acceptable assessments among 

different products can be achieved (Naderi et al., 2021b; Jawad et al., 2018). Moreover, energy (in 

terms of Joules) is essential to operate all manufacturing and SC processes (Jawad et al., 2015). 

The EEA has been widely accepted as a comprehensive metric that accounts for both physical and 

monetary costs associated with the consumption of primary resource. The EEA over traditional 

exergy analysis has the advantage of connecting the technical production process of specific 

produces as well as production processes with their surrounded system, such as social system and 

surrounding Environment (Song et al., 2019). As a result, the EEA refers to a broad “value 
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measure” for “environmental cost formation” in terms of investments and loses of the complex 

system of society-economy-environment comprising Material and Energy resources, Labor force 

(L), and Capital (Cap), in addition to Environmental remediation costs (Env.). The EEA gives more 

information than an entirely monetary method, which is unable to support any indication about the 

consumption of global resources (Jawad et al. 2016). Consequently, the companies can match the 

amount of the manufactured product with the needed resources to reach the preferred level of 

sustainability. Therefore, EEA can facilitate an understanding of the environmental costs from a 

comprehensive and multidimensional perspective, which bridges the gap about the ‘production of 

value’ and distinguishes most economics and biophysical based methods (Dai et al. 2012). 

Based on Sciubba (2011), the EEA method determines the exergy corresponding to Labour, 

Money, and Ecological remediation in goods or services by elements of “α” and “β” and some 

financial factors like GDP. These aspects are highly inspired by population, labor statistics, regular 

and international income, and normal workload. The stated aspects and exergy counterparts were 

examined and analyzed by Sciubba (2011) for some developed and developing countries. 

 

1.5. Research Gaps  

In earlier studies, as we will see in the literature review section, the meaning of SC costs 

was workflow-associated, as opposed to exergy costs. Although other studies have considered 

exergy costs, few have considered all aspects (labour, capital, and environmental remediation) 

simultaneously (like the EEA method) on a scale of SC. Additionally, no research has examined 

the EEA method and carbon reduction policies in SC. Carbon policy and sustainable SC have now 

recognized fields of research that consider many distinct aspects, such as resource consumption, 

source destinations, and waste-related hidden costs.  

Despite this, there are still several research gaps, including the following:  

G1. There is a lack of research that assesses a SC under any carbon reduction policy within 

an uncertain environment, for example, carbon price or customer demand.  

G2. It is rare to find studies that assess a SC in terms of Joules instead of dollars (as a 

traditional performance measures) and simultaneously evaluate all sustainability aspects, such as 

economic, labour, and environmental.  

G3. There is a lack of studies that employ the EEA method to assess a SC under any carbon 

reduction policy. As a matter of fact, no exergy analysis method in the literature takes into 

consideration a carbon emission policy.  

G4. There is a scarcity of studies that compare the sustainability of coal SCs between 

developed and developing countries under carbon policy with the EEA method.  

G5. There is a deficiency of investigation to find the best percentage of exergy components 

(social, economic, environmental aspects) in the EEA method for a SC.  

G6. In addition, some real-world issues are ignored, such as considering the inventory 

turnover ratio for SC models, defective quality products discarded into the environment, shipping 

charges on the whole of SC, vendor managed inventory (VMI) policy for coordinating SC, and the 

costs of loan/investment due to budget limitation.  
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1.6. Research Questions 

The functioning of the entire coal SC is one of the critical interests to concerned 

stakeholders (Mehmood et al., 2015). As society increasingly recognizes the value of the 

environment, waste disposal and carbon emission must become two of the leading indicators of 

coal SC assessment. Additionally, employing different carbon pricing strategies results in various 

costs and carbon reductions in SC. Moreover, as we will see in the literature review section, the 

number of publications employing the EEA method is insufficient. Additionally, to the best of the 

authors' knowledge, no study considers carbon reduction policies with the EEA method (or exergy 

analysis) at the same time in a coal SC. Therefore, we can present four main research questions as 

follows: 

Q1. Does incorporating a carbon reduction strategy with the EEA method in coal SC trigger 

financial benefits and sustainability advantages? 

Q2. The coal SC in developing countries is supposed to have the lowest cost overall; however, in 

terms of sustainability (social, economic, and environmental aspects) and considering Joules rather 

than monetary objectives, does this assumption remain accurate? 

Q3. Which country has the most sustainable coal SC in terms of Joules? 

Q4. What is the best percentage of exergy components (social, economic, environmental 

characteristics) to achieve the most significant saving wherever coal SCs are working? 

 

1.7. Research contributions 

This study aims to extend Jawad et al. (2016) and Naderi et al. (2021a) into a multi-product, 

multi-limitation EOQ/EPQ model with backorder for a coal SC in Iran under an uncertain 

environment. A VMI contract is used between a single supplier and multiple buyers to coordinate 

a coal SC. By utilizing the EEA method and Joules as a unit of inventory cost, we can estimate the 

total exergy of coal SC. Four famous carbon reduction policies (carbon cap, tax, trade, and offset) 

are employed to compare the model's performance as a sustainability measure and restrict the 

produced carbon emissions of SC enterprises. To minimize the fuzzy total exergy of coal SC, some 

recent metaheuristic algorithms are applied to obtain a near-optimal solution to the exergy fuzzy 

nonlinear integer programming (EFNIP). In addition, some numerical examples, including an 

actual case study in a coal SC in Iran, were used to demonstrate the usefulness of the proposed 

models. Additionally, the results of the metaheuristic algorithms are compared with the results of 

the exact method (GAMS). In order to gain a deeper insight into the sustainability of coal SC in 

various developed and developing countries, a sensitivity analysis with changing the percentages 

of various exergy parameters (capital, labour, and environmental remediation) under each carbon 

policy for each country has been performed. We are looking for the optimal balance point (financial 

and sustainable) in terms of total exergy for each country's coal facilities. This study contributes 

the following to the literature: 

➢ Improving the sustainability of coal SCs in terms of Joules (total exergy rather than 

traditional monetary objectives) in developed and developing countries under different 

carbon policies and the uncertain environment by employing the EEA method. 
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➢ Comparing the sustainability of coal SC in different countries to determine which 

country has the most sustainable coal SC in terms of Joules. 

➢ Finding the best value of exergy components (social, economic, environmental 

characteristics) for coal SC in both developed and developing countries which creates 

the highest sustainability.  

 

The remainder of this manuscript-based thesis is structured as follows. The method of 

reviewing research works of the past two decades is described in Chapter 2. Moreover, in Chapters 

3 and 4 (two published papers), a comprehensive literature review of past two decades in 

“Management of Sustainable Supply Chain and Industry 4.0” and “Industry 4.0 and demand 

forecasting of the energy supply chain” are presented. After that, improving the sustainability of 

coal SC in both developed and developing countries by incorporating extended exergy accounting 

and carbon tax policy (in Chapter 5-Third published paper) and carbon trade policy (in Chapter 6- 

Fourth published paper) are stated. Additional results for carbon cap policy and carbon offset 

policy are presented in Chapters 7 and 8, respectively. Finally, conclusions and potential studies 

are offered in Chapter 9. 
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CHAPTER 2. LITERATURE REVIEW 

 

 

In this chapter, the research works of the past two decades is reviewed based on the 

arrangement. Moreover, a comprehensive literature review will be presented in Chapters 3 and 4 

by two journal publications. 

 

2.1 Method of reviewing 

A comprehensive online exploration of related research works in coal SC is presented here. 

This exploration aims to gather, classify, and synthesize current exergy analysis and carbon 

reduction policies in SC. Thomson Reuter's Web of Science is used to review the literature for 

2000-2022. We attempted to sort publications by reviewing their titles, abstracts, and texts in the 

absence of precise keywords. Following is an overview of the general review methodology: 

Step 1- Finding the sources (online databases) 

Step 2- Searching key words 

Step 3- Developing a taxonomy and analysis based on journal papers, conference 

papers, books, and theses. 

Step 4- Identifying research with implications and issues related to exergy, 

sustainability, supply chain, coal, and carbon policies. 

Step 5- Presenting survey outcomes. 

Our initial search strategy was to use keywords such as "Exergy" in Thomson Reuter's Web 

of Science's "TOPIC" search field. More than 20111 articles were found to be unrelated to our 

objectives after investigation. Our search was refined to include the keywords of "Exergy" and 

"Supply chain" in the "TOPIC" field, and we obtained 125 articles. There were nine publications 

by adding "Coal" to the previous keywords while adding "Carbon" resulted in only two 

publications. In order to refine the search more precisely, we substituted "Extended Exergy 

Accounting" with "Exergy," along with "Supply chain," and we found only seven publications. 

Furthermore, entering "Carbon policy" or "Coal" as keywords does not yield results. Table 2.1 

displays all search results. 

 

Table 2.1. keywords search for exergy publications 

Keywords (2000-2022) Number 

Exergy (Topic) 20111 

Exergy (Topic) AND supply chain (Topic) 125 

Exergy (Topic) AND supply chain (Topic) AND Coal (Topic) 9 

Exergy (Topic) AND supply chain (Topic) AND Coal (Topic) AND Carbon (Topic) 2 

Exergy (Topic) AND supply chain (Topic) AND Coal (Topic) AND Carbon (Topic) 

AND sustainable OR sustainability (Topic) 
2 
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Exergy (Topic) AND supply chain (Topic) AND Coal (Topic) AND Carbon policy 

(Topic) AND sustainable OR sustainability (Topic) 
1 

Extended Exergy Accounting (Topic) 138 

Extended Exergy Accounting (Topic) AND supply chain (Topic) 7 

Extended Exergy Accounting (Topic) AND supply chain (Topic) AND Coal (Topic) 0 

Extended Exergy Accounting (Topic) AND supply chain (Topic) AND Carbon 

(Topic) 
2 

Extended Exergy Accounting (Topic) AND supply chain (Topic) AND carbon policy 

(Topic) 
0 

 

We divided the keywords into two sections since no publication considers all keywords. 

Thus, we conducted a second search with "Carbon policy," "Supply chain," and "Coal," resulting 

in 78 publications, whereas adding "Sustainability" or "Sustainable" to them will decrease the 

numbers to 30. We further refined our search using specific carbon policy keywords such as 

"carbon tax," "carbon trade," "carbon cap," and "carbon offset." Table 2.2 shows all the results in 

detail. 

 

Table 2.2. keywords search for carbon policies publications 

Keywords (2000-2022) Number 

Carbon (Topic) AND supply chain (Topic) 5412 

Carbon (Topic) AND Coal (Topic) AND Supply chain (Topic) 240 

Carbon (Topic) AND Coal (Topic) AND Supply chain (Topic) AND sustainable OR 

sustainability (Topic) 
73 

Carbon policy (Topic) AND Coal (Topic) AND Supply chain (Topic) 78 

Carbon policy (Topic) AND Coal (Topic) AND Supply chain (Topic) AND sustainable 

OR sustainability (Topic) 
30 

Carbon cap (Topic) AND Coal (Topic) AND Supply chain (Topic) 8 

Carbon cap (Topic) AND Coal (Topic) AND Supply chain (Topic) AND sustainable OR 

sustainability (Topic) 
5 

Carbon tax (Topic) AND Coal (Topic) AND Supply chain (Topic) 10 

Carbon tax (Topic) AND Coal (Topic) AND Supply chain (Topic) AND sustainable OR 

sustainability (Topic) 
4 

Carbon trade (Topic) AND Coal (Topic) AND Supply chain (Topic) 59 

Carbon trade (Topic) AND Coal (Topic) AND Supply chain (Topic) AND sustainable 

OR sustainability (Topic) 
11 

Carbon offset (Topic) AND Coal (Topic) AND Supply chain (Topic) 12 

Carbon offset (Topic) AND Coal (Topic) AND Supply chain (Topic) AND sustainable 

OR sustainability (Topic) 
4 

 

2.2. Literature review 

A complete literature review of management of sustainable SC is done in Chapter 3. 

Moreover, Chapter 4 presents a comprehensive and up-to date review of publications related to 

forecasting approaches of energy demand in the last two decades between 2000 and 2020 related 

to the energy SC (coal, oil, etc.). Furthermore, Chapters 5 and 6 (subsection 5.2 and 6.2) present a 

complete review of research works related to exergy analysis and carbon reduction policies. 
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CHAPTER 3. PAPER ONE - MANAGEMENT OF SUSTAINABLE SUPPLY CHAIN AND 

INDUSTRY 4.0: A LITERATURE REVIEW 

 

Forewords 

After reconsidering the method of literature review in Chapter 2, in this Chapter and Chapter 4 

(two published papers), a comprehensive literature review of past two decades in “Management of 

Sustainable Supply Chain and Industry 4.0” and “Industry 4.0 and demand forecasting of the 

energy supply chain” are presented. Moreover, in subsection 5.2 and 6.2 (Chapters 5 and 6) a 

complete review of research works related to exergy analysis and carbon reduction policies are 

presented.  

 

Abstract  

This review aims to investigate the advanced collected works on sustainability and Industry 

4.0 in the supply chain (SC)management from both academic and industrial standpoints. Hence, a 

review of the literature from 2010 to 2018 has been presented, knowledge gaps and all areas of 

application in the assumed investigation topic are highlighted, and the key features of the former 

study are associated. Furthermore, a dynamic framework for this topic is proposed consistent with 

the benefits, drawbacks, and boundaries of current research works, and the term “Sustainable 

Supply Chain 4.0” (SSC 4.0) is proposed. The suggested dynamic framework aims to distinguish 

the characteristics, elements and technology enablers, achievement aspects and challenges for 

evolving an SSC 4.0. Therefore, the current study and dynamic framework can provide awareness 

to academics and industrial specialists in their application of SSC 4.0. 

 

Keywords Supply chain (SC); Sustainable supply chain 4.0 (SSC 4.0); Literature review; Industry 

4.0; Sustainability 

 

3.1. Introduction 

Traditional supply chains (SCs) comprise tangible facilities distributed with respect to 

geography support, create, and sustain shipping connections among them. SCs are explained in the 

functional chain of interrelated actions that include the direction, scheduling, and checking of 

services and goods among clients and providers (see Fig. 3.1). These managerial configurations 

are no more independent as a result of industrial progress (Büyüközkan and Göçer 2018). There 

are some factors which influence SC management such as performance, technology, environmental 

policy, economics, SC collaboration, competition, strategy, customer engagement, real-time 

information, procurement, and zero errors (Manavalan and Jayakrishna 2019). 

On one hand, several companies take on uncertainty because of an increasing marketplace 

demand for different goods and services at the end of the twentieth century. On the other hand, 

economically beneficial types of manufacture cause durable influences on the environment and 

civilization (Rajeev et al. 2017). Therefore, the combination of economic with social and 

environmental concerns, or sustainability, must be a shared interest among researchers and 
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practitioners (Brandenburg et al. 2014; Seuring and Müller 2008). Progressively, environmental 

problems were used as a basis for strategic transformation (Aragón-Correa et al. 2008). Recently, 

environmental aspects attract many researchers in the literature (Roome, and Hinnels 1993; Noci 

and Verganti 1999; Schiederig et al. 2012). In addition, eco-innovation methods such as life cycle 

valuations, cleaner manufacture, and eco-design are employed in many companies (Huber 2008; 

Van Hemel and Cramer 2012). 

 

 

Fig. 3.1. An illustration of a traditional supply chain (Roozbeh Nia et al. 2014) 

 

The management of sustainable supply chains (SSC) is described by Seuring and Müller 

(2008) as “the administration of substance, information and assets streams in addition to teamwork 

among corporations alongside the SC whereas choosing objectives from entirely three elements of 

sustainable progress, namely, environmental, economic and social, which are come from client and 

shareholder necessities”. For about 20 years, the issue of SSC has been given significant attention 

by researchers and specialists (Craig and Easton 2011; Beske et al. 2014; Brandenburg et al. 2014; 

Ghadimi et al. 2016, 2019; Seuring and Müller 2008; Seuring 2013). SSC management is 

fundamentally a part of green supply chain management (GSC), that is, the combination of 

ecological philosophy in the management of SC (Srivastava 2007) which encompasses 

environmental, economic, and social interests (Yan et al. 2016). An SSC is designated by a 

company’s ability to decrease the consumption of energy, substances, or water and to discover 

solutions that are further eco-efficient by enhancing the administration of their SCs (Lopes de 

Sousa Jabbour et al. 2015). 

Nowadays, most initiatives are undergoing digitization Industry 4.0. The emphasis of the 

digital revolution is placed mostly on manufacture; consequently, the names for instance “Smart 

Factory” or “Factory of the Future” are employed and compared with this idea (Kayikci 2018). In 

2011, the German association “Industrie 4.0” invented the term Industry 4.0. The association is 

made of managers, academics, and legislators, who suggested a fourth industrial revolution is 

created on the digitization of organization procedures (Kagermann et al. 2011). In fact, the key 

impression motivating Industry 4.0 is to guide companies by implementing digital technologies 

that know how to assist in generating links among their process, provide systems, manufacturing 

capabilities, finished goods, and clients with the purpose of collection, and distribute real-time 

functioning and marketplace information with stakeholders (Ardito et al. 2019). The digitization 

in SCs is established based on six features: connectivity, cooperation, integration, adoption, 

cognitive improvement, and autonomous control (Kayikci 2018). Furthermore, for Industry 4.0, 

the empowering technologies include additive manufacturing, advanced manufacturing, 

augmented reality, cloud computing, simulation, industrial IOT, big data analytics, cybersecurity, 

and customer profiling (Ardito et al. 2019). 
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Industry 4.0 has been demonstrated to be successful in offering several business advantages 

containing operational optimization and value chain optimization (Strange and Zucchella 2017). 

Accordingly, Industry 4.0 is widely adopted by German companies, for instance, Volkswagen, 

Daimler, and BMW. In addition, the Government of China has likewise presented the “Made in 

China 2025” strategy which focuses on enhancing manufacturing through speeding up 

digitalization in China. Similar plans have also been started by the USA, French, UK, Japanese, 

and Singaporean governments (Bag et al. 2018). More precisely, the objective of Industry 4.0 is to 

improve the digitization and, therefore, the combination of business procedures mutually 

horizontally (that is through functional parts) and vertically (i.e., through the whole value chain, 

from goods procuring to production, delivery, and customer service). Along these lines, entire data-

concerning processes, inbound/outbound logistics, marketplace requirements, and product–

customer relations will be accessible in real time. Consequently, digital initiatives will operate 

jointly with clients and providers in an industrial digital ecosystem that permits them to superior 

handle the line among SC management and promotion purposes (Schrauf and Berttram 2016; 

Ranganathan et al. 2011). 

There exist several explanations for taking into consideration the digitalization influences 

in SCs and the significance of SC in Industry 4.0. The main potentials of this idea allow real-time 

definite from providers to clients, small orders quantity, various goods changes, linked 

decentralized procedures, and autonomous administration. These advantages cannot be attained 

just by manufacture besides the whole of SC, though. Furthermore, SCs must achieve a bigger 

foresight to accomplish the necessities of Industry 4.0 as sustainable and as probable in expressions 

of using suitable technologies and improving horizontal and vertical combination with the SC 

associates (Kayikci 2018). SC with Industry 4.0 is transformed into a value-driven, smart, effective 

procedure to produce novel outlines of income and commercial value for administrations and to 

influence innovative methods with novel technological and systematic procedures as well. SC 

within the Industry 4.0 is not about if products and facilities are physical or digital, it is about the 

manner in what way SC procedures are administered by an extensive diversity of innovative 

technologies, such as “Big Data” (BD), “Augmented Reality” (AR), “Cloud Computing” (CC), 

“Sensor Technology” (ST), “Robotics” (R), “Omni Channel” (OC), “Internet of Things” (IOT), 

“Unmanned Aerial Vehicle” (UAV), “Self-Driving Vehicles” (SDV), “Nanotechnology” (N), and 

“3D Printing” (3DP), but a few to mention (Büyüközkan and Göçer 2018). 

This survey is prepared in this way: the next section reviews and classifies associated 

publications, in addition to clarifying the methodology assumed in this study. Reviewing the idea 

of SSC and Industry 4.0, its aspects and elements to shape a dynamic conceptual framework that 

is resulting from the current literature are represented in Sect. 3.3. In Sect. 3.4, the benefits and 

challenges of Industry 4.0 for SCs are described. A dynamic framework for SSC and Industry 4.0 

is proposed in Sect. 3.5. Finally, the article’s concluding remarks, the limitations, as well as 

possible directions for SSC and Industry 4.0, are presented in Sect. 3.6. 

 

3.2. Review of Literature on SSC and Industry 4.0 

This review of earlier research works is built on arrangement procedure which offers in 

what way the literature is considered to be a foundation for the abstract framework. Primarily, the 

arrangement used in this study is described and afterward, the procedure of the literature review is 

presented. 
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3.2.1. Method of Reviewing 

Related research works are detected with the help of a comprehensive online exploration, 

besides the aim to gather, classify, and synthesize current SSC and Industry 4.0 knowledge. 

Recognized articles span some sorts of connected fields comprising management, marketing, 

operations management, industrial engineering, management science, and SC management. 

Owing to the deficiency of exact keywords describing the issue, we put a considerable attempt to 

sort papers by studying their titles, abstracts, and texts. Typically, this stage can be accomplished 

through aiming noticeable journals, books, and conferences. It is not true for SSC and Industry 4.0 

because this new topic has appeared only a couple of years ago and associated publication 

networks are not dispersed yet. The literature is reviewed for the period 2010–2018 by exploring 

the main databases of scientific and common search engines such as Thomson Reuter’s Web of 

Science, Taylor & Francis online, Elsevier’s Scopus, IEEE Explore, Emerald Insight, ProQuest 

(ABI/INFORM), and Science Direct (Elsevier). We examine and organize the related research 

works to meet a vision of SSC and Industry 4.0. The overall review methodology for SSC and 

Industry 4.0 papers is as follows: 

Phase1: Identifying the sources (online databases) 

Phase2: Search keywords 

Phase3: Taxonomy, and analysis based on journal papers, conference papers, 

books, theses, and so on. 

Phase4: Implications and issues include SC, sustainability, Industry 4.0, features, 

component and technologies, challenges and successes factors. 

Phase5: Survey outcomes: a framework for the development and identification of 

future work. 

 

3.2.2. Academic Literature on SSC and Industry 4.0 

Industry 4.0 has commenced obtaining considerable concern from companies throughout 

the world as it makes greater advantages to many businesses. Our review on Industry 4.0 and SSC 

literature signifies a gap between the theory and practice in SCs. At present, there exist a restricted 

number of surveys on Industry 4.0 and SSC. There is also SC focused articles which discuss 

Industry 4.0 and SSC in expressions of their functions. Based on literature review, 55 areas of 

application for SSC and Industry 4.0 and their Nomenclature are determined in Appendix Table 

3.10. The existing research papers and conference papers related to Industry 4.0 and SSC along 

with their application areas, method, and objective are classified in detail in Appendix Tables 3.11 

and 3.12, respectively. In addition, with the consideration of the highest number of citations, top-

ten research-papers and top-three conference papers in SSC and Industry 4.0 are presented in 

Tables 3.1 and 3.2, respectively. 

Recently, Lopes de Sousa Jabbour et al. (2018) recommended a master plan to improve the 

function of the circular economy (CE) notions in businesses by Industry 4.0 methodologies. They 

contributed to the literature through presentation on what way diverse Industry 4.0 tools could 

support CE approaches, and to organizations by directing those tools as a foundation for the 
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policymaking of sustainable operations’ management. The key outcomes of their research were as 

follows: (a) an argument on the equally advantageous connection between Industry 4.0 and the 

CE; (b) a detailed recognition of the possible influences of smart manufacture equipment to the 

ReSOLVE model of CE business models; (c) an investigation outline for research on the grouping 

of CE principles and Industry 4.0 based on the best-related administration principles. 
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Table 3.1. Top 10 Research papers with the highest number of citations in SSC and Industry 4.0. 

Citations Year Authors Objective 
Area of 

application 
Publisher 

203 2012 Davis et al. Introducing Smart manufacturing, manufacturing intelligence, and demand-

dynamic performance 

Networked 

information-based 

technologies 

Elsevier 

170 2014 Gebler et al. This study represents the first comprehensive assessment of 3DP from a global 

sustainability perspective 

3D technologies Elsevier 

56 2014 Holmström and Partanen The purpose of this paper is to explore the forms that combinations of digital 

manufacturing, logistics, and equipment use are likely to take and how these 

novel combinations may affect the relationship among logistics service 

providers (LSPs), users and manufacturers of equipment. 

Manufacturing and 

logistics 

Emerald 

53 2013 Baumers et al. This article investigated whether the adoption of additive manufacturing (AM) 

technology can be used to reach transparency in terms of energy and financial 

inputs to manufacturing operations. 

Manufacturing and 

logistics 

Yale University 

46 2015 Yue et al. This paper described the development and character of ICPS. Then, it 

presented a service-oriented ICPS model. 

Information 

communication 

technology (ICT) 

Elsevier 

31 2016 Lom et al. This paper proposed the conjunction of the Smart City Initiative and the 

concept of Industry 4.0. 

Smart City IEEE 

24 2015 Prause The paper addressed the research question of how new and sustainable 

business models and structures for Industry 4.0 might look like and in which 

direction existing traditional business concepts have to be developed to deploy 

a strong business impact of Industry 4.0. 

E-Residency Elsevier 

24 2017 Prause and Atari The paper investigated the relationship between networking, organizational 

development, structural frame conditions and sustainability in the context of 

Industry 4.0. 

Manufacturing and 

logistics 

VsI 

Entrepreneurship 

and 

Sustainability 

Center 

24 2014 Brofman Epelbaum and 

Martinez 

This paper presented a theoretical framework grounded on the Resource-

Based View (RBV) of the firm to determine the strategic impacts of the 

technological evolution of food traceability systems. 

Food industry Elsevier 

19 2018 Lopes de Sousa Jabbour 

et al. 

The paper extended the state-of-the-art literature by proposing a pioneering 

roadmap to enhance the application of CE principles in organizations by 

means of Industry 4.0 approaches. 

Circular economy 

(CE) 

Springer 
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Table 3.2. Top 3 Conference papers with the highest number of Citations in SSC and Industry 4.0. 

Citations Year Authors Objective 
Area of 

application 
Publisher 

8 2016 Ginige et al. Developing a notion of context-specific actionable information which enables 

the user to act with the least amount of further processing. 

Agriculture sector IEEE 

4 2017 Tan et al. Discussing how organizations can investigate and implement techniques for 

their modern enterprise with a focus on how advanced big data tools can be 

applied to Quality Analytics for monitoring and improving quality in the 

electronics industry. 

Electronic industry IEEE 

2 2010 Price et al. Presenting a project structure which has been designed to address these issues 

using at its core, a digital framework for the creation and management of 

performance parameters related to the lifecycle performance of thermoplastic 

composite structures. 

Thermoplastic 

composite 

structures 

Mark A Price 
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Ginige et al. (2016) established a concept of environmental-precise feasible information 

which allows the customer to perform with the smallest quantity and more administration. 

User-centered agriculture ontology was established to change distributed quasi-static 

information to feasible information. They used “empowerment theory” to make empowerment-

oriented farming ways to encourage agriculturalists to act on this information and collected the 

transaction data to create situational information. This method helps agriculturalists for 

producing various kinds of yields to meet sustainable agriculture production by means of 

harvest change. 

 

3.2.3. Published Books on Industry 4.0 and SSC 

To the finest of our information, there exist six books that focused on Industry 4.0 and 

SSC (see Table 3.3). Recently, Abdi et al. (2018) developed manufacturing ideas and further 

functions than tangible manufacture for a broader industrial value chain integrating external 

shareholders that include providers of raw matters and pieces, clients, manufacturing service 

suppliers, cooperating manufacturing companies, and environmental organizations. They 

highlighted the two advanced concepts of reconfigurable manufacturing systems (RMS) and 

Industry 4.0 together with their joint progress. They presented disputes of mass-customization 

and active variations in the SC background by concentrating on advancing novel methods 

connected to integrity, scalability, and re-configurability at the system level and engineering 

readiness in names of the practical, and commercial feasibility of RMS. The authors applied 

decision support systems (DSS) for the collection of families’ product and optimizing product-

process configuration. Their suggested models were explained across real case studies in 

applicable manufacturing firms. 

 

3.2.4. Published Book Chapter on Industry 4.0 and SSC 

Authors recognized seven book chapters on the issue of Industry 4.0 and SSC which 

are presented in Table 3.4. Recently, Jirsak (2018) examined the influence of Industry 4.0 

revolutions on SC management. The writer offered the results achieved in the investigation of 

recent essential variations and presented a contrast with a preceding conversion of the 

paradigm. This chapter suggested a revolution that the business SC system has to go over to 

re-establish its competitive situation in an era of Industry 4.0. In addition, the chapter offered 

case study of 3PL (demand planning, production planning, and supply planning) insight about 

Industry 4.0 founded on detailed meetings performed among the major global 3PLs operating 

in the Czech Republic. 
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Table 3.3. Literature Review of SSC and Industry 4.0 (Books). 

Year Authors Objective Method Area of application 

2012 Goodship and Stevels Drawing lessons for policy and practice from all over the world Review waste electrical and 

electronic equipment 

(WEEE) 

2014 Xu Describing the setup of digital enterprises and how to manage them, focusing primarily on 

the important knowledge and essential understanding of digital enterprise management 

required by managers and decision makers in organizations. 

Modeling Digital enterprises 

2015 Fiorini and Lin Providing an overview of current topics in intelligent and green transportation on the land, 

sea and in flight, with contributions from an international team of leading experts. 

Review Intelligent Transport 

Systems (ITS) 

2016 Kiritsis This book not only explains in detail what LEAP is and how to use it but also provides 

LEAP case studies from sectors such as auto manufacturing and offshore engineering. 

Case study Manufacturing and 

logistics 

2017 Handfield and Linton Addressing the changes that have occurred and are still unfolding at various organizations 

that are involved in building real-time SCs. 

Review Global economy 

2018 Abdi et al. 

Developing manufacturing concepts and applications beyond physical production and 

towards a wider manufacturing value chain incorporating external stakeholders that include 

suppliers of raw materials and parts, customers, collaborating manufacturing companies, 

manufacturing service providers, and environmental organizations. 

Modeling 

Reconfigurable 

Manufacturing 

Systems (RMS) 

 

Table 3.4. Literature Review of sustainable SC and Industry 4.0 (Book chapters). 

Year Authors Objective Method Area of application 

2010 Ndou and Sadguy Suggesting that digital marketplaces could provide a viable model for SME networking; 

however, the successful path toward networking requires harmonization of the digital 

marketplace business model with SC characteristics. 

Modeling SME networking 

2013 Montreuil et al. Providing insights on the foundations of the Physical Internet that has been introduced as a 

solution to the Global Logistics Sustainability Grand Challenge of improving by an order of 

magnitude the economic, environmental and social efficiency and sustainability of the way 

physical objects are moved, stored, realized, supplied and used across the world. 

Modeling Physical Internet 

2013 Kückelhaus et al. Addressing how visibility solutions based on Digital Product Memories (DPMs) developed 

in the SemProM project can be demonstrated in the logistics domain to guarantee the carbon 

offset of transport and integrity control within SCs 

Modeling SemProM project 

2015 Kagermann Discussing the impact, challenges, and opportunities of digitization and concludes with 

examples of recommended policy action. 

Modeling Digitization 

2015 Kamarulzaman and Eglese Providing relevant e-procurement solutions with respect to the MPOI and will provide 

comprehensive purchasing activities of different types of products along the SC through e-

procurement technologies. 

Case study E-procurement 

technologies 
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2017 Meera et al. Proposing a framework for rice extension strategies that integrate knowledge, technology, 

and markets which helped to provide better, faster, and cheaper solutions to reach out to rice 

farmers and integrate knowledge, technologies, and markets. 

Modeling Agriculture sector 

2017 Kasemsap Introducing the roles of Lean Supply Chain Management (SCM) strategies and green SCM 

strategies in the global business environments 

Modeling Global economy 

2018 Jirsak Presenting an impact of Industry 4.0 transformation on logistics and SC management. Case study Global 3PLs operating 
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Fig. 3.2. Types of publications for SSC and Industry 4.0. 

 

 

Fig. 3.3. The number of publications for SSC and Industry 4.0 per year. 
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Fig. 3.4. The percentage of publications for SSC and Industry 4.0 per year. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3.5. The type of access for publications in SSC and Industry 4.0. 
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Fig. 3.6. The areas of application for SSC and Industry 4.0. 

 

3.2.5. Analysis of Industry 4.0 and SSC Literature 

It is vital to emphasize that the recognition of 83 research works motivated the outcomes 

of this review, which are informed in Sects. 3.2.2, 3.2.3 and 3.2.4. (Also see the appendix for 

detailed information.) The keywords were not prearranged ahead of the search; however, they 

have progressively appeared through the wide-ranging reading procedure that happens during 

the preparation of this paper. The last list of keywords is as follows: Sustain, Sustainable, 

Sustainability, Green, Industry 4.0, Smart factory, Digital, Supply chain, and Logistic. In a few 

conditions, the research under review will still be used to explain the outcomes and meet an 

improved comprehension of the subject. Figure 3.2 demonstrates the important results by 

offering a complete sum up in phrases of types of SSC and Industry 4.0 publications. The 

highest amount of publication was in the form of “research article” with about 45 papers, and 

the second highest level belongs to “conference paper” with 15 papers. “Book chapter” and 

“Books” were at the lowest level with 7 and 6 papers, respectively. In addition, the trend for a 

number of related publications per year from 2010 to 2018 is presented in Fig. 3.3 and the 

percentage of publications per year is demonstrated in a pie chart in Fig. 3.4.With regard to 

these figures, the number of publications has a small fluctuation between 2010 and 2016 (about 

2–7 papers or 2–9%), while the trend increased dramatically in 2017 to hit the highest point in 

2018 with 26 papers (or 31%) out of 83. Moreover, in total, about 17 papers out of 83 were 

open access and 66 papers have access as an abstract only (see Fig. 3.5). It has been mentioned 

that we find out about 55 areas of application in SSC and Industry 4.0 literature (see Appendix 

Table 3.10). Furthermore, we recognized top-five areas of application in the literature (see 

Table 3.5 and Fig. 3.6) that include manufacturing and logistics, food industry, circular 

economy, agriculture sector, and clothing industry with 8, 6, 5, 4, and 3 papers, respectively. 

We agreed to create Tables 3.1, 3.2, 3.3 and 3.4 with the author’s names and publication 

year. Listed in the rows, the objective explains the aim of the research works, the method 

indicates the approach, which is used in the research, the application identifies the area of 

papers concentrations; citations demonstrated the number of citations related to the paper while 
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the publisher indicated the name of the institute which publishes the paper. These features have 

been designated based on authors’ proficiency in the subject and the applicable investigation. 

When the relevant works on Industry 4.0 and SSC are combined and studied completely, they 

show reliable benefits to the readers. These employed benefits explain the master plan for 

creating the Industry 4.0 and SSC framework in the succeeding sections created on the 

summary of the content, scope, and outcomes of designated literature. Based on the research 

in this paper classification, next sections use and recognize the main restrictions and projections 

in Industry 4.0 and SSC, encapsulate the previous investigation to detect knowledge gaps 

through offering benefits, drawbacks, and boundaries of specific approaches and present a 

development dynamic framework as a master plan for upcoming study. 

 

Table 3.5. Top 5 areas of application in the literature of SSC and Industry 4.0. 

Number 

of papers 

Area of 

application 
Source 

8 
Manufacturing 

and logistics 

Baumers et al. (2013); Blümel (2013); Holmström and Partanen (2014); 

Kiritsis (2016); Prause and Atari (2017); De Carolis et al. (2017); Luthra and 

Mangla (2018); Forkel et al. (2018) 

6 Food industry 
Brofman Epelbaum and Martinez (2014); Clear et al. (2013); Pilinkienė et al. 

(2017); Zhong et al. (2017); Todorovic et al. (2018); Gružauskas et al. (2018) 

5 
Circular 

economy (CE) 

Jensen and Remmen (2017); Lopes de Sousa Jabbour et al. (2018); Garcia-

Muiña et al. (2018); Tseng et al. (2018); Bressanelli et al. (2018) 

4 
Agriculture 

sector 

Ginige et al. (2016); Kalogianni et al. (2017); Meera et al. (2017); Bucci et al. 

(2018) 

3 
Clothing 

industry 

Papahristou and Bilalis (2016); Pal and Sandberg (2017); Papahristou and 

Bilalis (2017) 

 

 

3.3. Enabling Technologies and Key Elements of Industry 4.0 for SSC 

Several characteristics are not presented in traditional SC while they are required in 

today’s and tomorrow’s commercial environment. The conventional SC has a chain of 

disconnected stages, mostly. Converting a conventional SC into Industry 4.0 and SSC breaks 

down these walls with the purpose of the chain converts into an integrated system that operates 

perfectly. Therefore, Industry 4.0 and sustainability allow the succeeding invention of SCs 

evolve and present mutually productivity and flexibility (Ardito et al. 2019; Büyüközkan and 

Göçer 2018). Bag et al. (2018) demonstrated the Industry 4.0 enablers of SSC management, 

which are governmental support; support of research institutes and universities; law and policy 

about employment; improved IT security and standards; management commitment; focus on 

human capital; change management; horizontal integration; vertical integration; 

standardization and reference architecture; and corporate governance and third-party audits. 

Since Industry 4.0 and sustainability solutions are interrupting conventional SC, there exist 

several noticeable elements that are practically related to every Industry 4.0 and SSC. These 

distinct advantages are gathered into some key elements that Industry 4.0 and SSC would like 

to make. The key elements include speed, flexibility, global connectivity, real-time inventory, 

intelligent, transparency, cost-effective, scalability, innovative, proactive, and eco-friendly 

(Büyüközkan and Göçer 2018). 
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3.4. Challenges, Success Factors, and Research Gaps in Industry 4.0 and SSC 

Without considering the companies’ size, they need to investigate advancing several 

kinds of Industry 4.0 and sustainability association competencies since businesses will contest 

on SCs at worldwide level eventually. 

3.4.1. Challenges and Concerns About Executing Industry 4.0 and SSC 

Many problems can happen along the SC. Xu (2014) described the chief challenges of 

building Industry 4.0 and SSC on collecting totally needed data from various suppliers, 

certifying the correctness of that information, and building up a software design and policy that 

can use the information to administer and perform the SC. Because the dimension of chain 

includes inside and outside associates, it will be time consuming and tend to mistake. 

Furthermore, the current great quantities of stock cannot be capable of fulfilling the demand, 

and SCs substructure can be inadequate, and the characteristic of products can be difficult to 

check (Büyüközkan and Göçer 2018). In Table 3.6 we presented 24 recognized challenges for 

Industry 4.0 and SSC and described each of them briefly. 

 

3.4.2. Success Aspects for Industry 4.0 and SSC 

The execution measurement in Industry 4.0 and SSC are especially significant. This 

measure could be studied by the capability of satisfying requests tills due date, distribution 

schedule, provider consistency, the budget of chain or postponements, among several others. 

As stated by a current investigation, over 33% of 2000 respondents have launched employing 

Industry 4.0 in their SCs, and entirely 72% supposed to have completed so in five years 

(Schrauf and Berttram 2016). Some motives why Industry 4.0 and SSC implementation has 

been slowed being the absence of consciousness between the staff and shareholders about 

digital instruments, and the absence of essential abilities among workers and shareholders 

(Büyüközkan and Göçer 2018). Consequently, the widespread adoption of Industry 4.0 and 

SSC will depend on the recognizable aspects of these significant successes so listed in Table 

3.7. 
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Table 3.6. Challenges and issues of implementing Industry 4.0 and SSC 

Challenges Description 

Lack of vision and strategy Industry 4.0 describes an innovative approach to the digital transformation, which requires a clear digital operations 

vision and mission (Erol et al. 2016).  

Lack of planning Deficiency of proper demand plan and guidelines and tools (Xu 2014; Schrauf and Berttram 2016). 

Financial constraints In Industry 4.0, financial constraints are considered to be a very important challenge in terms of advanced equipment 

and machines, facilities and sustainable process innovations (Dawson 2014; Theorin et al. 2017; Nicoletti 2018). 

Lack of competency in 

adopting/applying new business 

models 

As it is not necessary that all the new insights of Industry 4.0 will be workable and only some events are interesting out 

of million events, so revealing these insights are a challenge for data scientists to write suitable algorithms in 

adopting/applying new business models (Khan et al. 2017; Saucedo-Martínez et al. 2017). 

Lack of collaboration and 

coordination 

Deficient collaboration with external associates and deficient input from internal functions (Penthin and Dillman 2015; 

Xu 2014; EY 2016; Lee et al. 2014; Duarte and Cruz-Machado 2017; Pfohl et al. 2017) 

Poor existing data quality Data quality is one of foremost requirement in making decisions in successful Industry 4.0 adoption and so Inaccurate 

over-optimistic forecasts for demand, inventory, production, and other data are key challenges (Xu 2014; Carter et al. 

2009; Richey et al. 2016; Santos et al. 2017). 

Security issues Security is the prime requirement to transform a factory into a smarter factor and an SC into smarter value chains 

(Sommer 2015; Wang et al. 2016; Pereira et al. 2017). 

Lack of global standards and data 

sharing protocols 

The industries are deficient in standards and protocols, data transfers, adopting sustainability oriented modern 

information interface technologies and in business networks (Branke et al. 2016). 

Lack of information sharing Companies’ reluctance on information sharing (Xu 2014; Nowak et al. 2016). 

Lack of infrastructure and internet 

based networks 

High infrastructure, information technology-based facilities, and technologies are crucial in the effective adoption of 

Industry 4.0 concepts (Leitão et al. 2016; Bedekar 2017; Pfohl et al. 2017). 

Low management support and 

dedication 

In order to develop an effective Industry 4.0 concept, management support and dedication to accept the changes are 

very crucial (Gökalp et al. 2017; Savtschenko et al. 2017; Shamim et al. 2017). 

Silver bullet chase: The belief that everything will be fine (Xu 2014; Hines 2004). 

Poor research & development (R&D) 

on Industry 4.0 adoption 

lack of focused research on addressing the various aspects of Industry 4.0 adoption (Schmidt et al. 2015; Hermann et 

al. 2016). 

Lack of knowledge: Deficiency of SC management training and skills (Xu 2014; Hines 2004). 

Lack of digital culture Industry 4.0 generally of interdisciplinary in nature which requires digitization to connect different elements of a 

network (Ras et al. 2017; Schuh et al. 2017). 

Low understanding of Industry 4.0 

implications 

There is a very low understanding of Industry 4.0 implications among both the researchers and practitioners (Almada-

Lobo 2016; Hofmann and Rüsch 2017). 

Agility and Flexibility Lack of required flexible and agile SC management (Penthin and Dillman 2015; Xu 2014; Hines 2004; Richey et al. 

2016; Nabben 2016). 

High volatility Lack of knowledge and skills in dealing with volatility in SC management (Xu 2014; EY 2016; Hines 2004). 

Overconfidence in suppliers Relying on certain suppliers in certain parts of the globe (Xu 2014; Hines 2004). 

Profiling and complexity issues The lack of roadmaps and guides supporting its implementation, as well as its high complexity makes “Industry 4.0” 

too uncertain for achieving sustainability in SCs (Erol et al. 2016; Ras et al. 2017). 
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Lack of integration Deficient view on the integration of digital and non-digital SC management  The integration of technology is very 

essential in effective communication and higher productivity (Zhou et al. 2015; Penthin and Dillman 2015; Xu 2014; 

EY 2016; Hines 2004). 

Unclear economic benefit of digital 

investments 

The lack of clearly defined return on investment could be seen as one of the major challenges to Industry 4.0 initiatives 

for accomplishing sustainability in the SC (Kiel et al. 2017; Marques et al. 2017). 

Lack of governmental support and 

polices 

policy analysts and government bodies have not revealed the roadmap for transforming the traditional business 

functions into smarter and sustainable processes (BRICS Business Council 2017). 

Legal issues Data privacy and security issues need to be considered in developing data-driven sustainable business models of 

Industry 4.0 (Schröder 2018; Muller et al. 2017a). 

 

 

Table 3.7. Success factors for Industry 4.0 and SSC 

Success factor Description 

Continuous collaboration: Capabilities are harmonized within and beyond physical boundaries to increase collaboration between 

involved actors of the SC (CapGemini 2016; Hines 2004; Accenture 2014). 

Real-Time Visibility: Dynamic, secure and interactive visibility across the entire SC will improve the management of Industry 

4.0 and sustainable SC (Cecere 2014; Guarraia 2015; CapGemini 2016; Hines 2004; Accenture 2014). 

Integration: Building the integration of digital and non-digital SCs so that a unified and whole view of inventory 

across the firm can be achieved (Xu 2014; Raj and Sharma 2014; Schmidt et al. 2015). 

Alignment of suppliers: Aligning the interest of all the firms in the SC with your own to create incentives for better performance 

and developing trust (alignment) (Xu 2014; Raj and Sharma 2014; Schmidt et al. 2015;CapGemini 

2016). 

Highly evolved operating models: Product and service functions can be altered easily to meet customers’ changing demands (Raj and 

Sharma 2014; Hanifan et al. 2014;Accenture 2014). 

Shared information: Industry 4.0 and sustainable SC allows easier information sharing on sales forecast and production data 

(Xu 2014; Raj and Sharma 2014;Cecere 2014; Schmidt et al. 2015; CapGemini 2016; Hines 2004). 

Automated execution: Seamless human-machine interactions increase operational efficiency (Raab and Griffin-Cryan 2011;Raj 

and Sharma 2014; Schmidt et al. 2015; Rakowski 2015;CapGemini 2016; GTnexus 2016; Accenture 

2014). 

Adopting advanced analytics and analytics tools: Advanced data analysis improves decision making. Gaining better understanding and forecasting of the 

demand and solve previously unsolvable and even unknown problems along the SC. (e.g., BD and Data 

Analytics, etc.) (Xu 2014; Raj and Sharma 2014; Hanifan et al. 2014;Accenture 2014). 

Maximum efficiency: Seamless integration of people, processes, and technology (Raj and Sharma 2014; Rakowski 2015). 

Enhanced and accelerated innovation: Digital SCs inspire and abet innovations in designs, operations and customer relationships (Xu 2014; Raj 

and Sharma 2014;Cecere 2014; Schmidt et al. 2015; Accenture 2014). 

Personalized experiences, Customer-centric: Channel-centric supply networks support customized products and services (Penthin and Dillman 

2015;Xu 2014; Raj and Sharma 2014; Schmidt et al. 2015; Hanifan et al. 2014; Accenture 2014). 
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Organizational flexibility: Digital plug-and-play capabilities make it easier to configure and re-configure (Raab and Griffin-Cryan 

2011;Raj and Sharma 2014;Cecere 2014). 

Proactive prevention: Decision support systems driven by predictive analytics can strengthen adaptability and reliability (Xu 

2014; Raj and Sharma 2014; Hanifan et al. 2014;Accenture 2014). 

Enhanced responsiveness: Better information and sophisticated analytics can help accelerate responses to competitors’ moves, 

technology shifts, and changing demand and supply signals (Xu 2014; Raj and Sharma 2014;Cecere 

2014; Schmidt et al. 2015; CapGemini 2016; Hanifan et al. 2014; Accenture 2014). 

Last mile postponement: Swiftly repurposing organizational assets assists in ensuring the supplies are aligned with evolving 

demands (Xu 2014; Raj and Sharma 2014; Hanifan et al. 2014;Accenture 2014). 
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3.4.3. Research Gaps in Industry 4.0 and SSC 

One of the key goals of our investigations is to present a review of the literature of Industry 

4.0 and SSC. The literature reviews also presented that few papers were really directed on Industry 

4.0 and SSC simultaneously (see Tables 3.1, 3.2, 3.3 and 3.4 and Appendix); however, most of 

them were directed on empowering of its concentration on SCs. Our study displayed that since 

there exists a steady growth of research issued on the subject as 2010 for example, from five 

articles printed in 2010 to 26 articles in 2018, the strong mainstream of papers is still “research 

papers” (see Fig. 3.2). Hence, more investigation on Industry 4.0 and SSC is required to be done 

by industries and organizations. 

More extensively, research should emphasis on the development frameworks to convert, 

employ, and accept Industry 4.0 and sustainability in the context of SCs. In spite of the current 

attention in the Industry 4.0 and SSC subject because of its vast possibilities, the studies that report 

this topic advantages and contests are in their initial phases. There exist some study gaps in the 

present sources about Industry 4.0 and SSC that can be condensed as follows: 

➢ Lack of research on implementing Industry 4.0 and sustainability in different industries. 

As mentioned before, we recognized 55 areas of application, but the number of papers 

related to each of them is only one. It means there is a vast context for researchers to 

investigate Industry 4.0 and sustainability in different sectors. 

➢ Deficiency of development frameworks that offer advice for Industry 4.0 and SSC 

implementation in a perspective with roadmaps and obvious plans. This issue may help in 

directing executives about what phases and which place in SCs leaders can use Industry 

4.0 and SSC, assumed that SCs may be at various stages of the Industry 4.0 and SSC 

employment. Moreover, development frameworks may offer support in shifting the 

administration preparations in the SCs. 

➢ Deficiency of technologies and instruments that deal with SCs challenges in the context of 

Industry 4.0 and sustainability because this context is dissimilar from that of a usual SC. 

Decisions in an Industry 4.0 and SSC circumstances need novel technologies and tools. 

Industry 4.0 and SSC will change many processes such as maintenance, quality control, 

inventory control, planning for manufacture, and purchasing. 

➢ There are many obstacles for the execution of Industry 4.0 and SSC from mutually 

managerial and technological outlooks. There’s rather a substantial transformation 

occurring in the world. Businesses are at the edge of a contest to change their SCs to 

Industry 4.0 and sustainable context (CapGemini et al. 2016). Consequently, Industry 4.0 

and SSC problems and concerns presented in Subdivision 4.1 require to be answered 

through the support of Industry 4.0 and SSC success elements resulting from existing 

literature. There exist not considerable research papers on in what way to deal successfully 

with these. 

In the next section, we will employ all the understanding and information collected from 

the investigated literature to set up an advanced different framework. 
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Fig. 3.7. A dynamic framework for the development of Sustainable supply chain 4.0. 

 

3.5. Developing Industry 4.0 and SSC: A Dynamic Framework 

Effective SCs work with a well-defined foresight, benefiting frameworks and master plan 

that describe the path advancing. The present collected works are condensed into four main phases 

and their sub-objectives. Figure 3.7 displays the dynamic framework in a graphical arrangement 

created on analysis of the related research works. 

The dynamic of this framework is related to Deming’s PDCA (plan-do-check-act) process 

which is a cyclic four-step model for continuous improvement (CI) in commercial procedure 

management. It means that the PDCA’s cycle should be applied in all four main stages as well as 

their sub-goals and interaction among them. 

Therefore, this framework evolves and improves over time via performing corrective 

actions for eliminating causes of non-conformities. With regard to this dynamic framework, the 

term “Sustainable Supply Chain 4.0 (SSC 4.0)” is proposed to show the integration of four 

separated domains in a real-world environment. Actually, SSC 4.0 gradually permits SCs to turn 

into an integral section of decision-making and tactical developing. Organizations can influence 

and develop SSC 4.0 to harmonize various aspects of their policies and more successfully direct 

their definite requirements. The fact is that the vision on the SSC 4.0 literature and projected 

framework for the development of SSC 4.0 brings the problem of how it can be appropriately 

applied and proved in regular SC. It should be mentioned that every SC will have a slightly 

dissimilar set of SSC 4.0 development objectives with diverse main concern. Along with 

Industry 

4.0 

Technology 

Implementation SSC 4.0 Sustainability 

Supply Chain 



33 
 

reconsidering and reforming whole SCs, the crucial required assessment objectives for SCs 

regularly map the fields of Industry 4.0, technology implementation, sustainability, and SC 

management, which are key phases for administrative arrangement. 

By applying this dynamic framework, most of the SC executives will be acquainted with 

the basic SSC 4.0 methodologies, evaluating the SCs’ existing Industry 4.0 and sustainability state, 

founding a foresight for technology implementation, and expanding a revolution plan for SC 

management in the novel atmosphere. Explanation of these subjects, their decomposition, and 

creation of their arrangement along with the PDCA cycle in all stages and interactions are the core 

of SSC 4.0 employments in usual SC. The disintegrated framework for progressing SSC 4.0 is 

presented in Tables 3.8 and 3.9. 

 

Table 3.8. Decomposed framework for SSC 4.0 

Sustainability Supply chain Technology implementation Industry 4.0 

Economic (Pisching 

et al., 2015a, 2015b) 

Environmental 

(Badurdeen et al. 

2009) 

Social (Wittstruck 

and Teuteberg 2011) 

Process (Counsil 2004; 

Turhan et al. 2011) 

Integration (Sahin and 

Robinson 2002, 2005; 

Bagchi et al. 2005; 

Alfalla-Luque et al. 2013; 

Lee 2000) 

Responsive (Banchuen et 

al. 2017) 

Automation (Barratt 

2016; Viswanadham 

2002) 

Reconfiguration 

(Buyukozkan and Gocer 

2018) 

Transpiration and 

logistics (Speranza 2018) 

Analytics (Schmidt et al. 

2015b; Sahay and Ranjan 

2008) 

Information systems 

(Agus and Ahmad 2017) 

Collaboration (Cao and 

Zhang 2011) 

Technology enablers (Ibem 

and Laryea 2014) 

Formation of technology 

infrastructure (Najmi et al. 

2016; Klievink 2015) 

Human and technology 

relationship (Oyekan et al. 

2017) 

Project management (Yee and 

Oh 2013) 

Virtualization (MacDougall 

2014) 

Interoperability (Saldivar et 

al. 2015) 

Decentralization (Gilchrist 

2016) 

Real-time Capability 

(Vogel-Heuser and Hess 

2016) 

Service orientation (Sanders 

et al. 2017) 

Modularity (Peres et al. 

2017) 

 

 

Table 3.9. Decomposed sustainability for SSC 4.0 

Sustainability 

Dimensions 
Sustainability Criteria 

Economic Logistics cost; Delivery time; Transport delay; Inventory reduction; Loss/damage; 

Frequency of service; Forecast accuracy; Reliability; Flexibility; Transport volumes; 

Applications (Anderson 2007; Fahimnia et al. 2017; Genovese et al. 2017; Sauer and 

Seuring 2017; Zeng et al. 2017; Monnet and Le Net 2011; Dougados et al. 2013; Gebler et 

al. 2014; Schrauf and Berttram 2016) 

Environmental Resource efficiency; Process energy; Process emissions; Waste; Pollutions; Land use 

impact (Nowak 2016; Coyle et al. 2015; Dam and Petkova 2014; Zhu et al. 2011; Gebler et 

al. 2014; Monnet and Le Net 2011) 
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Social Development benefits; Impacts; Health; Safety; Labor patterns; Acceptance (Krause, et al. 

2009; Mani, et al. 2016; Kogg and Mont 2012; Gebler et al. 2014; Monnet and Le Net 

2011; Schrauf and Berttram 2016) 

 

3.6. Conclusions, Limitations, and Further Research Trends 

This review investigates the transformation of SCs to a sustainable supply chain 4.0 (SSC 

4.0), an issue of vast interest mutually for specialists and academics. It is absorbing and prepared 

in a reliable arrangement, so that to show the key suggestions, and created on a method for the 

progress of an SSC 4.0. To the best of author’s knowledge, there is only one paper that considered 

a literature review for Industry 4.0 and supply chain sustainability. In short, the highlights of the 

differences of this book chapter with the literature review by Bag et al. (2018) are as follows: 

➢ Adynamic framework is proposed for sustainability and Industry 4.0 in the supply chain 

(SC) management. 

➢ The term “Sustainable Supply Chain 4.0” (SSC 4.0) is proposed. 

➢ A summary of the documents such as research articles, conference papers, books, and book 

chapters from 2010 to 2018 is investigated. 

➢ Use different major online databases to get a vast insight into the issues. 

➢ All areas of application in the literature for sustainability and Industry 4.0 in the supply 

chain (SC) management is recognized. 

➢ Challenges, success factors, and research gaps are determined. 

The outcomes of this survey target to response the inquiries for example, what the recent 

position of SSC 4.0 is in the theoretical, and engineering investigations, along with what the SSC 

4.0 future developments seem, and how the present importance of Industry 4.0 and sustainability 

can be integrated into SC or logistics, and so on. With the intention of illustrating the advancement 

of inside the SSC 4.0 issues, a review of the research works is offered, learning mismatches in the 

specified investigation issue are recognized and the features of the previous study are established. 

Together with this broad analysis of upcoming developments on SSC 4.0, a dynamic framework 

for SSC 4.0 is settled consistently with the benefits, drawbacks, and restrictions of current SSC 4.0 

literature. It is determined to meet the mismatches of former investigations concerning the creation 

of a comprehensive abstract or academic framework. The recommended dynamic framework goals 

are at recognizing the characteristics, factors, and technology enablers, success aspects, and 

disputes for advancing an SSC 4.0. Therefore, the current study and dynamic framework can make 

available visions to mutually academicians and practitioners in their function of SSC 4.0. 

 

3.6.1. Limitations 

With regard to the above-mentioned issues, this review has some restrictions. The 

following topics summarize these possible restrictions: 

➢ Classified papers in this review of literature are grounded mostly on results from academic 

journals (consider Fig. 3.2). Adding more industrial reports in the forthcoming can improve 

this analysis’s outcomes. 

➢ The study results are constructed on the exploration of the point out databases by running 

the entered keywords. As exploration is vastly responsive to these keywords, reviews 

which take a little diverse enters may be neglected. 
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➢ The fact is that in this study a systematic literature review procedure has been employed in 

which every database is independently explored, and the gathered papers are picked just 

prior to the examination phases. Another method can be used for organizing these papers 

obtained in the database. 

➢ We considered a period of previous eight years (2010–2018). We believe these associated 

research works are friendly on approaches for SSC 4.0. Although the results are not full, 

we think that they are wide-ranging as they embrace several extremely graded scholarly 

journals. 

➢ The demonstrated SSC 4.0 dynamic framework aims at employing the integration of 

Industry 4.0, along with sustainability, technology implementation, and SC management 

which evolve over time. We have not involved in the extra disintegration of the SSC 4.0 

model because it is away from our study. 

 

3.6.2. Future Research Topics 

With regards to the above-mentioned restrictions, the succeeding upcoming investigation 

fashions on SSC 4.0 are constructed on a detailed review of literature along with the previous 

operational proficiency of writers. Additional examination of these recommendations can produce 

new awareness and strong concepts in the subject. Hence, the succeeding topics are presented: 

➢ This review proposes a supplementary investigation into manufacturing real-case purposes 

for the offered SSC 4.0 dynamic framework, demonstrated in Fig. 3.7. 

➢ Businesses from various engineering circumstances are affected by their particular 

approaches for SSC 4.0, subject to their particular reason of utilizing new Industry 4.0 

technologies. Consequently, significant fashions for upcomingSSC4.0 require a clear plan 

for each to enhance the revolution of its SSC 4.0 tasks. The given category can, 

consequently, be supplementarily improved to enlighten mutually theoretically with 

experts’ knowledge by creation of sub-frameworks for every business. 

➢ Industry 4.0 and sustainability will change the approach of SCs. For the purpose of 

appropriate application and confirmation of the development framework, the offered steps 

should be understood and evaluated in typical SC. 

➢ Although the benefits and restrictions of SSC 4.0 have been examined at a theoretical level, 

more developments are needed yet in some parts of SSC 4.0 so that a strong, consistent, 

and flexible solution is obtained for useful execution of SSC4.0 into engineering real-case 

functions. 

➢ Additionally, the advantages and disputes of SSC 4.0 can be investigated for the superior 

recognition of the possibility and success of the recommended dynamic framework. 

➢ To summarize, the equipment and elements of SSC 4.0 can be joined to further the current 

SC-associated investigations in equally scholar journals and engineering reports. SSC 4.0 

is vastly far from implementing its greatest ability, and as stated in this study, there exist 

many fields (55 topics are recognized by this study) that need urgent consideration. 
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Paper Appendix-Chapter 3 

See Tables 3.10, 3.11 and 3.12. 

 

Table 3.10. The areas of application and Nomenclature 

The areas of application Nomenclature 

3D technologies 3DT 

Agriculture sector AG 

Automotive AUTO 

Biologicalisation BIOL 

Blockchain technology BLOC 

Business model BM 

Circular economy (CE)  CE 

Clothing industry CLI 

Construction industry Con 

Digital assorting system (DAS) DAS 

Digital business landscape DBL 

Digital China Company's SC integration system DCSC 

Digital enterprises  Den 

Digital mine Dmi 

Digital-training method DTr 

Digitization DIGI 

Direct digital manufacturing (DDM) DDM 

Distributed manufacturing DisMa 

E-CRM strategy ECER 

Electronic industry EleI 

E-procurement technologies Eproc 

E-Residency Eres 

FoFdation Smart Machine Controller (SMC) SMC 

Food industry FoI 

Forest-based supply chains ForSC 

Global 3PLs operating 3PLs 

Global economy GloEco 

Green supply chain GSC 

Information communication technology (ICT) ICT 

Innovation Union InnU 

Intelligent Autonomous Vehicles (IAVs) IAVs 

Intelligent Transport Systems (ITS) ITS 

Manufacturing and logistics ManLog 

Networked information-based technologies NetInfoTech 

Newspaper Industry NewsIn 
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Paper manufacturing PapMan 

Pharmaceutical supply chain (PSC)  PSC 

Physical Internet PhyInt 

Policy-making PoliMak 

Rail-road intermodal transport network RailROAD 

Reconfigurable Manufacturing Systems (RMS) RMS 

Record labels and retail outlets RecLab 

Reverse logistics RevLog 

SemProM project SemProM 

Sendai Framework for Disaster Risk Reduction (SFDRR)  SFDRR 

Simulation optimization SimOpt 

Small-scale Intelligent Manufacturing System (SIMS) SIMS 

Smart City SmaCit 

SME networking SME 

Supply chain sustainability SSC 

Thermoplastic composite structures TherPlaCOM 

Trade promotion TradPro 

Transport and logistics TransLog 

Virtual digital retail ecosystem VDREco 

Waste electrical and electronic equipment (WEEE) WEEE 

 

 

Table 3.11. Literature Review of sustainable SC and Industry 4.0 (Research papers). 

Year Authors Objective Method 
Area of 

application 

2010 Dzopalic et al. Introducing E-CRM strategy Case study E-CRM strategy 

2011 Norris Introducing a new program called the Newspaper 

Industry Environmental Vision which is gathering 

a critical mass of newspaper publishers and 

printers calling for increased efforts in industry 

best practices and sustainability. 

Modelling Newspaper 

Industry 

2011 Hajdul and 

Cudzilo 

Presenting how the Common Framework 

supports interoperability between commercial 

actors and communication to authorities and 

transportation network responsible. 

Case study Transport and 

logistics 

2012 Agarwal et al. Studying the consumer return behaviour of end of 

life goods at different incentive levels and make 

an attempt to incorporate the latest research 

practices. 

Modelling Waste electrical 

and electronic 

equipment 

(WEEE) 

2012 Lin et al. Creating digital mine and key technologies in 

China. 

Modelling Digital mine 

2012 Davis et al. Introducing Smart manufacturing, manufacturing 

intelligence and demand-dynamic performance. 

Modelling Networked 

information-

based 

technologies 
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2013 Hentza et al. Describing the on-going work with a specific 

focus on the definition and implementation of the 

FoFdation Smart Machine Controller (SMC) in 

an adaptable architecture that satisfies both 

commercial and open source CNC controllers. 

Modelling FoFdation Smart 

Machine 

Controller 

(SMC) 

2013 Zhu et al. Investigation of BIM digital technology in the 

construction industry. 

Review Construction 

industry 

2013 Blümel Studies means by which digital engineering and 

virtual and augmented reality technologies can 

support the creation of sustainable smart 

manufacturing and smart logistics processes as 

well as on-the-job training and qualification and 

knowledge transfer. 

Modelling Manufacturing 

and logistics 

2013 Clear et al. Brings together participants from a diverse range 

of disciplines to develop an understanding of 

existing food consumption practices, and how 

this domain can profit from novel Ubicomp 

technology and interaction designs. 

Modelling Food industry 

2013 Baumers et al. Studying whether the adoption of additive 

manufacturing (AM) technology can be used to 

reach transparency in terms of energy and 

financial inputs to manufacturing operations. 

Modelling Manufacturing 

and logistics 

2014 Gebler et al. Representing the first comprehensive assessment 

of 3DP from a global sustainability perspective. 

Modelling 3D technologies 

2014 Holmström and 

Partanen 

Exploring the forms that combinations of digital 

manufacturing, logistics and equipment use are 

likely to take and how these novel combinations 

may affect the relationship among logistics 

service providers (LSPs), users and 

manufacturers of equipment. 

Modelling Manufacturing 

and logistics 

2014 Brofman 

Epelbaum and 

Martinez 

Offering a theoretical framework grounded on the 

Resource-Based View (RBV) of the firm to 

determine the strategic impacts of the 

technological evolution of food traceability 

systems. 

Case study Food industry 

2015 Yue et al. Defining the development and character of ICPS 

and offering a service-oriented ICPS model. 

Modelling Information 

communication 

technology 

(ICT) 

2015b Chen, R.-Y. Simulating complex system by connected 

physical and digital objects with relationships 

while enhancing decision-making performance 

efficiency for green inventory management. 

Modelling Green supply 

chain 

2015 Prause Responding to the research question of how new 

and sustainable business models and structures 

for Industry 4.0 might appear and in which 

direction existing traditional business concepts 

have to be developed to deploy a strong business 

impact of Industry 4.0. 

Modelling E-Residency 

2016 Papahristou and 

Bilalis 

Analyzing the challenges, the threats and the 

opportunities across the SC partners emerging to 

reduce the environmental footprint. 

Modelling Clothing 

industry 

2016 Ranzo et al. Studying new mobility and manufacturing 

concepts, carried out in the framework of a 

research project funded by the Regional 

report Automotive 

supply chain 
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Government of Campania for innovative 

development of the automotive SC. 

2016 Lom et al. Suggesting the conjunction of the Smart City 

Initiative and the concept of Industry 4.0. 

Modelling Smart City 

2017 Lin et al. Using a descriptive analysis with descriptive 

statistics under the innovation policy framework 

proposed by Rothwell and Zegveld. Moreover 

informing a comparative policy analysis across 

China and Taiwan. 

Case study Policy-making 

2017 De Carolis et al. Illustrating a “tool” for building a maturity 

assessment method to measure the digital 

readiness of manufacturing firms. 

Modelling Manufacturing 

and logistics 

2017 Man and 

Strandhagen 

Considering potential sustainable business 

scenarios, and proposes an agenda for research 

into how Industry 4.0 can be used to create 

sustainable business models. 

Modelling Business model 

2017 Palm Studying recent trends of vinyl traffic and 

critique a prominent feature of contemporary 

vinyl culture: Record Store Day. 

Review Record labels 

and retail outlets 

2017 Rauch et al. Considering the actual state of the art in 

distributed manufacturing. 

Review Distributed 

manufacturing 

2017 Jensen and 

Remmen 

Investigating how different ‘product stewardship’ 

and ‘end-of-life’ strategies can support the 

circular economy and what the challenges and 

benefits are from an original equipment 

manufacturer perspective. 

Modelling Circular 

economy (CE) 

2017 Lee et al. Explaining to what extent the business sectors 

involved in and how to safeguard the cross-

border trade and investments with safer and 

smarter regional strategies in the digital age with 

large-scale disasters. 

Modelling Sendai 

Framework for 

Disaster Risk 

Reduction 

(SFDRR) 

2017 Zhong et al. Studying food SC management (FSCM) in terms 

of systems and implementations. 

Modelling Food industry 

2017 Paul and Zhou Studying an empirical case of a leading paper 

manufacturing company in central Java, 

Indonesia, in their way of building their 

maintainable innovation capability in their SC by 

applying a combination of various existing 

models. 

Case study Paper 

manufacturing 

2017 Strandhagen et al. Studying the challenges of Industry 4.0, current 

trends, and offering a model to understand and 

relate the different elements of business 

operations. 

Review Business model 

2017 Prause and Atari Exploring the relationship between networking, 

organizational development, structural frame 

conditions and sustainability in the context of 

Industry 4.0. 

Case study Manufacturing 

and logistics 

2017 Papahristou and 

Bilalis 

Considering the relationship between Corporate 

Social Responsibility (CSR) and Collective 

Actions on Sustainability and the environmental 

impact of the new model of fast and accelerating 

fashion. 

Modelling Clothing 

industry 

2018 Tombido et al. Reviewing the literature on the entry and use of 

third parties in reverse logistics with the objective 

of providing researchers with future research 

directions for this fast-emerging topic. 

Review Reverse logistics 
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2018 Byrne et al. Studying the meaning and implications of 

“Biologicalisation” from the perspective of the 

design, function and operation of products, 

manufacturing processes, manufacturing systems, 

SCs and organizations. 

Modelling Biologicalisation 

2018 Saberi et al. Studying Blockchain technology and smart 

contracts with potential application to SC 

management. 

Modelling Blockchain 

technology 

2018 Scholz et al. Considering digital technologies in forest-based 

SCs and summarizing the state-of-the-art digital 

technologies for the real-time data collection on 

forests, product flows, and forest operations, 

along with planning systems and other decision 

support systems in use by SC actors. 

Review Forest-based 

supply chains 

2018 Banks et al. Explaining enhancing high-rise residential 

construction through design for manufacture and 

assembly. 

Case study Construction 

industry 

2018 Luthra and Mangla Recognizing key challenges to Industry 4.0 

initiatives and key challenges for SC 

sustainability in emerging economies by taking 

Indian manufacturing industry perspective. 

Review Manufacturing 

and logistics 

2018 Nascimento et al. Studying how rising technologies from Industry 

4.0 can be integrated with a circular economy 

(CE) practice to establish a business model that 

reuses and recycles wasted material such as scrap 

metal or e-waste. 

Modelling Circular 

economy (CE) 

2018 Bag et al. Recognizing the Industry 4.0 enablers of SC 

sustainability and further attempt to propose a 

research framework to bridge the theoretical 

gaps. 

Review Supply chain 

sustainability 

2018 Lopes de Sousa 

Jabbour et al. 

Offering a pioneering roadmap to improve the 

application of CE principles in organizations by 

means of Industry 4.0 approaches. 

Case study Circular 

economy (CE) 

2018 Bechtsis et al. Providing a framework that obtains the main 

software architecture elements for developing 

highly customized simulation tools that support 

the effective integration of Intelligent 

Autonomous Vehicles (IAVs) in sustainable 

supply networks, as an emerging field in the 

operations management agenda. 

Modelling Intelligent 

Autonomous 

Vehicles (IAVs) 

2018 Sendlhofer and 

Lernborg 

Studying how workers are trained on their labour 

rights with a digital-training method. 

Case study Digital-training 

method 

2018 Gružauskas et al. Examining the limited possibilities to reach cost-

effective performance and sustainability.  

Review Food industry 

2018 Sun et al. Offering an agent-based simulation that models 

the micro-level protocols of mobile recourse units 

and their interaction with the physical 

infrastructure in a rail-road intermodal transport 

network. 

Modelling Rail-road 

intermodal 

transport 

network 

2018 Ding Recognizing the potential sustainability barriers 

of PSC and examining how Industry 4.0 can be 

applied in the sustainable PSC paradigms. 

Review Pharmaceutical 

supply chain 

(PSC) 

2018 Bucci et al. Presenting an overview of worldwide 

development and status of precision agriculture, 

starting from 2000 until to date. 

Review Agriculture 

sector 
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2018 Forkel et al. Investigating Smart Interoperable Logistics and 

Additive Manufacturing - Modern Technologies 

for Digital Transformation and Industry 4.0 

Modelling Manufacturing 

and logistics 

2018 Todorovic et al. studying how the SFSC could be designed from 

the aspects of innovative logistics modes and 

contemporary information and communication 

technologies, with the final aim to outline and 

evaluate different food distribution scenarios 

towards greater sustainability. 

Modelling Food industry 

2018 Holmström et al. Investigating how current and future Direct 

digital manufacturing (DDM)-based operational 

practices can be used to advance products and 

processes. 

Modelling Direct digital 

manufacturing 

(DDM) 

2018 Wu et al. Studying how to provide trade promotions in a 

sustainable manner when consumer demand is 

disrupted. 

Modelling Trade promotion 

2018 Garcia-Muiña et 

al. 

Exploring the phases of the transition from a 

linear to a circular economy and suggesting a 

procedure for the principles of sustainability 

(environmental, economic and social) in a 

manufacturing environment, through the design 

of a new Circular Business Model (CBM). 

Modelling Circular 

economy (CE) 

2018 Bressanelli et al. Recognizing the main challenges that companies 

have to face when they want to redesign their SC 

according to CE principles, i.e. to implement a 

circular SC. 

Review Circular 

economy (CE) 

2018 Delina et al. Suggesting a framework for innovation-driven 

SC ecosystem based on interoperability between 

commercial and public innovation procurement 

organization and research environment. Moreover 

developing single digital infrastructure for 

supporting critical issues in requirements 

analysis, sourcing, negotiation, contract execution 

and post-contractual phase to build sustainable, 

motivational and trusted innovation-driven 

environment. 

Modelling Innovation 

Union 

2018 Dallasega and 

Sarkis 

Examining the nexus of Industry 4.0 and 

greening SCs with using proximity analysis. 

Modelling Supply chain 

sustainability 
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Table 3.12. Literature Review of sustainable SC and Industry 4.0 (Conference papers). 

Year Authors Objective Method 
Area of 

application 

2010 Pöltner and 

Grechenig 

Offering a concept for the establishment of a future 

virtual digital retail ecosystem 

Modelling Virtual digital 

retail 

ecosystem 

2010 Price et al. Proposing a digital framework for the creation and 

management of performance parameters related to 

the lifecycle performance of thermoplastic 

composite structures. 

Modelling Thermoplastic 

composite 

structures 

2010 Kang and Diao Analyzes the route choice of information 

technology(IT) which enterprises can obtain long-

term competitive advantages. 

Modelling Digital China 

Company's 

Supply Chain 

integration 

system 

2012 Ji and Niu Studying variety and high-frequency necessities of 

modern cold chain logistics, and application of 

digital assorting system (DAS) in cold chain 

logistics warehousing system To meet the JIT. 

Modelling Digital 

assorting 

system (DAS) 

2013 Bjorn et al. Explaining how a general operating model of re-use 

of electrical and electronic equipment (EEE), and 

specifically for PCs in developing countries, deal 

with the challenges and opportunities of increasing 

e-waste awareness.  

Case study Electronic 

industry 

2015 Tzoulis et al. Combining data on timber trade in Greece and also 

studying how the economic crisis has affected the 

forest, its products and how it has affected trade 

(imports and exports). 

Case study Forest-based 

supply chains 

2016 Ginige et al. Studying a notion of context-specific actionable 

information which allows the user to act with the 

least amount of further processing. 

Case study Agriculture 

sector 

2017 Kalogianni et al. Studying an efficient Monitoring and Control 

software Tool (MCT) for assessing the operation 

data of an olive oil production facility. 

Modelling Agriculture 

sector 

2017 Yu and Solvang Presenting a new concept: Small-scale Intelligent 

Manufacturing System (SIMS), and the comparison 

with previous concepts and the benefits of SIMS are 

discussed in this paper. 

Modelling Small-scale 

Intelligent 

Manufacturing 

System 

(SIMS) 

2017 Pilinkienė et al. Investigating a case study of the European Union 

food industry by modelling different logistic 

network scenarios, and implemented a 

competitiveness strategy based on the Industry 4.0 

concept and lean philosophy. 

Case study Food industry 

2017 Tan et al. Considering how organizations can investigate and 

implement techniques for their modern enterprise 

with a focus on how advanced big data tools can be 

applied to Quality Analytics for monitoring and 

improving quality in the electronic industry. 

Modelling Electronic 

industry 

2017 Crowley et al. Literature reviewing and discussing core learnings in 

relation to impacts on sourcing and supplier 

management in a digital business landscape. 

Review Digital 

business 

landscape 

2017 Pal and Sandberg Studying the inter-organizational value creation, in 

apparel SC context, through circularity and 

Modelling Clothing 

industry 
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digitalization for sustainability, by gathering 

evidence from vivid research experiences. 

2018 Alrabghi Investigating the key elements of simulation 

optimization frameworks that will facilitate the 

transformation to industry 4. 

Review Simulation 

optimization 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



44 
 

 

 

 



45 
 

CHAPTER 4. PAPER TWO - INDUSTRY 4.0 AND DEMAND FORECASTING OF THE 

ENERGY SUPPLY CHAIN: A LITERATURE REVIEW 

 

Forewords 

After reviewing the research works in “Management of Sustainable Supply Chain and Industry 

4.0” in previous Chapter, now in this Chapter, a comprehensive literature review of “Industry 4.0 

and demand forecasting of the energy supply chain” are presented. Moreover, in Chapters 5 and 6 

(subsection 5.2 and 6.2) a complete review of research works related to exergy analysis and carbon 

reduction policies are presented.  

 

Abstract  

The number of publications in demand forecasting of the energy supply chain augmented 

meaningfully due to the 2008 global financial crisis and its consequence on the global economy, 

mainly in energy supply chains. In spite of the fact that Industry 4.0 emerged during this period, 

its solutions and their impacts on energy demand forecasting are not covered by current reviews 

in the literature. This paper presents a comprehensive and up-to date review of publications related 

to forecasting approaches of energy demand in the last two decades between 2000 and 2020 with 

an emphasis on Industry 4.0 influences and the state-of-the-art progress on this topic. A total of 

267 publications are chosen and about 73 distinctive approaches of energy demand forecasting are 

discovered. Accordingly, among these approaches, there are eight methods with the most citations 

which include 56% of the total articles. Additionally, the forecasting methods are classified into 

traditional and intelligent methods and the most cited publications related to both are reviewed in 

detail. Furthermore, the advantages and disadvantages of both traditional and intelligent 

forecasting methods as well as research limitations and future research are determined. The results 

from the literature review indicated that by employing intelligent forecasting methods, the errors 

and costs were reduced while these methods increase profitability. 

 

Keywords Demand forecasting; Demand of energy; Supply Chain (SC); Intelligent methods; 

Industry 4.0 

 

4.1. Introduction 

Nowadays, most enterprises are going through digitization, which is known as Industry 4.0 

(Roozbeh Nia, Awasthi, & Bhuiyan, 2020). The digital revolution focuses generally on 

manufacturing, therefore, names such as “Smart Factory” or “Factory of the Future” are used and 

matched with this concept (Kayikci, 2018). Under such conditions as globalization, rapidly-

evolving technology, and progressively demanding customers, corporations in the same supply 

chain (SC) must collaborate to fulfill customer requirements superior to their competitors (Marchi 

& Zanoni, 2017). Furthermore, the main influence motivating Industry 4.0 is to guide businesses 

by applying digital technologies that recognize methods that can assist organizations in creating 

connections among their operations, systems, manufacturing capabilities, finished goods, and 
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clients. The intention of these technologies is collecting and distributing real-time functioning and 

marketplace information with stakeholders (Ardito, Petruzzelli, Panniello, & Garavelli, 2019). 

The digitization in SCs is based on six features: connectivity, cooperation, integration, 

adaptiveness, cognitive improvement, and autonomous control (Kayikci, 2018). With the purpose 

of boosting opportunities, decreasing costs, and gaining competitive advantage, energy 

corporations are increasingly reconsidering their SCs. The energy division is segregated into 

various sections, each with their own SC problems and challenges. The common five sub-sectors 

in the energy SC division are presented in Fig. 4.1. The energy market today is mutually maturing 

and unbalanced, distinguished through growing demand and variable supply. However, the 

greatest challenges come from the scheduling of demand and forecasting precision and with that 

the configuration of materials and supply with energy demand (DHL 2015). 

 

 

 

 

 

 

 

 

 

 

Fig. 4.1 The sub-sectors in Energy SC division 

Supply chain collaborations can potentially enhance energy efficiency, yet most businesses 

still pay secondary consideration to whether their partners employ energy management systems, 

including energy forecasting in their commercial process (see Fig. 4.2). Cooperation between SC 

partners will improve value to each partner and the SC in the function of a system, while costs can 

be avoided, risks can be divided, and lead and response time can be diminished in an ever-

fluctuating commercial environment (Jansen, 2014; Marchi and Zanoni, 2017). Moreover, the term 

“energy demand” generally denotes any kind of energy needed to meet individual or sectoral 

energy requirements (Hasanuzzaman, Islam, Rahim, & Yanping, 2020). Therefore, energy demand 

can be grouped into several divisions through end-users. Consistent with the International Energy 

Agency (IEA, 2017), the energy demand sector categorizations are presented in Fig. 4.3. Note that 

in Fig. 4.3 other sector forms agriculture and fishing (IEA, 2017). 
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Fig. 4.2 The energy SC, demand and forecasting 

Management of energy is critical for economic success and environmental security since 

energy is connected to many sectors such as industrial manufacture, agricultural production, access 

to water, education, health, population, life quality, etc., (Suganthi & Samuel, 2012). Besides, 

industry and governments must concurrently follow these three issues (S´anchez-Dur´an, Luque, 

& Barbancho, 2019): 

➢ Energy security (consistency of energy infrastructure, and capability of energy 

suppliers to fulfill present and upcoming demand),  

➢ Energy equity (availability and affordability of energy supply for the population),  

➢ Environmental sustainability (energy productivity and the improvement of energy 

provided by renewable and other low-carbon sources).  
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Fig. 4.3 Classifications of energy demand sectors 

Unquestionably, excessive consumption of energy has a significant impression and 

damaging consequence on the environment. Hence, for a country and mainly in developing 

countries, energy demand is a core concern in developing energy strategies (Pi, Liu, & Qin, 2010). 

For example, the management of energy in China, including energy supply and demand, has 

performed a critical role (Liu, 2015), so that the prediction of energy demand has been an 

increasingly vital subject (Suganthi & Samuel, 2012). Therefore, it is essential to develop effective 

forecasting methods for energy demand (Hu, 2020). The term “forecasting” is described by the 

procedure of estimation, prediction, or projection of upcoming activities, events, or occurrences. 

Consequently, energy demand forecasting is based on the different data and information 

accessible. In general, demand forecasting is done by estimating past data/information through 

mathematical models to forecast the trend of forthcoming energy demand (Islam, Che, 

Hasanuzzaman, & Rahim, 2020). 

From the viewpoint of a decision-maker, a well-functioning SC is the support of almost 

every business. To ensure a close balance between supply and demand, a very precise demand 

forecasting linked with enhanced replenishment policies is key (McKinsey, 2017). On the other 

hand, in competitive energy markets, the precise prediction of monthly, quarterly, and yearly 

energy consumption can deliver an advantage in dialogs and carrying out contracts for medium-

term generation, transmission, and distribution (Pelka & Dudek, 2019). Also, a reliable long-term 

energy demand estimate is essential to recognize the energy demand and present valuable supports 

for outlining strategic decisions. As a result, selecting proper modeling approaches consistent with 

features of estimated areas is the first duty for the correct forecasting of energy demand (Chen, 

Rao, & Liao, 2019). 

Despite the fact that recent review articles surveyed energy demand forecasting in a 

specific branch, such as electricity (Shao, Chao, Yang, & Zhou, 2017), natural gas (Khan, 2015; 

Melikoglu, 2013), building energy (Ahmad, Chen, Guo, & Wang, 2018), solar power (Ahmed, 
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Sreeram, Mishra, & Arif, 2020), etc. and make a category in the specific fields, few pay attention 

comprehensively to demand forecasting methods of all energy types in the literature. For example, 

Suganthi and Samuel (2012) presented a list of the forecasting methods used for energy demand 

and described each method in detail. After that, Ghalehkhondabi, Ardjmand, Weckman, and 

Young (2017) studied the ten most-employed energy demand forecasting methods in the last ten 

years between 2005 and 2015. 

To the best of the authors’ knowledge, the two above-mentioned articles were only 

reviewed that considered energy demand forecasting methods. However, they ignored Industry 4.0 

solutions in this subject, and the time span they studied was not comprehensive. As a result, to fill 

the gap in the literature, we provide a comprehensive and updated review of publications related 

to forecasting methods of energy demand in the last two decades between 2000 and 2020 with 

focusing on Industry 4.0 influences and the state-of-the-art progress in this subject. Contrasted 

with the existing reviews on similar subjects, the novelties, and contributions of this review are as 

follows:  

➢ We focus on Industry 4.0 solutions and the effects of them in energy demand 

forecasting.  

➢ We categorize energy demand forecasting methods to traditional and intelligent 

methods and review the most cited publications related to both in detail.  

➢ In terms of time span, we consider a comprehensive review of publications such as 

research articles, conference papers, books, and book chapters in the last 20 years 

from 2000 to 2020.  

➢ In terms of energy type, we consider all types of energy.  

➢ We highlight the advantages and disadvantages of both traditional and intelligent 

forecasting methods as well as research limitations and future researches are 

determined.  

This review is organized in this mode: the next section reviews, categorizes, and presents 

some analysis of associated publications in the last two decades (2000–2020), along with 

explaining the methodology supposed in this review. Reviewing the most cited traditional and 

intelligent methods of energy demand forecasting that is resulting from the current literature as 

well as related top papers are represented in Sections 4.3 and 4.4, respectively. Lastly, the review’s 

concluding remarks, the restrictions, plus some suggestions for energy demand forecasting in the 

Industry 4.0 era, are presented in Section 4.5. 

 

4.2. Literature Review 

The review of the last two decades’ research work is built on arrangement procedure. First, 

the arrangement exploited in this review is explained, and later, the process of the literature review 

is described. 

4.2.1. Method of reviewing  

Related research works are distinguished through a comprehensive online exploration that 

aims to gather, classify, and synthesize current demand forecasting of energy SC in the Industry 
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4.0 era. The literature is reviewed for the period 2000–2020 by exploring Thomson Reuter’s Web 

of Science. As a result of the insufficiency of exact keywords explaining the subject, we put a 

substantial attempt to sort publications by reviewing their titles, abstracts, and texts. We investigate 

and organize related research works to meet a vision of energy demand forecasting in the Industry 

4.0 era. Normally, this step can be achieved by aiming for noticeable journals, books, and 

conferences. At first, we considered keywords like “demand forecasting” and “energy demand” in 

the “TOPIC” search field of Thomson Reuter’s Web of Science. There were more than 4500 

articles that, after investigation, were found not to be related to our objective. We refined our search 

to the “TITLE” search field and the results were more exact with 208 articles. Since in the 

literature, the word “Prediction” is used as well, we did a new search with this keyword “demand 

prediction” and found 87 more articles. After that, we put a considerable attempt to sort all papers 

by studying their titles, abstracts, texts, and removing unrelated articles. Finally, we considered 

267 articles that were within our objective. The general review methodology for demand 

forecasting of energy SC and Industry 4.0 articles is as follows:  

Step 1- Finding the sources (online databases)  

Step 2- Searching keywords  

Step 3- Developing a taxonomy and analysis based on journal papers, conference papers, 

books, theses, etc.  

Step 4- Identifying research with implications and issues related to demand forecasting, 

energy SC, Industry 4.0, Features, Component and technologies, Challenges, and advantages.  

Step 5- Presenting Survey outcomes: conclusions, limitations, and further research. 

 

4.2.2. Summary of statistical analysis  

Although in this study, the literature is reviewed for the period 2000–2020, initially, to 

understand the bigger picture in demand forecasting of energy SC, we considered the time of 1979–

2020. We used the search tool of Thomson Reuters Web of Science with keywords “demand 

forecasting” and “energy demand” in the “TITLE” search field. We did the same thing with the 

keyword “demand prediction” as well. We investigated criteria such as the number of publications 

per year, countries/regions, document types, energy types, applications, and research areas. Based 

on publication years, ranging from 1979 to 2007, the number of related publications in this area 

was under five research works per year (see Fig. 4.4). Although from 2008 until 2020, there is a 

sharp increasing trend, it could be shown that after the global monetary crisis in 2008, researchers 

and industries understand better the importance of energy demand prediction due to cost-saving 

issues. 
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Fig. 4.4 The number of publications from 1979 to 2020 

Considering Fig. 4.5, the top five research areas from 1979 to 2020 are Energy fuels (23%), 

Engineering (22%), Computer science (11%), Environmental sciences ecology (8%), and Business 

economics (7%), respectively. Given document types, more than half of the publications are 

Articles (60%), following with Proceedings papers (37%) and Reviews (1%), respectively (see 

Fig. 4.6). In the role of countries/regions as Fig. 4.7, the top three countries with the most 

publications in energy demand forecasting are China (27%), USA (11%), and Iran (6%), 

respectively. Generally, China & USA are the two biggest energy consumers, while Iran is one of 

the biggest energy producers (Oil and Gas) in the world. It could be recognized that since both 

suppliers and buyers of energy in the world are concerned about forecasting and the outlook of 

energy markets, local universities and research institutions focused on this topic. By investigating 

the energy types of each article from 2000 to 2020, more than half of them (59%) studied demand 

forecasting of Electricity (see Fig. 4.8). In the second and third ranks, Coal and Oil are with 17% 

and 10%, respectively. Once fossil fuels are gone, they cannot be replaced, so decision-makers are 

now keen to use renewable sources of energy. Renewable energy is an interesting issue, but only 

3% of publications considered it. It is expected that this percentage will increase in the next decade. 

Considering the application of research, the authors found 36 different areas. About (34%) of total 

publications studied National energy demand (see Fig. 4.9). This is followed by forecasting energy 

demand of Building and Regions (City/province) with 15% and 9%, respectively. Finally, 

according to the type of methodology used in publications from 2000 to 2020, top three methods 

are Neural network, Metaheuristic algorithms and Grey model, respectively (see Fig. 4.10). 
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Fig. 4.5 Research areas and their publication’s number from 1979 to 2020 

 

 

Fig. 4.6 Document types of publications from 1979 to 2020 
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Fig. 4.7 Countries of publications from 1979 to 2020 

 

 

Fig. 4.8 Energy types of publications from 2000 to 2020 
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Fig. 4.9 Application areas of publications from 2000 to 2020 

 

 

 

Fig. 4.10 The number of publications related to each method from 2000 to 2020 

 

4.2.3. Classification of energy demand forecasting  

Demand prediction of energy has been directed in the literature, mostly focused on three 

forecasting prospects (S´anchez-Dur´an et al., 2019): short-term (an hour to a week) (Nagbe, 

Cugliari, & Jacques, 2018; Ryu, Noh, & Kim, 2016), mid-term (a month to 5 years) (Akpinar & 

Yumusak, 2016), and long-term (5 to 20 years) (De Oliveira & Oliveira, 2018). Also, the heart of 
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demand prediction of energy is the method applied for estimating (Islam et al. 2020). Forecasting 

methods can be considered into two types (S´anchez-Dur´an et al., 2019): data-driven approaches, 

whereby statistical techniques of the connection involving the demand of energy and its causal 

variables are certainly detected (Bourdeau, Zhai, Nefzaoui, Guo, & Chatellier, 2019); and model-

driven, where this connection has been earlier recognized (Suganthi & Samuel, 2012). There is 

another way of categorizing the energy demand prediction approaches (Islam et al. 2020). Based 

on the model, for example, employing the static against the dynamic model, experimental against 

the mathematical model, univariate against the multivariate model, etc. In addition, based on the 

curve-fitting statistical technique contrasted with artificial intelligence methods (Suganthi & 

Samuel, 2012).  

Although in the previous subsection we considered a time span of 1979–2020 to understand 

the bigger picture in demand forecasting of energy SC, since the number of publications per year 

before the year 2000 is not significant (less than five per year), in this research we focused only 

on publications of the last two decades from 2000 to 2020. After reviewing all publications 

carefully and removing duplicates, the total number of the most related publications in demand 

forecasting of energy was 267. Based on the literature review, in this timespan around 73 different 

methods of forecasting were applied by the authors. Among these methods, eight forecasting 

methods encompass about 56% of publications, which means they are the most used forecasting 

methods in the literature. We categorize these methods in Traditional (e.g. Fuzzy Logic, Grey 

model, Metaheuristic algorithms, Regression models, Simulation model, Time series model), and 

Intelligent (e.g. Machine Learning and Neural Network) models. In the following, we briefly 

explain each method and investigate the most cited related articles in detail.  

 

Table 4.1. A complete list of recognized articles which used Fuzzy Logic in their forecasting methods 

Year Authors Objective 
Methods of 

forecasting 

Energy 

types 

Application 

areas 

Time 

cited 

2020 
Homod et 

al. 

Forecasting HVAC systems 

energy demand in real-time 

for Basra city 

Takagi-Sugeno fuzzy Electricity Building 0 

2018 Bock 
Forecasting the energy 

demand of customers 
fuzzy clustering Electricity 

Regions 

energy 

demand 

1 

2018 
Pelka and 

Dudek 

Medium-term electric energy 

demand forecasting 
Neuro-Fuzzy System Electricity 

National 

energy 

demand 

4 

2018 
Choudhury 

et al. 

Renewable energy capacity 

estimation for Indian energy 

sector 

Fuzzy Time Series Coal 

National 

energy 

demand 

0 

2017 
Arcos-

Aviles et al. 

The design of an energy 

management strategy 

Fuzzy Logic Control 

(FLC) 
Electricity Microgrid 27 

2016 
Bernardes 

et al. 

Optimal energy portfolios 

with demand prediction and 

distributed generation 

sources 

New fuzzy algorithm Electricity 

Power 

supply 

systems 

0 

2015 
Prauzek et 

al. 

Energy availability 

forecasting for harvesting-

aware wireless sensor 

networks: analysis of energy 

demand of a predictor 

Evolutionary Fuzzy 

Rules 
Electricity 

Harvesting-

aware 

Wireless 

Sensor 

Networks 

3 
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2013 Avila et al. 

Fuzzy demand forecasting in 

a predictive control strategy 

for a renewable-energy 

based microgrid 

stable Takagi & 

Sugeno (T&S) fuzzy 

model 

Electricity Microgrid 4 

2012 
Iranmanesh 

et al. 

Mid-term energy demand 

forecasting 

Hybrid Neuro-Fuzzy 

Models 
all 

National 

energy 

demand 

16 

2011 
Kazemi et 

al. (a) 

Forecasting agriculture 

energy demand: a case study 

of Iran 

Hierarchical Fuzzy 

Linear Regression 

(FLR) Model 

Oil 

Agriculture 

Energy 

Demand 

3 

2010 
Ghanbari et 

al. (a) 

Electrical energy demand 

prediction 

Clustering-based 

Genetic Fuzzy Expert 

System 

Electricity 
Load 

forecasting 
3 

 

4.3. Traditional methods  

4.3.1. Fuzzy Logic and fuzzy sets  

Fuzzy logic and fuzzy sets are used in several qualitative and vague energy utilization data 

to forecast energy demand (Ghalehkhondabi et al., 2017). The advantages of fuzzy sets are: stating 

systems rules in “if-then” forms (Iyatomi & Hagiwara, 2004), using imprecise or vague data for 

decisions making, coping with human cognitive procedures, investigating vagueness at several 

process phases (Haji and Assadi, 2009; Ustundag, Kılınç, & Cevikcan, 2010) and condensing a 

large amount of data into a reduced set of variable rules (Mamlook, Badran, & Abdulhadi, 2009). 

In contrast, the results of fuzzy approaches are not always reasonable (Hong, Lin, & Wang, 2003). 

A complete list of recognized articles that used Fuzzy Logic in their forecasting methods is 

presented in Table 4.1.  

Taking into consideration a low complexity Fuzzy Logic Control (FLC), Arcos-Aviles et 

al. (2017) created the strategy of energy management for grid power profile smoothing. They used 

it in a residential grid-connected microgrid having a battery Energy Storage System (ESS) and 

Renewable Energy Sources (RES). Their strategy employs prediction of demand and generation 

to forecast the outlook microgrid’s performance. Considering the Battery State-of-Charge (SOC) 

and the error of power forecasting, their recommended strategy achieved the right control of the 

grid power. In the end, they confirmed it at the Public University of Navarre (UPNa, Spain) in a 

real micro grid of residents. With the intention of long-term demand forecasting of energy, 

Iranmanesh, Abdollahzade, and Miranian (2012) suggested a hybrid approach named HPLLNF. 

This method includes a predictor using the local linear neuro-fuzzy (LLNF) model and a Hodrick-

Prescott (HP) filter for recognizing the cyclic and trend factors in the energy demand time series. 

Moreover, to choose the best significant input features with the smallest probable redundancies for 

the forecasting method, a mutual information (MI) method was used. Their proposed method was 

worked out in three case studies, containing demand forecasting of natural gas, crude oil, and 

gasoline over the next 12 months. The gained forecasting outcomes show the notable performance 

of the recommended method.  

Furthermore, Pelka and Dudek (2018) studied a neuro-fuzzy system for the medium-term 

demand forecasting of energy that involves a description of input and output variables. The authors 

showed yearly predictor trends of the time series to filter out the patterns and combine input data. 

As a numerical example, they employed the recommended method for historical data on monthly 
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energy demand in four European countries. These results were contrasted with different methods, 

for instance exponential smoothing, ARIMA, and kernel regression. The high accuracy and 

effectiveness of the proposed method is confirmed. In another study, Avila, S´aez, Jimenez-

Estevez, Reyes, and Nú˜nez (2013) investigated a stable Takagi & Sugeno (T&S) fuzzy model for 

demand estimating in a real-life microgrid placed in Huatacondo, Chile. For validation, the authors 

evaluated the proposed fuzzy model with an adaptive neural network. Besides, to improve the 

forecasting capability, an examination of the quantity of historical data and the rate expected for 

training targets was done.  

 

4.3.2. Grey model (GM)  

In the 1980s, Professor Deng Julong proposed the grey system theory, which has significant 

influences in the literature (Deng, 2002; Liu & Lin, 2006; Xiao, Song, & Li, 2005; Zhou & He, 

2013). In general, two regular grey predicting models are the GM (1,1) and Discrete GM (1,1) 

models (Deng, 2002; Liu & Lin, 2006). The grey models are expressed as the systems with to some 

extent known and partly unknown data (Ghalehkhondabi et al., 2017). This theory chooses an 

ambiguous system with a ‘‘small sample and poor information’’ as the study target (Deng, 2002) 

and prepares dominant technical assistance for predicting and has been effectively utilized in many 

fields and proved acceptable outcomes (Zhou & He, 2013). A complete list of recognized articles 

that used the Grey Model (GM) in their forecasting methods is presented in Table 4.2. Xie, Yuan, 

and Yang (2015) considered China’s energy-saving policy and employed novel methods to forecast 

both the energy demand and supply patterns of China. To predict the trends, the authors used a 

novel Markov method with a quadratic programming model while to estimate the total quantity of 

energy demand and supply, they employed an optimized single variable discrete grey forecasting 

model. Their results were compared with the regression model, and it is recognized that the 

proposed model was slightly better than the regression in forecasting and simulating the case. 

Moreover, Pi et al. (2010) employed an improved grey model GM (1,1) by applying three 

methodologies of the 3-points average technology and the residual modification to estimate 

electricity demand and supply in China from 1984 to 2006. Their technique considered the general 

trend series and random variations. Their outcomes denoted that China’s final energy demand will 

rise quickly in the period 2007–2015 while it could be supplied a scientific basis for the designed 

development of energy production in China. Also, Hu (2017a) suggested a novel residual 

modification model, FLNGM (1,1). The author applied the functional-link net (FLN) along with 

genetic-algorithm-based learning to approximate the modification range for its corresponding 

projected value gotten from the original GM (1,1) model. The genetic algorithm (GA) was 

exploited to automatically find out the connection weights of an FLN to create the suggested 

FLNGM (1,1) model with high forecasting precision. To confirm the suggested model, the author 

exploited real energy demand cases from China. The outcomes prove that the suggested model 

performs well contrasted to other grey residual modification models with sign estimation. 
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Table 4.2. A complete list of recognized articles which used Grey model (GM) in their forecasting methods 

Year Authors Objective Methods of forecasting Energy types 
Application 

areas 

Time 

cited 

2020 Hu 
Energy demand forecasting using a novel 

remnant GM(1,1) model 
Grey models, NN Coal 

National energy 

demand 
0 

2019 Zhao et al. 
Forecasting China's primary energy demand 

and energy structure 

Rolling grey model (RGM), support 

vector regression (SVR), particle 

swarm optimization (PSO) 

all 
National energy 

demand 
1 

2019 Wang et al. 
Prediction of the energy demand trend in 

middle Africa 

Metabolic grey model (MGM), 

modified exponential curve method 

(MECM), autoregressive integrated 

moving average (ARIMA) and BP 

neural network model (BP) 

Electricity 
National energy 

demand 
0 

2018 Jiang et al. 
Comparison of forecasting India's energy 

demand using different methods 

metabolic grey model (MGM), 

autoregressive integrated moving 

average (ARIMA), MGM-ARIMA, 

and backpropagation neural 

network (BP) 

Oil 
National energy 

demand 
5 

2018 Ervural and Ervural 
Improvement of grey prediction models and 

their usage for energy demand forecasting 
Grey prediction models Oil 

National energy 

demand 
3 

2017 Hu (a) 
Grey prediction with residual modification 

to energy demand forecasting 
Grey prediction Coal 

National energy 

demand 
7 

2017 Hu (b) 

Nonadditive grey prediction using 

functional-link net for energy demand 

forecasting 

Nonadditive Grey Prediction Coal 
National energy 

demand 
3 

2017 He et al. 
Research on the prediction of energy 

demand in China 
Grey Theory and System Dynamics Coal 

National energy 

demand 
1 

2016 Hamzaçebi 
Forecasting the monthly electricity demand 

in Turkey between 2015 and 2020 
 Grey forecasting model Electricity 

National energy 

demand 
5 

2016 Wang 
Research on energy demand forecast in 

baoding city in China 

Grey relational analysis, analogy 

method 
all 

Regions energy 

demand 
0 

2015 Xie et al. 

Forecasting China's energy demand and self-

sufficiency rate by grey forecasting model 

and Markov model 

Grey forecasting model and the 

Markov model 
Coal 

National energy 

demand 
70 

2012 Wang et al. China's energy demand forecasting Grey System Theory Coal 
National energy 

demand 
0 

2012 Li et al. 
Study on Beijing's energy utilization and 

forecast energy supply and demand 
Grey model Coal 

Regions energy 

demand 
0 
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2012 Wu et al. 

The analysis and forecasting model of the 

energy supply and demand in Jiangxi 

province 

Grey system and Brown 

nonlinearity exponential smoothing 
Coal 

Regions energy 

demand 
0 

2011 Chen-chen et al. 

Energy demand forecast based on the new 

weakening buffer operators with exponential 

type 

Grey model Coal 
National energy 

demand 
1 

2011 Xue-xia et al. 
Energy risks zoning and demand forecasting 

in Jiangsu Province 
Grey model Coal 

Regions energy 

demand 
1 

2011 Liming et al. 
The tendency of Chinese energy demand and 

supply prediction 
Grey Theory Coal 

National energy 

demand 
0 

2011 Shuangfeng et al. 
Short-term energy demand forecasting 

model for small regional aspects 

Gray model and multiple linear 

regression 
Coal 

Regions energy 

demand 
0 

2010 Pi et al. Forecasting Energy Demand in China Grey model Electricity 
National energy 

demand 
32 

2010 Lu et al. 

Forecasting the motor vehicle, energy 

demand and CO2 emission from Taiwan's 

road transportation sector 

Grey forecasting model Gas 
Transportation 

sector 
1 

2009 Xie and Li 
Research on Gray prediction modeling 

optimized for energy consumption demand 

Gray Prediction Modeling 

Optimized by Genetic Algorithm 
Coal 

National energy 

demand 
3 
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4.3.3. Metaheuristic algorithms  

The word “metaheuristic” expresses higher-level heuristics that are recommended for 

solving all-inclusive optimization problems (Dokeroglu, Sevinc, Kucukyilmaz, & Cosar, 

2019). Metaheuristic algorithms are first created based on natural phenomena (Wang, Zhou, et 

al., 2020) and they denote the main research area in combinatorial optimization (Elshaer & 

Awad, 2020) as demonstrated by numerous literature reviews (e.g., Blum & Roli, 2003; 

Boussaïd et al., 2013; Gendreau & Potvin, 2005; Osman & Laporte, 1996) and books (e.g., 

Gendreau & Potvin 2010; Glover & Kochenberger, 2003). Regardless of the successes of the 

classical metaheuristic algorithms, new and novel evolutionary methods have been developed 

effectively in the preceding two decades as well. Investigation of metaheuristic algorithms 

through this period presents a considerable number of innovative metaheuristics stimulated by 

behavioral or evolutionary procedures. In several examples, this new trend of metaheuristic 

methods produces the finest resolutions for several unanswered benchmark problem sets 

(Dokeroglu et al., 2019). A complete list of recognized articles that used Metaheuristic 

algorithms in their forecasting methods is presented in Table 4.3.  

In recent times, several types of research are presented by researchers to estimate the 

energy demand of Turkey. Ünler (2008) predicted Turkey’s demand for energy more effectively 

by applying the Particle swarm optimization (PSO) method. They used population, gross 

domestic product (GDP), import, and export as key energy demand indicators. Validation of 

the model was made with another metaheuristic algorithm entitled ant colony optimization 

(ACO). In the same way, Kiran, Ozceylan, Gunduz, and Paksoy (2012) proposed a new hybrid 

method to forecast energy demand of Turkey. Their hybrid method was the integration of ACO 

and PSO, while it developed in two fashions which were linear (HAPEL) and quadratic 

(HAPEQ). They considered indicators such as population, GDP, import, and export for energy 

demand. Moreover, a contrast was created with ACO and PSO for validation. Their results 

showed that relative estimation errors of the HAPE model were the lowest and the quadratic 

form (HAPEQ) delivered better-fit solutions because of variations of the socio-economic 

indicators.  

To forecast China’s energy demand until 2020, Yu, Wei, and Wang (2012) proposed a 

network-based energy demand, predicting model by applying Mix-encoding PSO and Radial 

Basis Function (MPSO-RBF). The China energy demand was examined from 1980 to 2009 by 

considering population, GDP, the proportion of industry in GDP, the share of coal energy, and 

urbanization rate. The results showed that the suggested model has fewer hidden nodes and 

smaller estimated errors contrasted with other ANN-based forecasting models. Ghanbari, 

Kazemi, Mehmanpazir, and Nakhostin (2013) studied a new method named “Cooperative Ant 

Colony Optimization-Genetic Algorithm” (COR-ACO-GA), to build expert systems with the 

capability of modeling and simulating variations of energy demand. They applied the proposed 

model to three case studies include yearly demand for electricity, oil, and natural gas in Iran. 

Furthermore, they compared their outcomes to artificial neural networks (ANNs) and adaptive 

neuro-fuzzy inference systems (ANFISs). This comparison showed that the proposed model 

was more accurate-stable than other methods. 
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Table 4.3. A complete list of recognized articles which used Metaheuristic algorithm in their forecasting methods 

Year Authors Objective Methods of forecasting Energy types 
Application 

areas 

Time 

cited 

2019 Jalaee et al. 

The modeling of the energy consumption in 

Iran to forecast future projections based on 

socioeconomic and demographic variables 

Cuckoo optimization algorithm Oil 
National energy 

demand 
0 

2018 Kampelis et al. 

Development of demand response energy 

management optimization at building and 

district levels 

Genetic Algorithm and Artificial 

Neural Network Modelling  
Electricity Building 10 

2017 Hu (c) Energy demand forecasting 
Genetic-algorithm-based remnant 

Grey prediction model 
Coal 

National energy 

demand 
7 

2017 
Badar-Ul-Islam et 

al. 

Electrical energy demand prediction in smart 

grid 

Chaotically improved meta-

heuristics and modified BP neural 

network-based model 

Electricity Smart grid 9 

2016 Nazari and Kazemi 

Select the best scenario for energy demand 

forecast of residential and commercial 

sectors in Iran by using particle swarm 

optimization algorithm 

Particle swarm optimization (PSO) 

algorithm 
Oil Residential 0 

2016 Chen et al. 

Predict the energy demand of greenhouses 

with a better performance of accuracy and 

cost time 

Adaptive particle swarm 

optimization, genetic algorithms 

(APSO-GA) 

Electricity Greenhouses 20 

2016 Liu et al. 
Prediction of primary energy demand in 

China 

Adaptive Genetic Algorithm Energy 

Demand Estimation (AGAEDE) 

optimal model 

Coal 
National energy 

demand 
8 

2016 Nazari et al. 

Forecasting of energy demands of residential 

and commercial sectors in Iran using linear 

and exponential functions 

Genetic and Particle swarm 

optimization (PSO) algorithms 
Electricity Residential 2 

2015 Uguz et al. 
Determine Turkey's long-term energy 

demand 

Artificial Bee Colony with Variable 

Search Strategies (ABCVSS) 

method 

Oil 
National energy 

demand 
1 

2015 Nazari et al. 

Develop different models to analyze energy 

demand of residential and commercial 

sectors in Iran 

The GA and PSO energy demand 

estimation models (GA-DEM, 

PSO-GEM) 

Oil Residential 6 

2014 Cao et al. 
Energy demand forecasting based on 

economy-related factors in China 

Support machine regression and 

quantum-behaved particle swarm 

optimization 

Coal 
National energy 

demand 
6 

2013 Ghanbari et al. 

Model and simulate fluctuations of energy 

demand under the influence of related 

factors 

Cooperative Ant Colony 

Optimization-Genetic Algorithm 

(COR-ACO-GA) 

all 
National energy 

demand 
40 
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2013 Cheng  Energy demand forecast of the city Cellular genetic algorithm Coal 
Regions energy 

demand 
0 

2012 
Baczynski and 

Piotrowski 

Description of a worked-out method of 

estimating hourly demand electric energy 

forecasts quality for chosen consumers 

groups 

Particle swarm optimization 

algorithm (PSO) 
Electricity 

Regions energy 

demand 
0 

2012 Yu and Zhu Energy demand forecasting in China 

A hybrid algorithm called PSO-GA 

(particle swarm optimization-

genetic algorithm) 

Coal 
National energy 

demand 
35 

2012 Kiran et al. Forecasting energy demand of Turkey 

A hybrid approach based on 

Particle Swarm Optimization and 

Ant Colony Algorithm 

Oil 
National energy 

demand 
111 

2012 Yu et al. China's primary energy demands in 2020 

Mix-encoding Particle Swarm 

Optimization and Radial Basis 

Function (MPSO-RBF) estimation 

model 

Coal 
National energy 

demand 
40 

2012 Piltan et al. 
Energy demand forecasting in Iranian metal 

industry 

Linear and nonlinear models based 

on evolutionary algorithms 
Electricity Industrial sector 34 

2012 Assareh, et al. Forecasting energy demand in Iran 

Genetic Algorithm (GA) and 

Particle Swarm Optimization (PSO) 

Methods 

Oil 
National energy 

demand 
11 

2012 Forouzanfar et al. Transport energy demand forecasting Multi-level genetic programming Oil 
Transportation 

sector 
21 

2010 
Parol and 

Piotrowski 

Long-term forecasting method of annual 

electrical energy demand in electric 

distribution companies 

Prigogine logistic equation aided by 

evolutionary algorithms 
Electricity 

Power supply 

systems 
0 

2010 Ghanbari et al. (b) Prediction of electrical energy demand 
Hybridization of Particle Swarm 

Optimization and Noise Filtering 
Electricity 

National energy 

demand 
3 

2008 Uenler 
Energy demand forecast: The case of Turkey 

with projections to 2025 
Particle swarm optimization (PSO)  Oil 

National energy 

demand 
128 
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4.3.4. Regression models  

One of the best universally applied statistical techniques for predicting energy demand 

is Regression models (Islam et al. 2020). There are two common types of Regression: Linear 

and Nonlinear (for more details about the categorization of regression models follow Fumo & 

Rafe Biswas, 2015; Sobri, Koohi-Kamali, & Rahim, 2018). Regression methods set up a 

predicting function by determining a dependent variable value (known as the response variable) 

based upon one or more independent variables (known as a predictor variable) (Abdul-Wahab, 

Bakheit, & Al-Alawi, 2005; Ghalehkhondabi et al., 2017). A complete list of recognized articles 

that used Regression models in their forecasting methods is presented in Table 4.4.  

Some key elements affect a building’s heat utilization, such as the house global heat 

loss coefficient (G), the south equivalent surface (SES), and the dissimilarity among the inside 

set point temperature and the sol–air temperature. Accordingly, Catalina, Iordache, and 

Caracaleanu (2013) suggested a model to forecast the demand for heating energy by applying 

a multiple regression forecasting method. The authors used a multiple dynamic simulation to 

define the values of the inputs/output data of the forecasting method. They used real data from 

17 blocks of apartments for validation. Using a complete error analysis, the proposed method 

offered an exceptionally good accuracy with a correlation coefficient of 0.987. Another study 

by Zhang, Mu, Li, and Ning (2009) applied the partial least square regression (PLSR) technique 

with two situations to estimate the energy demand for transportation for 2010, 2015, and 2020. 

The authors investigated Transport energy demand for the period of 1990–2006 considering 

GDP, urbanization rate, passenger-turnover, and freight-turnover. Their results were 

remarkably close to the prediction of the Energy Research Institute of China. Additionally, to 

assess power and heat load profiles for several house types, Pedersen, Stang, and Ulseth (2008) 

proposed a load forecasting technique. The authors employed a regression analysis for the heat 

load model while different statistical distributions were used for the power load model. 

Consequently, they utilized an approach for load collection based upon the house types’ load 

profiles to forecast the highest load demands, load length profiles, annual load profiles, and 

annual energy demands, all allocated into power and heat objectives, for a scheduling zone. 
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Table 4.4. A complete list of recognized articles which used Regression models in their forecasting methods 

Year Authors Objective Methods of forecasting Energy types 
Application 

areas 

Time 

cited 

2019 Amin et al. 
Analysis and demand forecasting of 

residential energy consumption 
Linear regression models Electricity Residential 0 

2017 Taniguchi et al. 

Define impact on consumers' utility and 

propose two demand response methods 

which aim to minimize the impact 

Linear regression Electricity Smart grid 0 

2017 Dudek and Pelka 

Medium-term electric energy demand 

forecasting using Nadaraya-Watson 

Estimator 

Nonparametric regression: 

Nadaraya-Watson Estimator 
Electricity 

Power supply 

systems 
2 

2013 Mestekemper et al. 
Forecasting energy demand at an intraday 

resolution 

Semiparametric regression 

smoothing 
Electricity 

Regions energy 

demand 
14 

2013 Catalina et al. 
Fast prediction of the heating energy 

demand 
Multiple regression model Electricity Building 90 

2013 Feng et al. (a) Study on China's energy demand 
Regression prediction based on path 

analysis 
Coal 

National energy 

demand 
0 

2012 Hong and Wang 
Discuss three aspects of demand response 

through a case study of a US utility 
Regression-based approach Electricity Load forecasting 3 

2009 Taghizadeh et al. 
Forecasting transport energy demand: a case 

study of Iran 

Multi-level Fuzzy linear regression 

model 
Oil 

Transportation 

sector 
0 

2009 Zhang et al. 
Forecasting the transport energy demand in 

China 

Partial least square regression 

(PLSR) 
Coal 

Transportation 

sector 
87 

2009 Hida et al. 
Load Forecasting on demand side for 

operation of battery energy storage system 
Multi-Regression Model Electricity Load forecasting 0 

2008 Pedersen et al. 
Load prediction method for heat and 

electricity demand in buildings 
Regression analyses Electricity Building 87 
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4.3.5. Simulation model 

A simulation takes a model to live and demonstrations in what way an entity or incident 

will work (Systems Engineering Fundamentals 2003). A simulation model can be functioned 

in a prediction mode through studying the historical detected values of the model outcome 

(Tongal & Booij, 2018). A steady-state simulation presents facts about the system at a precise 

instant in time (typically at equilibrium, if such a state occurs). A dynamic simulation presents 

information over time (Daniel, Ebhora, Johnson, & Ugochukwu, 2013). Simulation helps 

researchers employ mutually qualitative and quantitative intelligence to develop their 

simulation and estimation (Pasinski, 2018). A complete list of recognized articles that used the 

Simulation model in their forecasting methods is presented in Table 4.5.  

With the purpose of investigating the energy of a building, Cho, Shin, Kim, and Hong 

(2014) estimated the energy utilization features of HVAC&R systems. The authors aimed to 

exploit an energy estimation procedure and a simple simulation program. Engineers and 

designers could apply this program to evaluate the efficiency and economic gains of HVAC&R 

systems. Their procedure of energy analysis showed up how to plan and drawing for employing 

the most useful HVAC&R systems. Also, Obara, Morizane, and Morel (2013) proposed a 

simulation model to predict electric power and heat demand by using weather data and 

equivalent values. They aimed to schedule the storage of electricity and heat from midnight to 

early morning. They used some case studies, and their results showed the effect of the economic 

productivity of the heating system, the volume of the tidal power generator, the insulation 

efficiency (Q-value) on the energy cost, and the forecasting error of the tidal power generator. 

Furthermore, they optimized the suggested simulation model with the objective functions of 

cost-reducing (facilities and operation) of the model. Another research by Grueger, Robinius, 

Hoch, Stolten, and Hartmann (2019) proposed an intelligent operating policy based on a 

simulation model considering imperfect predictions (e. g. of energy fees or wind obtainability) 

and non-linear electrolyzer performance. Their outcomes indicate that this approach cut down 

hydrogen production costs by up to 9.2% and boosts wind energy utilization by up to 19%, 

correspondingly. 

 



66 
 

Table 4.5. A complete list of recognized articles which used Simulation model in their forecasting methods 

Year Authors Objective Methods of forecasting Energy types 
Application 

areas 

Time 

cited 

2019 
Forouzandeh, and 

Richter 

Accurate prediction of the heating energy 

demand of courtyard's surrounding 

envelopes 

Temperature correction factor Electricity Building 0 

2019 Grueger et al. 

Optimized electrolyzer operation: employing 

forecasts of wind energy availability, 

hydrogen demand, and electricity prices 

Simulation model 
Electricity and 

wind 

Fuel cell-based 

mobility 
7 

2018 Filippov et al. 
A description of the computer-based energy 

demand forecasting system (EDFS) 
Adaptive simulation models Electricity 

Regions energy 

demand 
0 

2017 Naoi et al. 

Demand and supply simulations considering 

detailed forecast, scheduling and control 

functions for Japanese power system with a 

massive integration of renewable energy 

sources 

Simulation model Electricity 
National energy 

demand 
0 

2017 Silenzi et al. 

Energy demand modeling and forecast of 

Monoblocco building at the city hospital of 

Genova 

Dynamic simulations Electricity Building 0 

2017 Torres-Sanz et al. 
Prediction of electric vehicles energy 

demand 
Simulation Electricity Electric Vehicles 0 

2016 Chu et al. 

Optimal integration of alternative energy 

sources in production systems with customer 

demand forecast 

Discrete-event simulation 
Renewable 

Energy 
Industrial sector 5 

2014 Cho et al. 

Development of an energy evaluation 

methodology to make multiple predictions 

of the HVAC&R system 

Simulation Electricity 
HVAC energy 

demand 
23 

2014 Zhang et al. 

Dynamic power demand prediction for 

battery-supercapacitor hybrid energy storage 

system 

Simulation Electricity Electric Vehicles 2 

2013 Obara et al. 

Study on the method of electricity and heat 

storage planning based on energy demand 

and tidal flow velocity forecasts for a tidal 

microgrid 

Simulation model Electricity Microgrid 10 
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4.3.6. Time series model  

Documenting the order of the values of a variable at consecutive equally spaced points 

in time produces a time series. Forecasting the upcoming values of a variable based upon the 

earlier detected values is called Time-series predicting (Hamilton, 1994). A normal illustration 

of time series is the crude oil price documented at fixed time-spaces, which are employed to 

forecast the prospect price of the crude oil (Ghalehkhondabi et al., 2017). Time series prediction 

is a wide and dynamic research topic that has obtained significant consideration from the wide 

type of disciplines, for instance engineering, business, statistics, etc. Hence, the majority of the 

literature has concentrated on methods that can get precise predictions in many real-world 

purposes (Hajirahimi & Khashei, 2019). A complete list of recognized articles that used the 

Time series model in their forecasting methods is presented in Table 4.6.  

In Turkey, many of the experimental research studies include different methods of 

econometric modeling. Conversely, because the projected economic and demographic 

parameters regularly differ from the realizations, time-series forecasting provides superior 

outcomes. Consequently, Ediger and Akar (2007) forecasted the main energy demand of 

Turkey from 2005 to 2020 by using both the Autoregressive Integrated Moving Average 

(ARIMA) and seasonal ARIMA (SARIMA) approaches. The forecasting results of ARIMA are 

illustrated to be more consistent than the whole of the individual predictions. Furthermore, the 

authors suggested several strategies based on their results. Some countries such as China and 

India meet with various challenges about forecasting their energy demand. To better meet these 

future problems, they can employ improved forecasting of energy demand along with updated 

upcoming global energy requirements. Accordingly, Wang, Lv, and Zeng (2018), with the aim 

of more precisely predicting energy demand in China and India, applied some time series 

forecasting techniques including single-linear, hybrid-linear, and non-linear. To measure the 

superiority of these suggested methods, the authors employed three standards (trend map, error 

measure, and fit method). The outcomes presented showed that their recommended methods 

have an extremely high degree of fit, a little error rate, and great fitting accuracy. Another paper 

by Lora, Santos, Santos, Exp´osito, and Ramos (2004) studied a 24-h load prediction problem 

by applying a time-series forecasting technique based upon the kNN method to the Spanish 

transmission system. Moreover, a different model was set up based on recorded data through a 

typical dynamic regression method, while the parameters were approximated by solving a least-

squares problem. 
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Table 4.6. A complete list of recognized articles which used Time series model in their forecasting methods 

Year Authors Objective Methods of forecasting Energy types 
Application 

areas 

Time 

cited 

2020 Salam et al. 

Estimate and forecast the number of houses 

and the resultant energy consumptions in 

Brunei Darussalam 

Spline interpolation, autoregressive 

integrated moving average 

(ARIMA) model, nonlinear 

autoregressive (NAR) neural 

network. 

Electricity and 

water 
Building 0 

2019 
Sanchez-Duran et 

al. 
Forecasting energy demand for Spain Time-series techniques Oil 

National energy 

demand 
0 

2019 Chen et al. 

The long-term forecast of energy demand 

and uncertainty evaluation with limited data 

for energy-imported cities in China 

Autoregressive Integrated Moving 

Average, Vector Autoregressive 

models, Monte Carlo method 

Coal 
Regions energy 

demand 
0 

2018 Chen and Huang Forecasting China's primary energy demand 

Autoregressive distributed lag 

(ARDL) bounds testing approach 

and an adaptive genetic algorithm 

(AGA) 

Coal 
National energy 

demand 
0 

2018 Wang et al. (a) 
Forecasting energy demand in China and 

India 

Single-linear, hybrid-linear, and 

non-linear time series, grey theory 
Oil 

National energy 

demand 
29 

2018 Gao et al. 

Optimal scheduling and real-time control 

schemes of battery energy storage system for 

microgrids 

The autoregressive integrated 

moving average (ARIMA) 
Electricity Microgrid 5 

2017 Rehman et al. 
Forecasting long-term energy demand in 

Pakistan 

Autoregressive Integrated Moving 

Average (ARIMA), Holt-Winter, 

the long-range alternative energy 

planning (LEAP) 

all 
National energy 

demand 
14 

2016 Adom et al. 

Forecasting demand and investigate the shift 

in price and income elasticities and the 

persistent profile of shocks for diesel and 

gasoline fuels in the road transport sector 

The structural cointegration VAR Gasoline 
Transportation 

sector 
8 

2016 Rahman et al. 
Forecasting the long term energy demand of 

Bangladesh using SPSS from 2011-2040 
Time-series model with SPSS Electricity 

National energy 

demand 
0 

2016 El Kafazi et al. 
Modeling and Forecasting energy demand in 

Morocco 

Auto-Regressive Integrated Moving 

Average (ARIMA) 
Electricity 

National energy 

demand 
5 

2015 Hao, and Yang 
Forecasting and analysis of renewable 

energy demand in the rural areas of China 
VAR model 

Renewable 

Energy 

Regions energy 

demand 
0 

2014 Wang et al. 

Presenting a methodology to systematically 

formulate a hybrid renewable energy system 

(HRES) 

Autoregressive 

(AR) model 
Electricity Residential 9 
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2014 Haibo and Wei-feng 

Research on energy optimal scheduling 

based on supply and demand forecast for 

iron and steel enterprises 

Time-series model Electricity Industrial sector 0 

2014 Haitao et al. 
Spatial characters of energy demand in 

China 
Time-series forecasting methods Coal 

National energy 

demand 
0 

2012 Pan et al. 

Forecast energy demand in Taiwan's 

electronic parts and components 

manufacturing industry 

SARIMA models Electricity Industrial sector 1 

2011 Chuanping et al. 
The prediction to Chinese energy demand in 

2020 

Visual Angle of Time Series 

Analysis 
Coal 

National energy 

demand 
0 

2008 Xu 
Forecasting China energy demand up to the 

year 2020 
Vector Autoregression Model  Oil 

National energy 

demand 
0 

2007 Ediger and Akar 
Forecasting of primary energy demand by 

fuel in Turkey 
ARIMA, SARIMA Oil 

National energy 

demand 
245 

2006 
 Contreras and 

Santos 

Short-term demand and energy price 

forecasting 

Time-series procedures, Artificial 

Intelligence 
Electricity 

Electric energy 

markets 
3 

2004 Lora et al. 
Application to the short-term electric energy 

demand 
Time-series prediction Electricity Load forecasting 22 

 

 



70 
 

4.4. Intelligent methods: demand forecasting in the era of Industry 4.0  

Since the fourth industrial revolution and the digitization of SCs, businesses recognize 

that the implementation of Industry 4.0 solutions produces competitive advantages and 

opportunities for added sustainable management. Therefore, Real-time data gathering and 

predictive analytics through big data analytics, cloud manufacturing, Artificial Intelligence 

(AI), deep learning, Internet-of-Things (ІοΤ), simulation and forecasting methods are 

exploited. These methods deal with the modern requirements of SCs for example, flexibility, 

improved productivity, less waste, superior forecasting of market demand, resources 

optimization inside and outside an industrial unit and further sustainable manufacture 

procedures of SCs (Mastos et al., 2020).  

In the past decades, several traditional models have been regularly utilized for energy 

demand prediction (Chen, Rao, Liu, et al., 2019). These methods need labor-intensive work, 

including collecting, compiling, and using data, often in spreadsheets. Since the volume of data 

is increased, traditional models have turned out to be unmanageable and time-consuming 

methods that result in unaware biases. On the other hand, in the area of Industry 4.0, there’s an 

alternative approach. Companies are transferring to predicting procedures that engage 

employees to work out symbiotically through data-fueled, predictive algorithms. It is all made 

achievable with novel technologies such as AI tools. Employing these technologies through 

expert prediction provides enterprises the capability to determine issues they need to know 

about, along with issues they didn’t know, with more assurance as well as speed (Hogan & 

Merrill, 2019).  

In Industry 4.0, AI is a division of computer science which is a technology that 

considers human logical judgment, group behavior, and reasoning with computer simulation 

(Ciulla, D’Amico, Lo Brano, & Traverso, 2019). AI can be denoted as “programs, systems, 

algorithms, and machines that express intelligence” (Shankar, 2018), which seems like 

“intelligent human behavior” (Pantano & Pizzi, 2020; Syam & Sharma, 2018). AI applications 

are vast, and it has obtained significant attention throughout the previous decade. AI 

applications in the area of predicting and a number of studies have been performed by 

employing Machine Learning (ML) techniques and Neural Networks (NNs) (Makridakis, 

Spiliotis, & Assimakopoulos, 2018), as well as support vector regression (SVR) machine-based 

models, and random forest (RF) (Wei, Li, Peng, Zeng, & Lu, 2019) to enhance time-series 

forecasting. Furthermore, AI-based predictive models have been employed to determine 

prediction of energy demand (Casteleiro-Roca, G´omez- Gonz´alez, Calvo-Rolle, Jove, 

Quinti´an, Martín, & M´endez-Perez, 2018; Casteleiro-Roca et al. 2018; Khosravani, Castilla, 

Berenguel, Ruano, & Ferreira, 2016; Shao et al., 2017; Singh & Khatoon, 2013; Suganthi & 

Samuel, 2012; Torres, Aguilar, & Zu˜niga-Meneses, 2018).  

On the contrary with traditional methods, AI-based forecasting methods do not depend 

on the definite association among energy demand and its affecting factors while learning after 

a huge quantity of historical data for the forecasting as an alternative (Wang, Jiang, Zhou, Wu, 

& Qin, 2016). The key success factors of AI are based on the exploitation of algorithms skilled 

in learning through trial and error and enhancing their performance over time (Makridakis et 

al., 2018). These methods have robust qualifications in treating nonlinear problems and so 

broadly exploited in energy demand forecasting, mainly in short-term forecasting (Wei et al., 

2019; Yang, Yan, & Lam, 2014). Furthermore, AI methods application is particularly effective 

in conditions where a proper mathematical problem of energy consumption is not clear (Islam 

et al. 2020). The fact is that since 2015 the number of research studies that employed intelligent 

methods for energy demand forecasting increased sharply (see Fig. 4.11). Consequently, in the 
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next subsections, we briefly investigate the two most cited intelligent methods of energy 

demand forecasting in the literature including ML techniques and NNs. 

 

 

Fig. 4.11 The trends of forecasting methods from 2000 to 2020 

4.4.1. Machine learning  

In the scholarly literature for time series prediction, ML approaches have been 

recommended as replacements to statistical ones (Makridakis et al., 2018). The ML obtains 

regulations of decisions from a chain of existing objective information and with learning and 

assessment of chains of input and output consequences, revealing the core mechanism (Wang, 

Zeng, Dai, & Zhu, 2020). The purpose of ML approaches is to enhance forecasting precision 

by diminishing some loss function, usually the sum of squared errors. ML approaches are 

computationally further demanding than statistical ones, needing more dependent on computer 

science to be applied, finding them at the intersection of statistics and computer science 

(Makridakis et al., 2018). A complete list of recognized articles that used ML in their 

forecasting methods is presented in Table 4.7.  

Considering building heating energy, Guo et al. (2018) developed an energy demand 

forecasting model by using ML approaches. Their models involved extreme learning machine, 

backpropagation neural networks, support vector regression, and multiple linear regression. 

Also, they considered the correlation analysis technique to optimize various meteorological 

factors, operating parameters, time, and indoor temperature parameters in the function of model 

variables. To evaluate the functioning of the proposed models, real data of building heating 

with a ground source heat pump system were gathered. Outcomes confirmed that for various 

ML approaches, the operations of extreme learning machine models were better than others. In 

the same year, Ahmad and Chen (2018a) forecasted the required upcoming energy of water 

source heat pumps by using four ML-based models which were CDT, FitcKnn, LRM, and 

Stepwise-LRM. They considered input factors that involve environmental data, power 

consumption data of the water source heat pump, hour-type/day-type, while the output was the 

net electricity consumption of the water source heat pump. To confirm the precision of the 

proposed models, four validation approaches such as the LMA, BRNN, GPR, and TB were 

utilized. In another study by Ahmad and Chen (2018b), they suggested an energy forecasting 

model for medium and long-term district level by employing a new ML-based model includes 
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1) artificial neural network with nonlinear autoregressive exogenous multivariable input 

model; 2) multivariate linear regression model; and 3) adaptive boosting model. For the 

model’s input/output, they considered environmental and aggregated energy consumption data, 

respectively. The forecasting results showed that not only the proposed model could improve 

the accuracy of forecasting but give suitable forecasting intervals in the smart grid 

environment. 
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Table 4.7. A complete list of recognized articles which used Machine Learning in their forecasting methods 

Year Authors Objective Methods of forecasting Energy types 
Application 

areas 

Time 

cited 

2019 Yuan et al. 
Prediction-based microgrid energy 

management strategy 

Hybrid prediction-based energy 

management strategy 
Electricity Microgrid 2 

2019 Huang et al. 
Energy demand prediction strategy for 

residential buildings 
Ensemble learning methods Electricity Building 2 

2019 Kim et al. 

Development of a consecutive occupancy 

estimation framework for improving the 

energy demand prediction performance of 

building energy modeling tools 

Machine learning Electricity Building 4 

2019 Eseye et al. 
 Improved electricity demand forecasting in 

decentralized energy systems 
Machine Learning Electricity 

Decentralized 

energy system 
1 

2018 Guo et al. 
Energy demand prediction for building 

heating systems 
Machine learning Electricity Building 27 

2018 
Ahmad and Chen 

(b) 

Forecasting district level medium-term and 

long-term energy demand in the smart grid 

environment 

Machine-learning models Electricity Smart grid 9 

2018 
Ahmad, and Chen 

(a) 

Forecasting the future energy requirement of 

water source heat pumps 
Machine learning-based models Electricity 

Water source heat 

pumps 
10 

2017 Guo et al. 

A thermal response time ahead energy 

demand prediction strategy for building 

heating system 

Machine-learning methods Electricity Building 2 

2017 Paterakis et al. Aggregated energy demand prediction 
Deep Learning Versus Traditional 

Machine Learning Methods 
wind, solar 

Regions energy 

demand 
0 

2017 Minhas et al. 
Load control for supply-demand balancing 

under renewable energy forecasting 

Support Vector Machine (SVM) 

learning algorithm 
Electricity Smart grid 1 

2015 Zhang and Jing The prediction of cement energy demand Support vector machine Electricity Industrial sector 1 

2010 Frankowski et al. 

Prediction the electricity demand and the 

electrical energy balance differences in 

Poland 

Advanced machine learning 

algorithms 
Electricity 

National energy 

demand 
0 
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4.4.2. Neural network (NN)  

NNs are most distinguished for being appropriate to predict the future values of 

nonlinear data sets, peer processing to effectively execute the various immediate tasks, and the 

flexibility to many environmental circumstances which is the consequence of their learning 

structures (Chen, Lai, & Yeh, 2012). The Artificial NN (ANN) is considered as a data-driven 

method stimulated through the human brain. It is created by a system of processing nodes (or 

neurons), which carry out numerical operations and are interrelated in a definite order 

(Ghalehkhondabi et al., 2017). ANN is a structure for several different ML algorithms to run 

mutually and deal with difficult data records (Wei et al., 2019). The ANN employed data to 

recognize the relation of input and output variables and estimate the outputs of the noisy 

multivariate time series (Adamowski, Fung Chan, Prasher, Ozga-Zielinski, & Sliusarieva, 

2012). The ANN-based methods employed in energy demand prediction consist of the 

feedforward neural network (FFNN) (Azadeh, Babazadeh, & Asadzadeh, 2013; Jebaraj, Iniyan, 

& Goic, 2011; Kermanshahi, 1998; Soldo, Potoˇcnik, ˇSimunovi´c, ˇSari´c, & Govekar, 2014), 

BPNN (Yu & Xu, 2014), adaptive network-based fuzzy inference system (ANFIS) (Azadeh et 

al., 2011; Azadeh et al., 2013), wavelet neural network (WNN) (Bhaskar & Singh, 2012; 

Catal˜ao, Pousinho, & Mendes, 2011; Zhang, Wei, Li, Tan, & Zhou, 2018; Zhang & Wang, 

2012), ESN (Bianchi, Santis, Rizzi, & Sadeghian, 2015; Wang et al. 2018c), deep learning (DL) 

models, and others (Burger & Moura, 2015; Jiang, Liu, & Song, 2017; Lopez, Valero, Senabre, 

Aparicio, & Gabaldon, 2012; Lu, Wang, Cai, & Zhao, 2015). A complete list of recognized 

articles that used Neural Network (NN) in their forecasting methods is presented in Table 4.8.  

Gonz´alez-Romera et al. (2006) predicted the monthly demand of electricity in Spain 

by applying two NNs. They used some models in the movement extraction to observe which 

of them delivers the best results. Their outcomes were superior to other methods, especially 

when only one NN was employed to predict the first consumption series. After that, Yokoyama, 

Wakui, and Satake (2009) proposed a new global optimization method named “Modal 

Trimming Method” to recognize the parameter quantities of a model for non-linear 

programming problems. At first, they detached the trend and periodic variation of energy 

demand historical data, then the transformed data is manipulated as the key input to a NN. 

Additionally, air temperature and relative humidity were counted as further inputs to the NN, 

and their consequence on the forecasting of energy demand was examined. For a benchmark 

test, they applied the proposed model to forecast the cooling demand in a building and its 

effectiveness and validity were explained as well. By focusing on a medium-term energy 

demand predicting system, Srinivasan (2008) tried to assist utilities to recognize and predict 

the demand of energy for each of the end-use utilization segment of the energy system, 

characterizing residential, manufacturing, business, non-industrial, show business and public 

lighting load. The author has applied several conventional and NN-based approaches to 

estimate the monthly demand for energy. Based on the results, ANN-based models were 

superior, especially the cluster technique of data handling (GMDH) neural network. 
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Table 4.8. A complete list of recognized articles which used Neural Network (NN) in their forecasting methods 

Year Authors Objective Methods of forecasting Energy types 
Application 

areas 

Time 

cited 

2020 Vesa et al. 
Energy flexibility prediction for data center 

engagement 
Neural Network (NN) Electricity 

Data centers 

(DCs) 
0 

2019 Pramono et al. Short-term load forecasting (STLF) 

Causal residual convolutional 

neural network (CNN) and long 

short-term memory (LSTM) 

Electricity Load forecasting 0 

2019  Feng et al. 
Proposing a distributed hour-ahead energy 

trading management is  
Neural Network (NN) Electricity Microgrid 0 

2019  Pelka and Dudek 
Forecasting monthly energy demand for four 

European countries 

Generalized Regression Neural 

Network 
Electricity 

Regions energy 

demand 
1 

2019 
 Casteleiro-Roca et 

al. 
Short-term energy demand forecast in hotels 

Artificial Neural Network, Support 

Vector Regression 
Electricity Hotels 0 

2018  Yin et al. 
Comprehensive forecast of urban water-

energy demand 
Artificial neural network model water 

Regions energy 

demand 
5 

2018  Cao et al. 
Conditional density forecast of China's 

energy demand 

Quantile regression neural network 

(QRNN) 
Coal 

National energy 

demand 
1 

2018  Mason et al. 

Forecasting energy demand, wind 

generation, and carbon dioxide emissions in 

Ireland  

Evolutionary neural networks 
Electricity and 

wind 

National energy 

demand 
11 

2018 Muralitharan et al. Energy demand prediction in smart grid Neural network Electricity Smart grid 43 

2017  Labidi et al. 

A new strategy based on power demand 

forecasting to the management of multi-

energy district boilers equipped with hot 

water tanks 

Wavelet-based Multi-Resolution 

Analysis combined with Artificial 

Neural Networks 

wood, gas 
Multi-energy 

district bOilers 
6 

2017 Ahmad et al. 
Energy demand prediction for large non-

domestic buildings 
Random Neural Network Predictor Electricity Building 0 

2017  Kumar et al. 
Ensemble wavelet learners for demand 

forecasting in energy grids India 

Neural network, nonlinear 

autoregressive exogenous model 

(NARX) 

Electricity Smart grid 0 

2017  Hu and Jiang 

Forecasting energy demand using neural-

network-based grey residual modification 

models 

Neural-network-based grey residual 

modification models 
Electricity 

Regions energy 

demand 
17 

2017  Das G.S. Forecasting the energy demand of Turkey  

Neural network based on the 

particle swarm optimization 

algorithm with mutation (PSOM-

NN) 

Oil 
National energy 

demand 
3 
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2017  Kankal and Uzlu 
Modeling and forecasting long-term electric 

energy demand in Turkey 

Artificial neural network (ANN) 

with teaching-learning-based 

optimization (TLBO) 

Electricity 
National energy 

demand 
18 

2017  Furukakoi et al. 

Optimum capacity of energy storage system 

considering solar radiation forecast error and 

demand response 

Neural Network (NN) Electricity 
Power supply 

systems 
0 

2016  Sanjari et al. 

Studying the demand forecast error and a 

near-optimal dispatch strategy by using an 

artificial neural network (ANN) is proposed 

for the residential energy system 

Artificial neural network (ANN) Electricity Residential 21 

2016 Deka et al. 

Predictive modeling techniques to forecast 

energy demand in the United States: a focus 

on economic and demographic factors 

Artificial neural network (ANN) 

models, regression analysis models, 

autoregressive integrated moving 

average (ARIMA) 

all 
National energy 

demand 
8 

2016 Zhao N. 
Study on the prediction of energy demand 

based on master-slave neural network 
Master-Slave Neural Network Electricity 

National energy 

demand 
0 

2015 Tianheng et al. 
A supervisory control strategy for plug-in 

hybrid electric vehicles 
Neural network model Electricity Electric Vehicles 52 

2014  Zhang and Li 
Forecasting Chinese energy supply and 

demand situation 

Backpropagation (BP) neural 

network 
all 

National energy 

demand 
1 

2014  Es et al. Predicting the net energy demand of Turkey  Artificial neural networks (ANN) Oil 
National energy 

demand 
10 

2014 
 Ardakani and 

Ardehali 

Investigating the effects of historical DSM 

data on the accuracy of EEC modeling and 

long-term forecasting 

Artificial neural network (ANN) 

models, improved particle swarm 

optimization (IPSO), shuffled frog-

leaping (SFL) algorithms 

Electricity 
Demand-side 

management 
43 

2013 Feng et al. (b) Predicting China's energy demand RBF neural network model Coal 
National energy 

demand 
0 

2011  Kazemi et al. (b) 
Residential and commercial energy demand 

forecast: Iran case study 

Multi-level Artificial Neural 

Network 
Oil Residential 2 

2011  Zhang et al. Energy demand forecasting in China Dynamic RBF Neural Network Coal 
National energy 

demand 
0 

2011  Filik et al. 
Hourly forecasting of long term electric 

energy demand 

Mathematical models and Artificial 

Neural Network (ANN) 
Electricity 

National energy 

demand 
10 

2010  Kazemi et al. 
Annual transport energy demand forecasting 

by several socio-economic indicators 

Artificial neural networks (ANNs) 

model 
Oil 

Transportation 

sector 
6 

2010 Kolokotroni et al. 
Prediction of heating and cooling energy 

demand for buildings in London 
Artificial Neural Network (ANN)  Electricity Building 51 
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2010 Meng et al. 
Monthly electric energy demand forecasting 

under the influence of two calendars 
RBF neural network Electricity 

National energy 

demand 
0 

2009 Yokoyama et al. 
Prediction of energy demands using a neural 

network 
Neural network Electricity Building 81 

2009  Wang and Liang The forecast for energy demand Artificial Neural Network Coal 
National energy 

demand 
2 

2008 Ruas et al. Electrical energy demand prediction 
Artificial Neural Networks and 

Support Vector Regression 
Electricity Load forecasting 0 

2008 Srinivasan D. 
Energy demand prediction using GMDH 

networks 

group method of data handling 

(GMDH) neural network 
Electricity 

Sectorial energy 

demand 
78 

2008 
 Gonzalez-Romera 

et al. 
Monthly electric energy demand forecasting Neural networks and Fourier series Electricity 

National energy 

demand 
55 

2008  Abdel-Aal, R.E. 
Univariate modeling and forecasting of 

monthly energy demand 
Abductive and neural networks Electricity 

National energy 

demand 
50 

2007 
 Gonzalez-Romera 

et al. 

Forecasting of the electric energy demand 

trend and monthly fluctuation  
Neural networks Electricity 

Power supply 

systems 
31 

2007 Ungureanu et al. 
Simulation and prediction of the thermal 

energy demand of buildings 

Statistical methods and artificial 

neural networks 
Electricity Building 0 

2006 
Gonzalez-Romera 

et al. 

Monthly electric energy demand forecasting 

based on trend extraction 
Neural networks Electricity 

National energy 

demand 
112 

2005 Thaler et al. 
Prediction of energy consumption and risk 

of excess demand in a distribution system 
Empirical model Gas 

National energy 

demand 
14 

2005 Yokoyama et al. Prediction of energy demands Neural network Electricity Building 1 

2002 Carmona et al. 
Predicting the evolution of the monthly 

demand of electric consumption 
Neural networks Electricity Load forecasting 5 

2001 
Olofsson and 

Andersson 

Long-term energy demand predictions based 

on short-term measured data 
Neural network Electricity Building 33 

 

 

Table 4.9. Summary of the most used forecast methods of energy demand (Zhao et al. 2019, Wang et al. 2018a; Yuana et al. 2017) 

Forecast 

model 

Data  

requirement 

Forecast 

period 

The number 

of variables 
Advantages Disadvantages 

Fuzzy Logic Low 
Short/Long 

term 
Multivariate 

High accuracy in reflecting uncertainty qualitative 

knowledge; good at uncertain situation prediction 

of input variables. 

Lack of specific prediction formulas; cannot 

reflect the relationship between predicted values 

and historical data; lacking self-learning 

capability and specific prediction formulas; 

requiring more pre-tuning and testing 
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Grey model Low 
Short/Medium-

term 
Univariate 

Simple; high accuracy; the sample does not need 

regularity and large numbers; suitable for short- 

and medium-term prediction; fewer model 

parameters 

Ignore the intrinsic mechanism of the system; 

cannot dynamically reflect system changes; can 

not consider the relationship between factors 

Metaheuristic 

algorithms 
High 

Short/Long 

term 
Multivariate 

Conceptual simplicity; effective in processing a 

large amount of data and eliminating redundant 

information; able to solve a discrete optimizing 

problem; attractive for limited feature selection 

Requiring change the problem presentation; high 

computational efforts; complex in learning and 

application; producing suboptimal solutions 

Regression 

models 
Low Short term Multivariate 

Good at analyzing multi-factor models; provide 

error checking of model estimation parameters; 

easy to calculate; the correlation degree between 

the factors can be analyzed 

Results cannot reflect periodic wave; poor 

generalization; low accuracy 

Simulation 

model 
Low 

Short/Long 

term 
Multivariate 

Forecast under uncertainty; able to answer many 

questions; low data requirements to model; easy 

what-if scenario analysis; low cost; innovative 

approach 

Good theories needed; no standardized approach; 

challenging to validate; potential scope creep in 

projects; high skepticism; political implications 

Time series 

model 
Low 

Short/Long 

term 
Univariate 

The mathematical model requires only 

endogenous variables; popular and easy to adapt 

in a stationary time series with no missing sample 

Require timing data to be stable; cannot reflect 

nonlinear relationships; the determination of 

model parameters is complicated 

Machine 

Learning 
High Short term Multivariate 

Creating an optimal separating hyperplane in 

higher dimensional feature space; improving 

generalization performance and existing global 

minimum; automates forecast updates based on 

the recent data 

Increases adaptability to changes 

Difficult to determine kernel function and 

separate real data perfectly; sensitive to missing 

data; high requirement in selecting 

hyperparameters; poor performance in multiple 

classification problem; maintenance complexity is 

high; technology requirements are high; the 

amount of required data is high 

Neural 

Network 
High 

Short/Long 

term 
Multivariate 

Provide self-learning function and high-speed 

search for optimal solutions; fully approximate 

any arbitrarily complex nonlinear relationship; 

can learn and adapt to unknown or uncertain 

systems; highly robust; fully tolerant 

No ability to explain reasoning process and 

reasoning basis; cannot work when data is 

insufficient; turning all reasoning into numerical 

calculations results in the loss of information; 

learning time is too long; large sample size 

required for model training 
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4.5. Conclusion and policy implications  

The number of articles in demand forecasting increased significantly from 2008 due to 

the global financial crisis and the resulting severe consequences in both countries and 

companies all around the world especially in the energy SC market (see Fig. 4.4). Hence, this 

study presented a comprehensive review of demand forecasting of energy SC in the literature 

published between 2000 and 2020. From the application of our methodology, we selected a 

total of 267 articles that are further classified. We explored several issues like the number of 

publications, country/area, document types, energy types, research, and application areas. 

Moreover, we discovered about 73 different methods of energy demand forecasting which 

employed by authors in the last two decades (see Appendix Table 4.A1). Consequently, among 

these methods, there were eight methods with the most citations which encompass 56% of total 

publications. Traditional predicting approaches can be greatly manual and prone to individual 

bias. Thus, one of the aims of this study was to investigate the impact of Industry 4.0 in energy 

demand forecasting. Based on our literature review, we categorized these methods to 

Traditional (e.g. Fuzzy Logic, Grey model, Metaheuristic algorithms, Regression models, 

Simulation model, Time series model) and Intelligent (e.g. Machine Learning and Neural 

Network) models. After that, we concisely explained each method, investigated the most cited 

related articles in detail, and presented a complete list with different topics such as author(s) 

name(s), year, objective, energy types, citations, method used, application areas (see Tables 

4.1–4.8). Since 2015, the number of research studies that employed intelligent methods for 

energy demand forecasting increased sharply in the literature. Therefore, we further considered 

the two most used intelligent methods of energy demand forecasting including Machine 

Learning (ML) techniques and Neural Networks (NNs) to review the most cited related 

investigations.  

The actual boost from intelligent prediction methods happens when it is linked with 

human brainpower. Machines don’t make mistakes, and people estimate and interpret the 

machine’s results into decisions and activities. It is this symbiotic connection that results in 

successful intelligent predictions—particularly once individuals implement their results within 

the business (Hogan & Merrill, 2019). Concerning the Mckinsey report, errors were reduced 

by 30–50% in SC systems by employing intelligent forecasting methods. Moreover, if 

warehousing costs and inventory out-of-stock states decline about 10–40%, the enhanced 

precision leads to up to 65% decrease in lost sales. The projected influence of AI in SC is 

between $1.2 T and $2T in industrial and SC planning (McKinsey, 2017). Conversely, this 

outlook becomes real evidence as shown by Deloitte’s analysis. A surprising 83% of the first 

companies that accepted AI has previously reached moderate (53%) or substantial (30%) 

monetary profits from their AI investments (Davenport & Schatsky, 2017). These earnings are 

only set to advance with time. Accenture’s report presented that AI and intelligent forecasting 

will increase profitability by 38% and produce extra incomes to the tune of $14 trillion by 2035 

(Purdy & Daugherty, 2017).  

Regarding Table 4.9, intelligent forecasting methods require a high level of data while 

this requirement is low in most traditional methods (except metaheuristic algorithms). In terms 

of “forecast period”, both traditional and intelligent forecasting methods could cover short to 

long-term periods. In addition, in terms of the number of variables, both groups are 

multivariate. Moreover, in this table, the advantages and disadvantages of traditional and 

intelligent methods are explained completely.  

Regarding Fig. 4.11, the trend for the number of research studies that employed 

intelligent methods for energy demand forecasting increased sharply starting in year 2015, 

while there was a fluctuation trend for traditional methods. Furthermore, in terms of the usage 
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percentage of the forecasting methods from 2000 to 2020, traditional forecasting methods are 

prominent with 64% whereas intelligent methods have only 36% out of the total number of 

research studies. In terms of energy types from 2000 to 2020, the number of research studies 

which employed traditional methods were higher than intelligent methods especially in coal, 

oil and electricity, while in gas they were the same (see Fig. 4.12). Although Traditional 

methods were employed more, considering the trend that is mentioned Fig. 4.11, it is expected 

that the number of research studies which employ intelligent forecasting methods will increase. 

In terms of application areas from 2000 to 2020, intelligent methods are dominant to 

forecasting energy demand in Building, Data centers (DCs), Decentralized energy system, 

Demand side management, Hotels and Smart grid (see Fig. 4.13). The interesting point is that 

the forecasting of “National energy demand” is the most cited area for both methods (with 42 

research studies for traditional and 18 for intelligent methods). As the authors mentioned in 

Section 4.2.2, China, USA, and Iran are the top three countries with the most publications in 

energy demand forecasting (see Fig. 4.7). It is indicated that about the forecasting of “National 

energy demand”, both suppliers and buyers of energy in the world are concerned about the 

outlook of energy markets.  

 

 

 

 

 

 

Fig. 4.12 The using of forecasting methods for different energy types 
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Fig. 4.13 The number of application areas for both Intelligent and Traditional forecasting methods 

 

In addition to the above-mentioned issues, this study has some limitations. The 

following topics sum up these possible boundaries:  

➢ This review is created for the exploration of Thomson Reuter’s Web of Science. 

Other databases could be investigated as well.  

➢ This review employed definite keywords to explore the database. Since the 

examination is greatly sensitive to these keywords, analyses that deviate slightly 

from these terms may have been ignored.  

➢ Categorized research in this study are prepared generally on outcomes from 

academic journals (consider Fig. 4.6). Including more industrial reports in 

future work can advance this review’s results.  

➢ Moreover, the authors propose the following suggestions/speculations be 

enriched by future research:  

➢ This study explains the most employed forecasting methods in the literature, 

including traditional and intelligent methods. Researchers could consider 

different forecasting methods of energy demand or dissimilar categories. For 

example, considering the rarely used methods or not-used methods.  

➢ A new topic of future research is the development of hybrid approaches, 

especially a combination of Traditional and Intelligent forecasting methods.  

➢ This study considered demand forecasting off all types of energy in the 

literature. Focusing on a specific type of energy such as renewable energy could 

be employed as well.  

➢ Lastly, the resulting categorization tables are immensely helpful for determining 

prospects for more investigation in both Traditional and Intelligent forecasting 

models. 
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Paper Appendix-Chapter 4 

Table 4.A-1. List of different methods of energy demand forecasting which employed by authors in last two decades 

Methods/Year 

2
0

0
0
 

2
0

0
1
 

2
0

0
2
 

2
0

0
3
 

2
0

0
4
 

2
0

0
5
 

2
0

0
6
 

2
0

0
7
 

2
0

0
8
 

2
0

0
9
 

2
0

1
0
 

2
0

11
 

2
0

1
2
 

2
0

1
3
 

2
0

1
4
 

2
0

1
5
 

2
0

1
6
 

2
0

1
7
 

2
0

1
8
 

2
0

1
9
 

2
0

2
0
 

3D city model 
           1          

ADL-MIDAS model 
                  1    

Algebraic model 
                1      

ANFIS Model 
                 1     

Artificial Intelligence (AI) 
                  1    

Bayesian approach 
              1 1  1  1   

BCVTB (Building Control Virtual Test Bed) 
             1         

Bottom up approach 
               1 1      

Central moving average (CMA) 
               1       

City Energy Analyst (CEA) 
                 1     

Clustering approach 
            1      1    

Cointegration Analysis and Artificial 

Intelligence Algorithm 
                  1    

Complete decomposition method 
 1                     

Computer Vision 
                   1   

Conjoint Analysis 
           1           

Convective heat transfer coefficients (CHTC) 
                   1   

Cycle analysis 
  1                    

Data Mining techniques 
              1        

Data-Driven Technique 
                  3    

Decision tree 
                    2 

Demand response (DR) 
                1    1 

Dynamic input-output model 
               1       

Econometrics model 
   1     1        1 1  2   

EMD-GPM model 
               1       

Empirical Analysis 
            1          



83 
 

End-use model 
                 1     

Energy demand of transport (EDT) model 
             1         

Exponential smoothing 
   1              1  1   

Extended input–output model 
             1         

Future Energy Management System (FEMS) 
             1         

Fuzzy Logic 
          1 1 1 1  1 1 1 3  1 

General Circulation Model (GCM) 
               1       

Generalized additive models (GAM) 
                1      

Generalized Logit model 
      1                

Grey model (GM) 
         1 2 4 3   1 2 3 2 2 1 

Holt method 
        1              

K-Nearest Neighbor Approach 
              1        

LEAP 
          1 1   1 2  1  1   

Load and mobility data 
                  1    

Long Short Term Memory architecture 
                   1   

Machine Learning                1  3 3 4  

Markov chain 
           1       1    

Mathematical method 
           1        1   

Metaheuristic algorithm 
        1  2  7 2 1 2 4 2 1 1   

M-Pred 
                1      

Multi-agent system model 
             1         

Neural Network (NN) 
 1 1   2 1 2 4 2 3 3  1 3 1 3 7 4 4 1 

New urban energy demand forecasting system 
             1         

Nonparametric learning algorithm 
               1       

On-demand branch prediction (ODBP) 
                    1 

Operational battery dispatch control algorithm 
              1        

Photovoltaic (PV) forecasting 
                1  2    

Power Demand Probabilistic Forecasting 
             1         

Random Forest Regressor 
                   1   

Regression models 
        1 3   1 3    2  1   
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Scenario analysis 
        1    1    1 2  1   

Simple model 
              1    1    

Simulation model 
             1 2  1 3 1 2   

Spatial dynamic panel model 
             1         

Stat-fusion 
          1            

Static load forecasting 
                   1   

Static method 
          1 1      1     

Stochastic forecast 
               1    1   

SunDial System 
                  1    

Surrogate model 
                   1   

Survey 
        1              

System Dynamics 
                   1   

Thermodynamic analysis 
    1                  

Time series model     1  1 1 1   1 1  3 1 3 1 3 2   

Transport workload method 
            1          

Travel demand model 
                 1     

Two-step approach 
                  1    

Weather Research and Forecast (WRF) 
             1   1 1     

WinWatt, PHPP 
                 1     
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CHAPTER 5. PAPER THREE - INTEGRATE EXERGY COSTS AND CARBON 

REDUCTION POLICY IN ORDER TO OPTIMIZE THE SUSTAINABILITY 

DEVELOPMENT OF COAL SUPPLY CHAINS IN UNCERTAIN CONDITIONS 

 

Forewords 

After literature reviewing in Chapters 3 and 4, this chapter aims to improve the sustainability of 

coal SC in both developed and developing countries by incorporating extended exergy accounting 

and carbon tax policy. Moreover, carbon policies such as trade, cap and offset will be covered in 

Chapters 6, 7 and 8, respectively. 

 

Abstract  

The coal supply chain in developing countries is supposed to have the lowest cost overall; 

however, in terms of sustainability (social, economic, and environmental aspects) and considering 

Joules rather than monetary objectives, does this assumption remain accurate? This research 

develops a sustainable model for coal supply chain in five countries by integrating exergy costs 

and carbon tax policy using the extended exergy accounting (EEA) method under an uncertain 

environment. This sustainable model is a single vendor multi-buyer economic order quantity 

(EOQ) model for coal supply chain with the objective of the least total exergy with the maximum 

carbon and imperfect quality items decrease. Additionally, some realistic suppositions such as 

waste disposal to the environment, the obtainable budget of buyers and stockout in the model are 

considered. Following this, four metaheuristic algorithms, such as WOA, GA, ACO, and SA, are 

suggested to solve the model, and their results are validated by the exact method (GAMS). Finally, 

to improve the model’s sustainability, a sensitivity analysis with different exergy values is offered 

for coal supply chain in each country. According to the results, coal supply chains in Canada and 

Germany have better sustainability performance (in Joules) than Iran and Turkey. 

 

Keywords Carbon tax policy; Extended exergy accounting (EEA); Coal supply chain 

Sustainability; Metaheuristic algorithm; Fuzzy EOQ 

 

5.1. Introduction 

Nowadays, the energy market is maturing and unstable, characterized by intensifying 

demand and fluctuating supply (Roozbeh Nia et al., 2021). Additionally, harmful ecological 

circumstances and competitive situations are converting stricter, whereas the decline of natural 

fuel resources impacts energy management (Caglayan and Caliskan 2021). Undeniably, 

inappropriate energy utilization significantly impacts and damages the environment (Roozbeh Nia 

et al., 2021). It is reported that the annual consumption of energy in the Organization for Economic 

Co-operation and Development (OECD) countries has risen by 0.5%. In comparison, this amount 

for non-OECD countries has expanded by about 1%. Moreover, from 2006 to 2030, energy 

utilization in the industrial section (non-OECD and OECD countries) grew by about 1.4% per 

annum (U.S. Energy Information, 2020). The energy supply is a vital element of industrial 



87 
 

developments that broadly influences ecosystems, degrades them, and produces environmental 

greenhouse gases. Consequently, reducing energy utilization is crucial for environmental 

protection and developing sustainable resources (Jawad and JaberNuwayhid, 2018). 

As a key fundamental energy source, coal has a critical position in stabilizing national 

economies (Kang et al., 2014). Coal is the world’s greatest sole source of electrical energy (37%) 

and will continue the most significant supplier (22%) until 2040. Coal aids non-energies 

manufacturing such as cement, steel (70%), and aluminum production (60%), rare earth element 

extraction, coal-to-chemicals, carbon fiber manufacture, and industrial electrodes (World coal 

association). Typically, about 630 kg of coal are demanded to produce one metric ton of steel 

(Corsa). To produce one ton of cement, approximately 200–450 kg of coal is required and about 

20% of hydrogen production occurs by coal-to-gas processes (World coal association). Concerning 

providing renewable energy, for instance, each wind turbine needs 260 tons of steel created from 

170 tons of coking coal. In Appendix Fig. 5.A.1, global coal consumption by region in 2021 is 

presented (Statistical, 2021). Coking coal, also named metallurgical coal, is a type of non-

renewable resource, and it is mainly intended for coke making. For sustainable development, coal 

resources must be used scientifically and rationally (Zhang et al., 2021a). Steel manufacturers 

worldwide have a considerable demand for coking coals because it is one of the essential unique 

inputs for steel production employing blast furnaces (Mohanty et al., 2019). For instance, in 2019, 

the coal utilization in the steel sector was around 900 million tons of coal equivalent (Mtce) (26.2 

EJ [EJ]) or about 15% of the initial international coal demand (Iron and Steel Technology 

Roadmap). 

With the rapid growth in environmental protection, companies inside a coal supply chain, 

such as steel companies, are keenly seeking novel approaches beneficial for green manufacturing 

(Yin et al., 2020). Coal’s primary gas emissions, such as CO2, SO2, NOX, and smoke dust, can 

contribute to global warming, damaging the ozone layer and creating acid rain (Manisalidis et al., 

2020). Both coal burning and mining leave overburdened pollution in water and air resources. 

Hence, researching the ecological consequences of coal production and consumption is a 

prominent topic (Mann and Spath, 2001). In this topic, researchers agree that pricing emissions of 

carbon are the low-cost and most effective method for improving the sustainability of supply chain 

(Environment and Climate Change Canada, 2018). The significant policies for carbon pricing in 

the literature are carbon tax, carbon cap, carbon trade, and carbon offset (Malladi and Sowlati, 

2020). Regarding sustainability and economic issues, the outputs of carbon policies in supply chain 

are unequal.  

Supply chains are the operational sequence of interconnected procedures that manage, plan, 

and control goods and services between buyers and vendors (Roozbeh Nia et al., 2020). Besides 

the monetary costs of a coal supply chain, for instance, miners, washing factories, shippers, and 

power plants/steel producers, there are other charges known as “hidden costs” associated with 

environmental influences and emissions. Both costs should be considered in the entire operational 

costs of the coal supply chain (Phillips, 2008). Any manufacturing process that reduces “hidden 

costs,” for instance, environmental effects, is recognized as a sustainable procedure. To a greater 

extent, sustainability in the supply chain of coal is complicated because it faces further 

consequences, for instance, social and ethical hazards (Naderi et al., 2021a). An example of Iranian 

coal supply chain with 4-item and five buyers are presented in Fig. 5.1.  
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Fig.5.1. An example of Iranian coal SC with 4-item and five buyers (with distance and available budgets) 

Growing pressure from external shareholders to sustain company processes has fostered 

businesses to focus on their environmental effects and promise to implement sustainability 

measures in the future (Qu et al., 2019; Liu et al., 2021). Sustainable supply chain management 

considers social, environmental, and financial costs locally, nationally, and worldwide (Asadi and 

Sadjadi, 2017; Bui et al., 2020; Mangla et al., 2017). More precisely, sustainable supply chain 

management must be expressed to fulfill the necessities of the existing generation of businesses 

without failing the capability of forthcoming generations (for example, Industry 4.0) to accomplish 

their needs (Jabbour et al., 2020). The specialists in the multi-tier manufacturing supply chain have 

recognized that managing the first-tier suppliers’ sustainability is insufficient to reach a sustainable 

performance in the whole supply chain (Sharma et al., 2021). It needs careful consideration by all 

practitioners in a supply chain. The integration of three sustainability aspects, for instance, 

economic, ecological, and social factors of a system, can be reached by applying exergy analysis 

(Jawad and JaberNuwayhid, 2018; Dincer and Rosen, 2012). An innovative approach that can 

support a supply chain to be more sustainable is Extended Exergy Accounting (EEA) (Aghbashlo 

et al., 2018). This method integrates the effect of non-energetic manufacturing features into the 

complete loss assessment (Jawad and JaberNuwayhid, 2018; Sciubba, 2011). The primary benefit 

of employing the EEA method in the production system is that this method states all outcomes in 

Joules (instead of dollars); therefore, acceptable assessments among various products can be 

achieved (Naderi et al., 2021b; Jawad and JaberNuwayhid, 2018).  

The functioning of the entire coal supply chain is one of the critical interests of the 

concerned participants (Mehmood et al., 2015). As society increasingly recognizes the value of 

the environment, waste disposal and carbon emission must become two of the leading indicators 

of coal supply chain assessment. Additionally, employing different carbon pricing strategies result 
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in various costs and carbon reductions in supply chain. Moreover, as we will see in the literature 

review section, the number of publications employing the EEA method is insufficient. 

Additionally, to the best of the authors’ knowledge, no study considers carbon reduction policies 

with the EEA method (or exergy analysis) at the same time in a coal supply chain. Therefore, we 

can present three main research questions as follows.  

Q1. Does incorporating a carbon reduction strategy with the EEA method in coal supply 

chain trigger financial benefits and sustainability advantages?  

Q2. The coal supply chain in developing countries is supposed to have the lowest cost 

overall; however, in terms of sustainability (social, economic, and environmental aspects) and 

considering Joules rather than monetary objectives, does this assumption remain accurate?  

Q3. Which percentage set of exergy components (social, economic, and environmental 

characteristics) creates the lowest total exergy of supply chain? which country has more 

sustainable conditions for coal supply chain? 

 

5.2. Literature review  

In view of the fact that in the literature, no publication considers the EEA method (or 

exergy analysis) simultaneously with carbon reduction policies in coal supply chain, in this section, 

we focus on recent publications related to exergy analysis and the EEA method.  

 

5.2.1. Exergy analysis  

Discovering a similarity between the thermal and production procedure is a new idea that 

inspired some researchers to merge the notions of the first and second laws of thermodynamics 

with the inventory model (Jawad et al., 2015). Exergy analysis can facilitate finding an 

organization’s wastefulness (Koroneos and Tsarouhis, 2012). It has been broadly exploited 

through various manufacturing and industrial companies, for example, food (Apaiah et al., 2006), 

aluminum (Balomenos et al., 2011), cement (Madlool et al., 2012), recycling of metal (Amini et 

al., 2007), management of waste (Gaudreau et al., 2009), and manufacturing (Gutowski et al., 

2009). The name “exergy” was initially suggested by Rant (1956), even though other investigators 

had previously outlined similar meanings. Some academics like Jaber et al. (2004, 2006, 2009), 

Jaber and Rosen (2008), Apaiah et al. (2006), and Geldermann et al. (2006) have employed entropy 

methods, exergy analysis and information theory to explain chaos when modeling the performance 

of productive systems/processes. Moreover, employing exergy analysis in a simple economic order 

quantity (EOQ) model was done by Jaber et al. (2011) and Santhi and Karthikeyan (2015), 

respectively. Additionally, Jaber and Jawad (2015) used the second law of thermodynamics to 

estimate the entropy created in economic production quantity (EPQ) and Just-in-Time (JIT) 

systems. To calculate the costs of disorder (entropic), the authors incorporated an entropic part to 

the cost functions of the model. The outcomes revealed that a JIT strategy is more costly than an 

EPQ policy.  

Furthermore, Jaber et al., (2017) established the conventional models of the economical 

manufacture quantity (EMQ) and JIT by covering other topics like transportation, defective 

products, work associated with stress/fatigue, pollution costs, and greenhouse gases (GHG) from 
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transport and manufacture systems. They suggested that JIT experiences lowered costs than the 

EMQ model when correlated stress and entropy costs were not calculated. Afterward, Jawad et al. 

(2018) examined the most prominent issues that can affect the entire cost of a supply chain, for 

instance, emissions, labor, energy (from manufacture and shipping), social effects of shipping, and 

entropy. The authors accepted that a two-stage supply chain (producer-buyer) is comparable to a 

thermal system of two heat pumps connected in sequence. They established an exergy cost function 

(mega-joules; MJ per year) and optimized utilized exergy as a part of sustainable development 

with two approaches: conventional (Hill’s) and the consignment stock methods. They showed that 

optimizing the exergy cost function escalates the money to society for a slight extra rise in cost on 

the supply chain. Naderi et al. (2021a) offered a mathematical model for increasing sustainability 

concerning the cost of exergy demolition (entropy) for a coal supply chain in Iran. The authors 

applied exergy analysis for a model that involves economic and wasted exergy costs. Their results 

indicated that the suggested method delivers saving in the consumed exergy by allowing an 

additional financial cost. 

 

5.2.2. EEA method  

Regarding the EEA method, to the best of the authors’ knowledge, few studies employed 

this method for inventory management or supply chain. The method of EEA introduced by Sciubba 

(2001) includes energy and raw material with other non-energetic manufacturing aspects like the 

costs of financial, labor, and environmental remediation. For example, Dai et al. (2012) employed 

the EEA method to investigate a group of social-economic utilization systems in China and explain 

the connection among different divisions through a thermodynamic metric. Moreover, Jawad et al. 

(2015) estimated the exergy costs using the EEA method under the EOQ inventory model. They 

used an exergetic model to find the order quantities for companies in Germany, the USA, and 

China. The outcomes presented that the order quantity is not equal for the three companies since 

the corresponding exergy of financial, labor, and environmental remediation expenses are not 

similar in each country. Later, Jawad et al. (2016) reviewed the economic production quantity 

(EPQ) model to indicate sustainability requirements. They applied the laws of thermodynamics, 

combined with the EEA method, to determine the sustainability of a production-inventory system 

and realized that sustainability could be beneficial in some circumstances. Recently, Naderi et al. 

(2021b) provided an analysis of exergy to develop and evaluate the utilized exergy designed for a 

sustainable food supply chain. Their model concerns with divergent economic, environmental, and 

social functions in choosing the further sustainable supply chain to make and deliver items. They 

employed a hybrid metaheuristic algorithm on simulated annealing (SA) and GA to solve the 

model.  

To learn more about exergy and the EEA method, concerned scholars may suggest Ehyaei 

et al. (2019), Arango-Miranda et al. (2018), and Dincer and Rosen (2012). In addition, a review of 

research works of exergy analysis and the EEA method, along with our proposed model, is offered 

in Table 5.1. Traditional inventory models do not reflect inventory systems’ unseen (indirect) 

costs. In fact, in earlier research, the cost meaning is workflow-associated cost aspects. It is limited 

to finding a study that evaluates the supply chain in terms of Joules (rather than conventional 

monetary objectives) and simultaneously assesses all sustainability features, for example, 

economic, labour, and environmental. There is an absence of analysis to find the best percentage 

of exergy components (social, economic, environmental aspects) in the EEA method for a supply 
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chain. Additionally, to the best of the authors’ knowledge, no exergy analysis approach like the 

EEA in the literature consider carbon tax strategy in supply chain. Moreover, there is an absence 

of studies that evaluate the sustainability of coal supply chains in developed and developing 

countries with carbon tax strategy in terms of Joules. Lastly, there is a lack of research in the 

literature that evaluates the supply chain under a carbon tax strategy with vague parameters such 

as buyer demand.  

Hence, to improve sustainability, this study considers all three hidden costs (labor, money, 

and ecological remediation costs) using the EEA technique integrated with carbon reduction policy 

(carbon tax) for a coal supply chain in Iran while utilizing Joules as a universal unit of measure 

(rather than monetary values). In terms of modeling, this research considers the studies of Jawad 

et al. (2015) and Naderi et al. (2021a) and, more precisely, develops it to a multi-item multi-

constraint multi-buyer EOQ model in coal supply chain in Iran under uncertainty condition. This 

supply chain has a single vendor and multi-buyer (SVMB) that coordinate with the VMI approach 

and considers inventory stockout as a backorder. Additionally, a penalty cost for imperfect quality 

items disposal to the environment is considered to make the model green. Four metaheuristic 

algorithms, including GA, ACO, SA, and the whale optimization algorithm (WOA), are suggested 

to acquire a near-optimum solution of the developed exergy fuzzy nonlinear integer programming 

(EFNIP). In our models, we consider different objectives simultaneously, such as the costs of the 

inventory system, an additional budget of each buyer, the cost of poor-quality items disposal to 

the environment, and carbon emission related to all processes of coal supply chain. Moreover, we 

employ the EEA method to convert the traditional monetary costs of our models to the exergetic 

values of coal supply chain (values in Mega-Joules; MJ) for capital, labor, and environment. We 

are looking to get the optimum value of three decision variables, such as the amount of required 

loan (more budget) for each buyer (𝐵𝑗
−), order quantity of each item for each buyer (Qij), and 

amount of backorder of each item for each buyer (bij). A real case study in a coal supply chain in 

Iran and eight arbitrary numerical examples with various numbers of items were offered. After 

that, for validation of the results by all metaheuristic algorithms, they are compared with the exact 

model (GAMS). In the last part, a sensitivity analysis was done to reach a win-win financial and 

sustainability advantages situation for the coal enterprises with the lowest total exergy and carbon 

emission. It includes different percentages for exergy costs in coal supply chain of five countries: 

Iran, Afghanistan, Turkey, Germany, and Canada. Therefore, the main contributions of this 

research are as follows:  

➢ Developing the sustainability of coal supply chains in terms of Joules under carbon tax 

strategy and the ambiguous environment by using the EEA method.  

➢ Evaluating the sustainability of coal supply chains in five countries to find out which 

country has the most sustainable coal supply chain in terms of Joules.  

➢ Obtaining the best value of exergy components for coal supply chain in five countries.  

The rest of the manuscript is defined in this way. In Section 5.3, the problem is outlined, 

the suppositions are stated, and the model is mathematically expressed into a fuzzy nonlinear 

integer-programming model (non-exergy model) under two carbon emission policies. In Section 

5.4, the non-exergy models are converted to the exergy equivalents using the EEA method. The 

suggested metaheuristic algorithms are presented in Section 5.5 to solve the problem. To reveal 

the relevance of the proposed solution method, computational test problems and sensitivity 
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analysis of exergy values for five countries are recommended in Section 5.6. Conclusions and 

forthcoming studies are offered in Section 5.7. 
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Table 5.1. A review of research works in exergy analysis of supply chain 
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Naderi et al. 

(2021a) 

Provide a mathematical model for improving 

coal SC sustainability while minimizing the 

cost of exergy destruction (entropy) in SC 

Single Metaheuristic 

algorithm 

No No No No No No No No No No Yes 

Naderi et al. 

(2021b) 

Provide an exergy analysis to model and 

minimize the consumed exergy for sustainable 

SC 

Single Metaheuristic 

algorithm 

Branch 

& bound 

No No Yes No No No No No No Yes 

Jawad et al. 

(2018) 

Minimize the total cost of the developed SC 

model while focusing on the pillars of 

sustainable developments. 

Single Exact method N/A No Yes No No No No No No No No 

Banasik et al. 

(2017a) 

Develop a mathematical model for quantitative 

assessment of alternative production options 

that are associated with different ways to deal 

with waste in food SCs 

Multi Exact method N/A No No No No No No No No Yes No 

Banasik et al. 

(2017b) 

Quantify trade-offs between economic and 

environmental indicators and explore 

quantitatively alternative recycling 

technologies 

Multi Exact method N/A No No No No No No No No No Yes 

Jawad et al. 

(2016) 

Re-examines the economic production quantity 

(EPQ) model to reflect the needs of 

sustainability by using EEA and the laws of 

thermodynamics. 

Single Exact method 

(EPQ formula) 

N/A N/A Yes Yes No No No No No No No 

Jawad et al. 

(2015) 

Use an exergy model to determine the EOQ 

inventory policies for three firms operating in 

the USA, Germany, and China. 

Single Exact method 

(EOQ formula) 

N/A N/A Yes Yes No No No No No No No 
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Santhi and 

Karthikeyan 

(2015) 

Determine the cycle length and the 

replenishment order quantity of an EOQ model 

to maximize the profit. 

Single Exact method 

(EOQ formula) 

N/A N/A Yes No No No Yes No No No No 

Jaber et al. 

(2009) 

A mathematical model to determine batch sizes 

for deteriorating items while minimizing the 

entropy of the EOQ model. 

Single Exact method 

(EOQ formula) 

N/A N/A Yes No No No No No No No No 

Jaber and 

Rosen (2008) 

Improve production system performance by 

applying thermodynamics' first and second 

laws to reduce system entropy (or disorder). 

Single Exact method 

(EOQ formula) 

N/A No Yes No No No No No No No No 

Jaber (2007) Estimate the hidden costs of the EOQ model by 

applying the first and second laws of 

thermodynamics to reduce system entropy (or 

disorder) at a cost. 

Single Exact method 

(EOQ formula) 

N/A N/A Yes No No No No No No No No 

Proposed model Optimize the sustainability of coal SC in five 

countries with the integration of the EEA 

method and carbon tax policy 

Single Metaheuristic 

algorithm 

GAMS Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
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5.3. Problem explanation and model formulation  

5.3.1. Problem description  

The warehouse is vital for every company because it is a safe place for their stock. 

Although inventory is one of the most significant precious possessions, managing it generates 

a load of defective quality materials and carbon emission, which is discarded into the 

environment. Moving on the green with implementing sustainable inventory management 

methods will benefit both the environment and the enterprise. In other words, adding 

sustainability to the inventory management of a supply chain leads to a decrease in both the 

social and ecological consequences of a business with no critical impact on profitability. Based 

on Section 2, this study is focused on an SVMB coal supply chain in Iran with multiple items 

and poor-quality operating under the EOQ model. The objective function is optimizing the total 

exergy of coal supply chain (in terms of Joules instead of money) by incorporating the EEA 

method and different carbon emission policies. To bring this sustainable exergy model to real-

world problems, we consider some realistic assumptions such as waste (imperfect quality 

items) disposal to the environment, uncertainty in buyer’s demand, vendor’s sales capacity, 

vendor managed inventory (VMI) contract between supplier and buyers. Moreover, the 

constraints include the storage space, the over-budgeting of each buyer, the boundary on the 

orders of all buyers, the total number of orders, and the vendor’s sales capacity. 

 

5.3.2. Assumptions  

Regarding the purpose of this study to improve the sustainability of coal supply chain 

by integrating carbon policies and the EEA method, we consider the succeeding suppositions 

for the mathematical preparation. More sophisticated assumptions are considered for future 

research in Section 7.  

(a) A coal supply chain includes a single vendor (supplier), multi-buyer (steel companies) by 

n items (different grades of coal)  

(b) EOQ model is considered for the inventory model of coal supply chain (production rate is 

infinite).  

(c) lead time for purchased items is presumed zero.  

(d) Inventory stockout is permitted (as a backorder) for all items, while the linear backorder 

cost per unit per time unit is recognized for all items, and the time-independent fixed backorder 

cost per unit is presumed zero for all items.  

(e) The price for the entire item is stable in the scheduling cycle  

(f) Discount by quantity is not permitted  

(g) The vendor pays the transportation cost  

(h) Buyer’s demand for all items is indistinct (triangular fuzzy number)  

(i) The ordering and holding costs, as well as emission tax, are known  

(j) The buyer’s storage space capacity is limited  

(k) The total available budget of each buyer is limited, but the over-budgeting is permitted with 

some additional costs  
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(l) The vendor’s sales capacity of all items is restricted, but it is indistinct (triangular fuzzy 

number)  

(m) The number of all orders by all buyers is limited  

(n) The buyer’s order amount of an item is restricted (a lower and a higher limit due to 

transportation capacity)  

(o) All processes in coal supply chain include mining (vendor), transportation, and using coal 

in the steel company (buyers), producing carbon emission and waste (imperfect quality items) 

disposal to the environment  

(p) Distance between vendor and all buyers is fixed and known. The railway system does the 

transportation of all orders. 

 

5.3.3. Notations  

The symbols, parameters and decision variables of the supply chain model are presented 

as follows.  

5.3.3.1. Parameters 

𝑖: Index of items (coal); (𝑖 = 1,2, … , 𝑛) 

𝑗: Index of buyers; (𝑗 = 1,2, … ,𝑚) 

𝐷𝑖𝑗: Demand rate of coal i for buyer j 

𝑉𝑖: Lower limit of transportation capacity on the order amount of item i 

𝑊𝑖: Upper limit of transportation capacity on the order amount of item i 

𝐺: Maximum sales capacity of the vendor on the total order amount of all items 

N: Maximum total number of orders by all buyers 

𝐶𝑖: Purchasing price per unit of item i 

𝐶𝑡𝑎𝑥: Emission tax of each unit of carbon produced by different supply chain processes 

𝐶𝑤𝑎𝑠𝑡𝑒: Cost of waste (imperfect quality items) produced by different supply chain processes 

𝐵𝑗: Total available budget of all items for buyer j 

𝑖𝑛𝑡−: The interest rate of the required loan for buyer j 

𝐴𝑖,𝑠: Vendor’s stable ordering cost per unit of item i 

𝐴𝑖𝑗,𝑡: Stable shipping cost per unit of item i for buyer j, which is paid by the vendor (VMI 

contract) 

𝐴𝑖𝑗,𝑏: Stable ordering cost per unit of item i for buyer j 

ℎ𝑖𝑗: Stock keeping cost per unit of item i at the warehouse of buyer j in a period  

𝑠1: The cost of backordering a unit for one year (time-independent) 

𝑠2: Linear backorder cost per unit per time unit 



97 
 

𝐹𝑗: Available storage capacity of buyer j for all items 

𝐿𝑗: Distance between vendor and buyer j (km) 

𝑓𝑚: Emissions factor of mining (ton/unit) 

𝑓𝑡: Emissions factor of transportation (ton/unit) 

𝑓𝑘: Emissions factor of furnace in steel manufacturer (ton/unit) 

𝛼: Proportion of imperfect quality items in the mining process 

𝛽: Proportion of poor-quality items in the transportation process 

𝛾: Proportion of defective quality items in steel manufacturer 

 

5.3.3.2. Decision variables 

𝑄𝑖𝑗: Order quantity of item i for buyer j 

𝑏𝑖𝑗: Backorder amount of coal i for buyer j in a cycle 

𝐵𝑗
−: Total required loan for buyer j 

 The following subsections will develop a non-exergy mathematical model of 

the coal supply chain for carbon tax policy (subsection 5.3.4). Then the model is converted to 

an exergy fuzzy model (subsection 5.3.5). 

 

5.3.4. A non-exergy Modeling of coal supply chain with carbon tax policy 

5.3.4.1. Objective function  

In the model under carbon tax policy, four objectives are defined. First, the total 

inventory cost of coal supply chain (𝑇𝐶1) includes the ordering (𝑇𝑂𝑖𝑗), holding (𝑇𝐻𝑖𝑗), 

backorder (𝑇𝑆𝑖𝑗), purchasing (𝑇𝑃𝑖𝑗), and transportation (𝑇𝑇𝑖𝑗) costs (Syntetos, 2014; 

Pasandideh et al., 2010, 2011; Razmi et al., 2010) as 

𝑇𝐶1 = 𝑇𝑂𝑖𝑗 + 𝑇𝐻𝑖𝑗 + 𝑇𝑆𝑖𝑗 + 𝑇𝑃𝑖𝑗 + 𝑇𝑇𝑖𝑗                                  (5.1) 

Where,  

𝑇𝑂𝑖𝑗 = ∑∑
𝐷𝑖𝑗

𝑄𝑖𝑗
(𝐴𝑖,𝑠 + 𝐴𝑖𝑗,𝑏)

𝑚

𝑗

𝑛

𝑖

                                                                                        (5.2) 

𝑇𝐻𝑖𝑗 = ∑∑
ℎ𝑖𝑗

2𝑄𝑖𝑗
(𝑄𝑖𝑗(1 − 𝛼) − 𝑏𝑖𝑗)

2
𝑚

𝑗

𝑛

𝑖

                                                                         (5.3) 

𝑇𝑆𝑖𝑗 = ∑∑(
𝑠1. 𝑏𝑖𝑗

2

2𝑄𝑖𝑗
+

𝑠2. 𝑏𝑖𝑗 . 𝐷𝑖𝑗

𝑄𝑖𝑗
)

𝑚

𝑗

𝑛

𝑖

                                                                                 (5.4) 
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𝑇𝑃𝑖𝑗 = ∑∑𝐶𝑖𝐷𝑖𝑗

𝑚

𝑗

𝑛

𝑖

                                                                                                               (5.5) 

𝑇𝑇𝑖𝑗 = ∑∑
𝐷𝑖𝑗

𝑄𝑖𝑗
(𝐴𝑖𝑗,𝑡)

𝑚

𝑗

𝑛

𝑖

                                                                                                      (5.6) 

Where (𝐷𝑖𝑗 , 𝑄𝑖𝑗, ℎ𝑖𝑗) are the demand rate of coal i for buyer j, order quantity of item i 

for buyer j and holding cost per unit of coal i for buyer j, respectively. Second, the total cost 

associated with the additional required budget of all buyers. In our model, the over-

achievement budget (𝐵𝑗
−) is considered the cost. It means the buyer should get a loan (𝐵𝑗

− as a 

decision variable) with an interest rate of (𝑖𝑛𝑡−). In this case, the buyer should pay this loan 

and the corresponding interest rate (𝐵𝑗
− + [𝑖𝑛𝑡− × 𝐵𝑗

−]) after the end of the year. Consequently, 

the whole cost related to the budget of all buyers (𝑇𝐶2) is  

𝑇𝐶2 = ∑[𝐵𝑗
− + (𝑖𝑛𝑡− × 𝐵𝑗

−)]

𝑚

𝑗

                                                                                          (5.7) 

Third, to make the model green, we consider that all coal supply chain processes 

produced some imperfect quality items such as coal refuse, coal waste, and coal tailings to be 

discarded into the environment. This waste has a total penalty cost as 

𝑇𝐶3 = 𝐶𝑤𝑎𝑠𝑡𝑒 × ∑∑[(𝑄𝑖𝑗. 𝛼) + (𝑄𝑖𝑗. (1 − 𝛼). 𝛽) + (𝑄𝑖𝑗(1 − 𝛼). (1 − 𝛽). 𝛾)]

𝑚

𝑗

𝑛

𝑖

 (5.8) 

Where (𝛼, 𝛽, 𝛾) are the proportions of imperfect quality items in mining, transportation, 

and steel manufacturer processes, respectively. Moreover, 𝐶𝑤𝑎𝑠𝑡𝑒 is the unit cost of imperfect 

quality items produced by different supply chain processes. The carbon tax strategy is a tax 

cost on carbon discharges (Wesseh and Lin, 2018). The government charges a carbon tax (𝐶𝑡𝑎𝑥) 

on each carbon unit produced by coal supply chain companies. Hence, the entire cost of a coal 

supply chain includes the emission cost, whereas there is an adjustment regulation between the 

process cost and the tax cost of emission there. It means coal companies should stabilize the 

process and the emission costs consistent with various carbon tax amounts to optimize the 

entire cost (Li et al. 2020). Hence, the fourth objective of the model is created as 

𝑇𝐶4 = 𝐶𝑡𝑎𝑥 × ∑∑[(𝑄𝑖𝑗. 𝑓𝑚) + (
𝐷𝑖𝑗

𝑄𝑖𝑗
. 𝐿𝑗 . 𝑓𝑡) + (𝑄𝑖𝑗. 𝐷𝑖𝑗 . 𝑓𝑘)]

𝑚

𝑗

                               (5.9)

𝑛

𝑖

 

Where (𝑓𝑚, 𝑓𝑡 , 𝑓𝑘) are emissions factors in mining, transportation, and steel 

manufacturer processes, respectively. Moreover, 𝐿𝑗 is the distance between the coal vendor and 

buyer j. Eq. (5.9) is the summation of produced carbon in mining, transportation, and 

steelmaking processes. So, the combination of the above four objectives (𝑇𝐶𝑡𝑎𝑥 = 𝑇𝐶1 +
𝑇𝐶2 + 𝑇𝐶3 + 𝑇𝐶4) makes the non-exergy total cost of coal supply chain under emission tax 

policy. 
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5.3.4.2. The limitations 

As revealed earlier, a real-world VMI contract includes the vendor and all the buyers in 

the coal supply chain. This type of VMI contract accepting a limitation for the available budget 

of each buyer (𝐵𝑗) and consider related costs for this issue as follows:  

∑∑𝐶𝑖 . 𝑄𝑖𝑗(1 − 𝛼) ≤ 𝐵𝑗 + (𝐵𝑗
−)

𝑛

𝑖

𝑚

𝑗

                                                                                  (5.10) 

Where (𝐶𝑖) is purchasing price per unit of item i. Eq. (10) demonstrates that if the total 

paid out money of a buyer is greater than the available budget (∑ 𝐶𝑖. 𝑄𝑖𝑗(1 − 𝛼) > 𝐵𝑗
𝑛
𝑖 ), then 

the buyer needs to get a loan with the amount of (𝐵𝑗
− > 0). This amount (𝐵𝑗

−) is not determined 

before since it is a decision variable in the model, and in Eq. (5.7), the total cost related to this 

constraint is formulated. Moreover, the storage capacity of each buyer (𝐹𝑗) is constrained 

(Cárdenas-Barrón et al. 2012), 

∑∑(𝑄𝑖𝑗(1 − 𝛼) − 𝑏𝑖𝑗) ≤ 𝐹𝑗

𝑛

𝑖

𝑚

𝑗

                                                                                          (5.11) 

Where (𝑏𝑖𝑗) is the backorder amount of coal i for buyer j in a cycle (a decision variable). 

Furthermore, the railway transportation system among the vendor and buyers has some 

limitations in capacity. So, the Min. (𝑉𝑖) and Max. (𝑊𝑖) of the transportation capacity for each 

order quantity (𝑄𝑖𝑗) are 

𝑉𝑖 ≤ 𝑄𝑖𝑗 ≤ 𝑊𝑖                                                                                                                          (5.12) 

In addition, the vendor has a limitation for its total sales capacity (𝐺), which is as 

follows: 

∑∑𝑄𝑖𝑗 ≤ 𝐺

𝑚

𝑗

𝑛

𝑖

                                                                                                                        (5.13) 

Likewise, there is a constraint on the total number of orders (𝑁) by all buyers: 

∑∑
𝐷𝑖𝑗

𝑄𝑖𝑗
≤ 𝑁

𝑚

𝑗

𝑛

𝑖

                                                                                                                       (5.14) 

Lastly, the  buyer’s highest amount of backorder of an item  in a cycle should be 

fewer than or equal to its lot size (𝑄𝑖𝑗). Therefore 

𝑏𝑖𝑗 ≤ 𝑄𝑖𝑗                                                                                                                                   (5.15) 

It should be stated that for simplifying the mathematical model, we ignore the cost of 

purchasing (Eq. 5.5) since it does not affect order quantity (𝑄𝑖𝑗) in the model. With regards to 

Eqs. (5.1)-(5.15), the model of “multi-item” SVMB EOQ with the VMI strategy under carbon 

tax policy can be easily obtained as 

thj i
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𝑇𝐶𝑡𝑎𝑥 = ∑∑[
𝐷𝑖𝑗

𝑄𝑖𝑗
(𝐴𝑖,𝑠 + 𝐴𝑖𝑗,𝑏) +

ℎ𝑖𝑗

2𝑄𝑖𝑗
(𝑄𝑖𝑗(1 − 𝛼) − 𝑏𝑖𝑗)

2
+ (

𝑠1. 𝑏𝑖𝑗
2

2𝑄𝑖𝑗
+

𝑠2. 𝑏𝑖𝑗. 𝐷𝑖𝑗

𝑄𝑖𝑗
)

𝑚

𝑗

𝑛

𝑖

+
𝐷𝑖𝑗

𝑄𝑖𝑗
(𝐴𝑖𝑗,𝑡)] + ∑[𝐵𝑗

− + (𝑖𝑛𝑡− × 𝐵𝑗
−)]

𝑚

𝑗

+ 𝐶𝑤𝑎𝑠𝑡𝑒 × ∑∑[(𝑄𝑖𝑗. 𝛼) + (𝑄𝑖𝑗. (1 − 𝛼). 𝛽) + (𝑄𝑖𝑗(1 − 𝛼). (1 − 𝛽). 𝛾)]

𝑚

𝑗

𝑛

𝑖

+ 𝐶𝑡𝑎𝑥 × ∑∑[(𝑄𝑖𝑗. 𝑓𝑚) + (
𝐷𝑖𝑗

𝑄𝑖𝑗
. 𝐿𝑗 . 𝑓𝑡) + (𝑄𝑖𝑗. 𝐷𝑖𝑗 . 𝑓𝑘)]

𝑚

𝑗

𝑛

𝑖

 

𝑠. 𝑡. 

∑∑𝐶𝑖 . 𝑄𝑖𝑗(1 − 𝛼) ≤ 𝐵𝑗 + (𝐵𝑗
−)

𝑛

𝑖

𝑚

𝑗

 

∑∑(𝑄𝑖𝑗(1 − 𝛼) − 𝑏𝑖𝑗) ≤ 𝐹𝑗

𝑛

𝑖

𝑚

𝑗

 

𝑉𝑖 ≤ 𝑄𝑖𝑗 ≤ 𝑊𝑖 

∑∑𝑄𝑖𝑗 ≤ 𝐺

𝑚

𝑗

𝑛

𝑖

 

∑∑
𝐷𝑖𝑗

𝑄𝑖𝑗
≤ 𝑁

𝑚

𝑗

𝑛

𝑖

 

𝑏𝑖𝑗 ≤ 𝑄𝑖𝑗 

𝑄𝑖𝑗 > 0, 𝑖𝑛𝑡𝑒𝑔𝑒𝑟, 𝑖 = 1,2, … , 𝑛 

𝑏𝑖𝑗 ≥ 0, 𝑖𝑛𝑡𝑒𝑔𝑒𝑟, 𝑗 = 1,2, … ,𝑚 

𝐵𝑗
− ≥ 0,                                                                                                                                    (5.16)  

In this non-exergy sustainable model under carbon tax policy, we have three decision 

variables, for example, the amount of required loan (additional budget) for each buyer (𝐵𝑗
−), 

order quantity of each item for each buyer (𝑄𝑖𝑗), and amount of backorder of each item for each 

buyer (𝑏𝑖𝑗). In the following subsection, we will consider uncertainty to the non-exergy model 

in Eq. (5.16). 

 

5.3.5. The inventory model in fuzzy environment 

Stochastic modeling methods can solve the inventory model if adequate chronological 

data exists for ambiguous factors (Aka and Akyüz, 2021). Despite this, it is problematic to have 

actual and exact random distributions because of the deficiency of chronological data on the 

coal supply chain in Iran. In the real coal supply chain business world, the market environments 
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are full of uncertainties in a non-stochastic sense (Panja and Mondal 2019). Therefore, the 

inventory model's critical and unrealistic supposition is that the entire inventory settings 

operate in a deterministic and definite situation. Uncertainties within the supply chain system, 

including inflexible sources, the uncertainty of demand, and imprecise predictions, always 

exist, heading unavoidably to backorders and consequently reducing “customer satisfaction” 

(Diabat and Al-Salem 2015). One of the successful techniques to diminish these weaknesses is 

employing “fuzzy set theory (FST),” which is established by Zadeh (1965), creating workable 

methods to convert “ill-defined” data to mathematical terminologies.  

Consequently, the problem investigated in this paper is a fuzzy SVMB multi-item coal 

supply chain. In this problem, the demands of each buyer and the vendor sales capacity are not 

well-defined values and are considered imprecise. However, the outcomes must be appropriate 

for top management in the real business world to determine and apply the consequent responses 

from fuzzy supply chain. Hence, defuzzification is compulsory (Shekarian et al., 2017). One 

of the most extensively used techniques is entitled “the linear ranking function method” (the 

first index) suggested by Yager (1979,1981), which is utilized in this research. The following 

subsection explains this technique concisely. 

5.3.5.1. The linear ranking function method (the first index) 

Consider a widespread problem in which its “objective coefficients” and “resources” 

are fuzzy and stated as follows. 

               (5.17) 

While the sign ‘~’ denotes the fuzziness of the factor,  is the restricted resources,  

is a vector of the n-dimensional solution, and the quantity of limitations is . Supposing 

“triangular fuzzy numbers” for the coefficient matrix , and the vectors on the right-hand side 

of the restrictions , i.e., , the model characterized in (5.17) is 

converted into its crisp corresponding equation as (Yager 1979,1981): 

    (5.18) 

Whereas, for example, for the “triangular fuzzy number” pivotal point 𝑒, lateral margins 

(left and right, respectively) are indicated by 𝑑(𝐿𝑒) = 𝑒 − 𝑒𝐿, and 𝑑(𝑅𝑒) = 𝑒𝑅 − 𝑒 (see Fig. 

5.2). Therefore, in this study, the buyers’ demand (𝐷𝑖�̃�) and vendor’s sales capacity (�̃�) are 

considered fuzzy triangular numbers, i.e. 𝐷𝑖�̃� = (𝐷𝑖𝑗,𝐿 , 𝐷𝑖𝑗 , 𝐷𝑖𝑗,𝑅), and �̃� = (𝐺𝐿 , 𝐺, 𝐺𝑅). 
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Fig.5.2. Representation of a triangular fuzzy number (TFN) 

5.4. Exergy Modeling of fuzzy optimization of SVMB coal supply chain under VMI 

The previous section presents a fuzzy monetary sustainable model (minimum Dollar or 

Euro) for a coal supply chain under a carbon tax strategy. In this section, we employ the EEA 

method and then convert the monetary model (Eq. 5.16) to the equivalent exergy models. 

5.4.1. Extended exergy accounting (EEA) 

Exergy analysis involves the management of energy and mass theories with the second 

law of thermodynamics to draw, estimate, and enhance different energy transfer schemes 

(Naderi et al., 2021b). Consequently, this analysis can support a system to be more sustainable 

by reducing the exergy losses happening in energy changeover procedures (Aghbashlo et al., 

2018). The EEA, over traditional exergy analysis, has the advantage of connecting the technical 

production process of specific commodities as well as production processes with their 

embedded system, such as social system and surrounding environment (Song et al., 2019). 

Therefore, EEA can facilitate an understanding of the environmental costs from a 

comprehensive and multidimensional perspective, which bridges the gap about the ‘production 

of value’ and distinguishes most economics and biophysical-based methods (Dai et al., 2012). 

To date, it has been widely accepted as a comprehensive metric that accounts for both physical 

and monetary costs associated with primary resource consumption. As a result, the EEA refers 

to a broad “value measure” for “environmental cost formation” in terms of investments and 

losses of the complex system of society-economy-environment comprising Material (M) and 

Energy (E) resources, the labor force (L), and capital (Cap), in addition to environmental 

remediation costs (Env.). It can be stated as (Jawad et al., 2015; Dai et al., 2012) 

𝐸𝐸𝐴 = 𝑒𝑒𝑀 + 𝑒𝑒𝐸 + 𝑒𝑒𝐶𝑎𝑝 + 𝑒𝑒𝐿 + 𝑒𝑒𝐸𝑛𝑣       (5.19) 

Where (𝑒𝑒𝑀 + 𝑒𝑒𝐸) are the exergy of raw materials and energy flows used in producing 

a product, respectively. The summation of these two exergies (𝑒𝑒𝑀 + 𝑒𝑒𝐸) could be calculated 

by converting the summation of purchasing costs (∑ ∑ 𝐶𝑖𝐷𝑖𝑗
𝑚
𝑗

𝑛
𝑖 ) in the inventory model to the 

exergy equivalents (Jawad et al., 2015). As mentioned in subsection 5.3.4.2, for simplifying 

the mathematical model, we ignore the purchasing costs (and therefore exergy equivalents: 

𝑒𝑒𝑀 + 𝑒𝑒𝐸) since it does not affect the model’s order quantity (𝑄𝑖𝑗). All inventory-related costs 

should be transformed into corresponding exergy amounts to employ the EEA method in an 
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inventory model. The purchasing (C), ordering (A), and keeping (h) costs can be categorized 

into the summation of three exergy amounts of capital, labor, and environment 

(𝑒𝑒𝐶𝑎𝑝,𝑖 + 𝑒𝑒𝐿,𝑖 + 𝑒𝑒𝐸𝑛𝑣,𝑖), respectively (Jawad et al. 2018),  

𝑒𝑒𝐶𝑎𝑝,𝑖 = 𝑖𝐶𝑎𝑝 × 𝑒𝑒𝐶𝑎𝑝                                                                                              (5.20) 

𝑒𝑒𝐿,𝑖 = 𝑖𝐿 × 𝑒𝑒𝐿/𝐿𝑎𝑏𝑜𝑟 𝑐𝑜𝑠𝑡                                                                                    (5.21) 

𝑒𝑒𝐸𝑛𝑣,𝑖 = 𝑖𝐸𝑛𝑣 × 𝑒𝑒𝐸𝑛𝑣                                                                                              (5.22) 

where 𝑖 = 𝐴, 𝐶, 𝑜𝑟 ℎ are calculated in J/order, J/unit, and J/unit/year, correspondingly. 

Furthermore (Jawad et al. 2015, 2018; Sciubba 2011), 

𝑒𝑒𝐶𝑎𝑝 = 𝛼𝑥. 𝛽𝑥 (
𝐸𝑥𝑖𝑛

𝑀2
)                                                                                               (5.23) 

𝑒𝑒𝐿 =
𝛼𝑥.𝐸𝑥𝑖𝑛

(𝑁𝑊𝐻)𝑡𝑜𝑡𝑎𝑙
                                                                                                        (5.24) 

Where (𝑒𝑒𝐶𝑎𝑝, 𝑒𝑒𝐿) are the specific exergy equivalent of one monetary unit (€, $, £, ¥) 

and the unit equivalent exergy of labor, respectively. Moreover, (𝐸𝑥𝑖𝑛) is the total incoming 

exergy fluctuation (J/yr), can be determined based on the energy budget of the country under 

study. Regarding Eq. (5.22) for the exergy environment aspect, we follow the method of Chen 

and Chen (2009), who considered (𝑒𝑒𝐸𝑛𝑣 = 𝑒𝑒𝐶𝑎𝑝). Therefore, Eq. (5.22) is changed to 

(𝑒𝑒𝐸𝑛𝑣,𝑖 = 𝑖𝐸𝑛𝑣 × 𝑒𝑒𝐶𝑎𝑝). It includes any cost paid to get labor, capital, material, and other 

items used to reduce the damaging environmental effect of producing a product, operating a 

supply chain, or providing some other service (Jawad et al., 2015). 

Now considering Eqs. (5.20)-(5.22), one can calculate the three exergetic values of 

capital, labor, and environment (𝑒𝑒𝐶𝑎𝑝,𝑖 + 𝑒𝑒𝐿,𝑖 + 𝑒𝑒𝐸𝑛𝑣,𝑖) related to achieving the order cost 

𝐴(𝑥). Consistent with Sciubba (2011), the EEA method estimates the exergy corresponding to 

Labour, Money, and Ecological remediation in an item or service by factors of “𝛼𝑥” and “𝛽𝑥” 

along with a few economic quantities as GDP. Such features are vastly guided by labor 

indicators, population, standard workload, and local and international income. The stated 

features and exergy counterparts were considered and computed by Sciubba (2011) for several 

industrial and non-industrial countries. 

5.4.2. Applying EEA to fuzzy optimization of SVMB coal supply chain under VMI 

Under the carbon tax policy, the exergy equivalent of the total cost is (𝑇𝐶(𝑥)𝑡𝑎𝑥 =

𝑇𝐶(𝑥)1 + 𝑇𝐶(𝑥)2 + 𝑇𝐶(𝑥)3 + 𝑇𝐶(𝑥)4). This equivalent can be done with the following formulas 

(Jawad et al. 2015) 

𝐴(𝑥)𝑖,𝑠 = (𝑒𝑒𝐶𝑎𝑝,𝐴(𝑖,𝑠) + 𝑒𝑒𝐿,𝐴(𝑖,𝑠) + 𝑒𝑒𝐸𝑛𝑣,𝐴(𝑖,𝑠))                                                              (5.25) 

𝐴(𝑥)𝑖𝑗,𝑏 = (𝑒𝑒𝐶𝑎𝑝,𝐴(𝑖𝑗,𝑏) + 𝑒𝑒𝐿,𝐴(𝑖𝑗,𝑏) + 𝑒𝑒𝐸𝑛𝑣,𝐴(𝑖𝑗,𝑏))                                                      (5.26) 

ℎ(𝑥)𝑖𝑗 = (𝑒𝑒𝐶𝑎𝑝,ℎ(𝑖𝑗) + 𝑒𝑒𝐿,ℎ(𝑖𝑗) + 𝑒𝑒𝐸𝑛𝑣,ℎ(𝑖𝑗))                                                                  (5.27) 

𝑠(𝑥)1 = 𝑠1 × (𝑒𝑒𝐶𝑎𝑝)                                                                                                             (5.28) 

𝑠(𝑥)2 = 𝑠2 × (𝑒𝑒𝐶𝑎𝑝)                                                                                                              (5.29) 

𝐶(𝑥)𝑖 = (𝑒𝑒𝐶𝑎𝑝,𝐶(𝑖) + 𝑒𝑒𝐿,𝐶(𝑖) + 𝑒𝑒𝐸𝑛𝑣,𝐶(𝑖))                                                                       (5.30) 
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𝐴(𝑥)𝑖𝑗,𝑡 = 𝐴𝑖𝑗,𝑡 × (𝑒𝑒𝐶𝑎𝑝)                                                                                                      (5.31) 

𝐶(𝑥)𝑡𝑎𝑥 = 𝐶𝑡𝑎𝑥 × (𝑒𝑒𝐶𝑎𝑝)                                                                                                     (5.32) 

𝐶(𝑥)𝑤𝑎𝑠𝑡𝑒 = 𝐶𝑤𝑎𝑠𝑡𝑒 × (𝑒𝑒𝐶𝑎𝑝)                                                                                             (5.33) 

𝐵(𝑥)𝑗 = 𝐵𝑗 × (𝑒𝑒𝐶𝑎𝑝)                                                                                                             (5.34) 

As a result, by employing the above formulas to the objective functions and limitations 

of the model in Eq. (5.16), it is converted to a fuzzy exergy model under carbon tax policy as 

follows: 

𝑇𝐶(𝑥)𝑡𝑎𝑥 = ∑∑[
𝐷𝑖�̃�

𝑄𝑖𝑗
(𝐴(𝑥)𝑖,𝑠 + 𝐴(𝑥)𝑖𝑗,𝑏) +

ℎ(𝑥)𝑖𝑗

2𝑄𝑖𝑗
(𝑄𝑖𝑗(1 − 𝛼) − 𝑏𝑖𝑗)

2
𝑚

𝑗

𝑛

𝑖

+ (
𝑠(𝑥)1. 𝑏𝑖𝑗

2

2𝑄𝑖𝑗
+

𝑠(𝑥)2. 𝑏𝑖𝑗. 𝐷𝑖�̃�

𝑄𝑖𝑗
) +

𝐷𝑖�̃�

𝑄𝑖𝑗
(𝐴(𝑥)𝑖𝑗,𝑡)] + ∑[𝐵(𝑥)𝑗

− + (𝑖𝑛𝑡− × 𝐵(𝑥)𝑗
− )]

𝑚

𝑗

+ 𝐶(𝑥)𝑤𝑎𝑠𝑡𝑒 × ∑∑[(𝑄𝑖𝑗. 𝛼) + (𝑄𝑖𝑗. (1 − 𝛼). 𝛽) + (𝑄𝑖𝑗(1 − 𝛼). (1 − 𝛽). 𝛾)]

𝑚

𝑗

𝑛

𝑖

+ 𝐶(𝑥)𝑡𝑎𝑥 × ∑∑[(𝑄𝑖𝑗. 𝑓𝑚) + (
𝐷𝑖�̃�

𝑄𝑖𝑗
. 𝐿𝑗 . 𝑓𝑡) + (𝑄𝑖𝑗. 𝐷𝑖�̃�. 𝑓𝑘)]

𝑚

𝑗

𝑛

𝑖

 

𝑠. 𝑡. 

∑∑𝐶(𝑥)𝑖. 𝑄𝑖𝑗(1 − 𝛼) ≤ 𝐵(𝑥)𝑗 + (𝐵(𝑥)𝑗
− )

𝑛

𝑖

𝑚

𝑗

 

∑∑(𝑄𝑖𝑗(1 − 𝛼) − 𝑏𝑖𝑗) ≤ 𝐹𝑗

𝑛

𝑖

𝑚

𝑗

 

𝑉𝑖 ≤ 𝑄𝑖𝑗 ≤ 𝑊𝑖 

∑∑𝑄𝑖𝑗 ≤ �̃�

𝑚

𝑗

𝑛

𝑖

 

∑∑
𝐷𝑖�̃�

𝑄𝑖𝑗
≤ 𝑁

𝑚

𝑗

𝑛

𝑖

 

𝑏𝑖𝑗 ≤ 𝑄𝑖𝑗 

𝑄𝑖𝑗 > 0, 𝑖𝑛𝑡𝑒𝑔𝑒𝑟, 𝑖 = 1,2, … , 𝑛 

𝑏𝑖𝑗 ≥ 0, 𝑖𝑛𝑡𝑒𝑔𝑒𝑟, 𝑗 = 1,2, … ,𝑚 

𝐵(𝑥)𝑗
− ≥ 0,                                                                                                                                   (5.35)  

In the following section, we suggest four metaheuristic algorithms to solve the fuzzy 

exergy models in Eq. (5.35) under the EEA technique. 
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5.5. Solution method  

Achieving an “analytical solution” (if any) to the model in Eq. (5.35) is challenging 

since the model is “nonlinear integer-programming (NIP)” in type, and it is “NP-complete” 

(Diabat, 2014; Gen and Cheng, 1997; Peng et al., 1998). Put differently, the decision variables 

are integer, the objective function has a non-derivative arrangement, and exact approaches are 

overcharged to be applied (Roozbeh Nia et al., 2014). There are three solution search 

procedures for optimization models such as exact (complete), heuristic, and metaheuristic 

(random) search algorithms (Shokouhifar and Jalali, 2017). “Exact” techniques and problem-

solver tools like LINGO, CPLEX, and GAMS are unproductive on real-size problems 

regarding needed CPU time (Diabat, 2014; Zahedi et al., 2016). Moreover, even though 

“heuristics” are not hard to apply and quick in computation time, they do not efficiently 

examine the search space (Naderi et al., 2021b). To get the maximum accurate outcomes in 

terms of precision, “metaheuristics” should be employed (Stojanovic et al., 2017). Many 

academics have effectively manipulated metaheuristic approaches, for example, ant colony 

optimization (ACO), genetic algorithm (GA), imperialist competitive algorithm (ICA), 

differential evolution (DE), simulated annealing (SA), particle swarm optimization (PSO) to 

solve complex optimization models in several areas of engineering, and science subjects 

(Roozbeh Nia et al., 2017a, 2017b). The type of problem is essential for choosing a good 

metaheuristic algorithm (Blum et al., 2011). Single-solution algorithms (e.g., SA) exhibit good 

local search capability, while population-based metaheuristics (e.g., GA) have superior global 

search capability (Shokouhifar and Jalali, 2017). Therefore, population-based metaheuristics 

are mostly chosen the others and prove more significant accomplishments in certain 

circumstances. ACO is among the superior approaches for near optimization manipulated to 

cope with various models in real-life situations (Gupta and Srivastava, 2020; Guan et al., 2021; 

Dzalbs and Kalganova, 2020). Besides, GA has confirmed its higher functioning than other 

metaheuristics for supply chain optimization problems (Saif-Eddine et al., 2019; Saghaeeian 

and Ramezanian, 2018; Woo and Kim, 2019; Rostami et al., 2020). Hence, we consider four 

metaheuristic algorithms, including GA, ACO, and SA, as well as a newly suggested algorithm 

by Mirjalili and Lewis (2016), which is named whale optimization algorithm (WOA) to solve 

the “exergy fuzzy NIP (EFNIP) problem” modeled in Eq. (5.35). In the following subsections, 

short explanations primarily supported four metaheuristic algorithms. Afterward, the phases 

concerned in the proposed solutions are described. 

5.5.1. Genetic algorithm (GA) 

A genetic algorithm (GA) is an “evolutionary algorithm” created on natural choice and 

genetics. Holland (1975) proposed GA, and later Goldberg (1989) explained it in detail. GA is 

universally applied to calculate superior-quality solutions in problem optimization (Poongothai 

et al., 2021; Rong et al., 2015; Shi, 2014). The authors recommend (Rostamzadeh et al., 2015, 

Pasandideh et al., 2011; Roozbeh Nia et al., 2014, 2015; Popovic et al., 2014) for the GA 

algorithm. 

5.5.2. The “ant colony optimization (ACO)” algorithm 

The ACO algorithm is a metaheuristic algorithm created on “swarm intelligence” 

(Eberhart and Shi 2000; Van den Bergh 2002) which was first utilized by “Dorigo” in the late 

1980s to solve discrete optimization problems (see, for example, Colorni et al., 

1991;1992;1994). ACO is the most common optimization algorithm (Gupta and Srivastava 

2020; Dorigo and Stutzle 2004). It is established on the performance of ants obtaining food. 

Ants leave pheromone as they walk and discover their path by walking accompanied by the 

pheromone evidence. The extent of pheromone accumulation intensifies as ants walk back to 

the source point with food. Pheromone accumulation on the way back depends on the condition 



106 
 

and amount of food brought to the source. Pheromone accumulation /disappearance is precisely 

associated with the number of ants going on that route. Ants discover the optimal route by 

tracking the highest pheromone accumulation (De Santis et al., 2018; Booba and Gopal, 2013). 

The authors refer readers to (Dorigo and Stutzle, 2004; Colorni et al., 1994; Roozbeh Nia et 

al., 2014) for more detailed facts about the ACO algorithm. 

5.5.3. The whale optimization algorithm (WOA) 

A recent swarm intelligence optimization algorithm is the whale optimization algorithm 

(WOA), suggested by Mirjalili and Lewis (2016). This algorithm is created on the specific 

hunting technique of humpback whales. The method is named bubble-net attacking since 

whales make unique bubbles near a loop (Goldbogen et al., 2013). Their hunting method has 

three steps exploring prey, decreasing encircling, and spiral updating place (Mirjalili and 

Lewis, 2016; Wang et al., 2021; Chen et al., 2020; Lee and Lu, 2020). The WOA has a 

straightforward principle, operation, and uncomplicated employment since it has few 

parameters while powerful robustness. Therefore, the WOA algorithm has obtained broad 

consideration and has gained significant study outcomes (Du et al. 2021; Zhang et al. 2021b; 

Long et al., 2020). The critical advantage of WOA is that it demands no added tuning 

parameters to achieve stability in its exploration combined with exploitation (Aala Kalananda 

and Komanapalli 2021).  

5.5.4. The solution processes 

The main phases in the recommended solution process of this study are as follows: 

Phase 1: Obtain the fuzzy total exergy of the SVMB-VMI coal supply chain of the 

model in Eq. (5.35) under emission tax policy by each metaheuristic algorithm 

independently. 

Phase 2: Get the superior algorithm for each numerical example. 

Phase 3: Find the exact solution of the problem modeled in Eq. (5.35) by GAMS and 

compare them with metaheuristic ones. 

Phase 4: A sensitivity analysis of different percentages for exergy costs in five 

countries. 

An illustration of the chromosomes related to the order quantity and backorder amount 

of a numerical example (with one vendor and five buyers, which have four items) is offered in 

Fig. 5.3. 
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Fig.5.3. The demonstration of the chromosomes for the test with four items and five buyers 

5.6. Numerical examples 

This section gives computational tests, including one real-world coal supply chain case 

study in Iran and eight related arbitrary cases. We are looking to optimize sustainability in coal 

supply chain by considering the indirect (hidden) costs, including all three factors 

simultaneously (using the EEA method) under the carbon tax strategy.  

5.6.1 Case study in Iran 

The real-world case study includes one vendor and five coal buyers in a supply chain 

in Iran. Tabas Parvadeh Coal Company (TPCCO), located in Tabas city, is the biggest coal 

producer in Iran. Consistent with the statistics published by the Iranian Mines and Mining 

Industries Development and Renovation Organization (IMIDRO), TPCCO extracted 1.232 

million tons of coal from March 21, 2019, to January 20, 2020). With about 1.15 billion tons 

of reserves, Iranian coal mines can deliver up to three million tons of coal concentrate yearly 

(IEA, clean coal centre, 2020). From another point of view, the production of Steel in Iran is 

highly reliant on coal since metallurgical coal, or coking coal is an essential component in the 

steel-making procedure. TPCCO produces four types (grades) of coal, and the company has 

five key customers (steel producers). These customers are in different cities in Iran, and the 

public rail transport system does the transportation of order quantities between TPCCO and 

them. Since the demand of each steel producer (buyer) for each type of coal, as well as the total 

sales capacity of TPCCO (as a vendor), are not defined precisely, we consider them as 

triangular fuzzy numbers (see Table 5.2). Moreover, the initial data of the test problem and its 

equivalent exergy parameters are presented in Tables (5.3)-(5.6), respectively. These input data 

taken from the Iranian Mines and Mining Industries Development and Renovation 

Organization (IMIDRO), Sciubba (2011) and Naderi et al. (2021a). For this real case study in 

Iran, consistent with the informed rates in Sciubba (2011), we take equivalent exergy 

parameters of Egypt due to the resemblances between Iran and Egypt regarding economic 

development, population, religion, and culture. 
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According to Jawad et al. (2015), and after discussing with supply chain directors of 

TPCCO, it was supposed that each cost 𝐴𝑖,𝑆, 𝐴𝑖𝑗,𝑏, ℎ𝑖𝑗  𝑎𝑛𝑑 𝐶𝑖 could be split to Cap=30% for 

money, L=60% for labor, and Env.=10% for ecological remediation. In Section 5.4, we 

described the method of EEA and related formulas that we applied to our models. For example, 

in Table 5.3, the cost of 𝐴𝑖,𝑆 is assumed €20 for the first item, which includes €6 (20 × 0.30), 

€12 (20 × 0.60), and €2 (20 × 0.10) (monetary values) for capital (Cap=30%), labor (L=60%), 

and environmental (Env.=10%) remediation. Moreover, these three monetary numbers are 

converted to the exergy values based on Eqs. (5.20)-(5.22), and we have 

𝑒𝑒𝐶𝑎𝑝,𝐴 =6×5.68=34.08 (MJ), 𝑒𝑒𝐿,𝐴 = 12 ×
3.56

12
= 3.56(𝑀𝐽) and 

𝑒𝑒𝐸𝑛𝑣,𝐴 =2×5.68=11.36(MJ), whereas in total 𝐴(𝑥)𝑖,𝑆 =49 (MJ) in Table 5.6. To show better 

the performance of our suggested metaheuristic algorithms in solving big-size problems, 

besides the actual case study, we considered eight arbitrary test problems related to coal supply 

chain in Iran. These examples have 8 to 1024 types of coal in a supply chain with one vendor 

and five buyers, like the first case study. The whole initial data of these numerical examples 

are presented in Appendix Tables (5.A.1)-(5.A.4), respectively. Moreover, all the numerical 

examples are solved on a PC with an Intel Core i7-7500U CPU with 2.70GHz, and 8.00 GB 

RAM in Windows 10. “MATLAB” 2017a software is also employed for coding all the 

algorithms. 

 

Table 5.2: Fuzzy parameters of all buyers for all items in the real case study (example with four items) 

Item 4 Item 3 Item 2 Item 1 Buyer 

(20000, 30000, 

70000) 

(80000, 

90000,130000) 

(140000, 150000, 

190000) 

(330000, 340000, 

380000) 
𝐷𝑖1̃ 

(5000, 10000, 

45000) 

(65000, 70000, 

105000) 

(105000, 110000, 

145000) 

(185000, 190000, 

225000) 
𝐷𝑖2̃ 

(7000, 10000, 

43000) 
(47000, 50000, 83000) (87000, 90000, 123000) 

(137000, 140000, 

173000) 
𝐷𝑖3̃ 

(0, 5000, 25000) (30000, 35000, 55000) (80000, 85000, 105000) (90000, 95000, 115000) 𝐷𝑖4̃ 

(0, 3000, 12000) (15000, 18000, 27000) (65000, 68000, 77000) (75000, 78000, 87000) 𝐷𝑖5̃ 

�̃� = (35000,40000,60000) 

 

 

Table 5.3: Initial data of the real case study based on capital, labor, and environment values (example 

with four items) 

 Item value Unit 
Monetary values 

Cap. L. Env. 

𝐴𝑖,𝑆 1 20 Euro/order 6 12 2 
 2 20  6 12 2 
 3 20  6 12 2 
 4 20  6 12 2 

𝐴𝑖𝑗,𝑏 1 15 Euro/order 4.5 9 1.5 

 2 15  4.5 9 1.5 

 3 15  4.5 9 1.5 
 4 15  4.5 9 1.5 

𝐶𝑖 1 200 Euro/unit 60 120 20 
 2 170  51 102 17 
 3 140  42 84 14 
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 4 100  30 60 10 

ℎ𝑖𝑗 1 5 Euro/unit/year 1.5 3 0.5 
 2 4  1.2 2.4 0.4 
 3 3  0.9 1.8 0.3 
 4 3  0.9 1.8 0.3 

 

Table 5.4: Initial data of the real case study (example with four items) 

𝐶𝑡𝑎𝑥 = 200; 𝐶𝑤𝑎𝑠𝑡𝑒 =10 𝐴𝑖𝑗,𝑡 = 10 

𝑠1=3, 𝑠2=0 𝐿𝑗 = (655, 1160, 705, 1128, 1067) 

𝑖𝑛𝑡−=0.05, 𝑖𝑛𝑡+=0.02 𝐵𝑗 = (840000, 830000, 820000, 810000, 800000) 

𝑓𝑚 = 3.18 × 10−3  𝐹𝑗 = (9600, 9500, 9400, 9300, 9200) 

𝑓𝑡 = 1.4 × 10−5 𝑁 = 1400 

𝑓𝑘 = 5 × 10−5 𝛼 = 0.1;  𝛽 = 0.1;  𝛾 = 0.1 

 𝑉𝑖 = 1200; 𝑊𝑖 = 2500 

 

Table 5.5: The exergy parameters used in the inventory analysis of each country (Sciubba, 2011) 

 Unit Iran Afghanistan Turkey Germany Canada 

𝛼𝑥 - 0.0121 0.0017 0.411 0.557 0.021 

𝛽𝑥 - 2.94 0.07 1.35 1.31 1.95 

𝑒𝑒𝐶𝑎𝑝 MJ/€ 5.68 1.1 20.51 3.16 3.13 

𝑒𝑒𝐿 MJ/WH 3.56 0.41 91.36 68.25 68.61 

 

Table 5.6: Equivalent exergy parameters of Iran's real case study (example with four items) 

𝐴(𝑥)𝑖𝑗,𝑏 = (36.75, 36.75, 36.75, 36.75) 𝐿𝑎𝑏𝑜𝑟 𝑐𝑜𝑠𝑡 = 12(€/𝑊𝐻) 

𝐴(𝑥)𝑖𝑗,𝑡 = (85.20) 𝐶(𝑥)𝑡𝑎𝑥 = 1136 

ℎ(𝑥)𝑖𝑗 = (12.25, 9.80, 7.36, 7.35) 𝐶(𝑥)𝑤𝑎𝑠𝑡𝑒 = 56.80 

𝐶(𝑥)𝑖 = (490, 416.50, 343, 245) 𝑠(𝑥)1 = 17.04; 𝑠(𝑥)2 = 0 

𝐵(𝑥)𝑗 = (4771200, 4714400, 4657600,4600800, 4544000) 𝐴(𝑥)𝑖,𝑆 = (49, 49, 49, 49) 

 

5.6.2 Solving phases and related results 

Based on subsection 5.4., the results of each phase of solving procedure for all test 

problems are presented here. 

5.6.2.1. Phase 1: For an assumed numerical example, independently find the lowest fuzzy total 

exergy in Eq. (5.35) under emission tax policies by each metaheuristic algorithm.  

Each solution algorithm is performed ten times in this phase for each fuzzy exergy 

numerical example in Iran. Correspondingly, the lowest fuzzy total exergy and the CPU times 

(seconds) under the emission tax policy (Eq. 35) are detailed in Tables 5.7 and 5.8, respectively.  

5.6.2.2. Phase 2: Find each test problem’s superior individual metaheuristic algorithm under 

the emission tax policy. The most exemplary metaheuristic algorithm is observed by revealing 

the proportion distinction between the outcomes.  

Under the emission tax policy, we optimize four objectives simultaneously: the total 

inventory cost, the total cost associated with the additional required budget of all buyers, the 

penalty cost of coal waste dumping to the environment, and the total carbon generated by coal 

supply chain. Using the EEA method, we altered all model economic parameters (Euro) to 

equivalent exergy values (MJ). Consequently, regarded as four fuzzy exergy objective 

functions of this model, GA has the lowest fuzzy total exergy in numerical examples of 4-, 32-
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, 64- & 128-item (from 2,103,423.54 to 68,268,875.27 MJ). Moreover, WOA is the best 

algorithm in examples 16-, 256- & 512-item (see Table 5.7). Finally, ACO is superior to other 

algorithms in examples 8- & 1024-item (4,013,395.32, and 518,222,683.09 MJ). SA has the 

highest fuzzy total exergy results in all test problems in the same pattern. The percentage 

difference between the top two algorithms in all numerical examples is less than 1.5% which 

means their results are close. An evaluation of algorithms in terms of the fuzzy total exergy 

under emission tax is presented in Fig. 5.4 for our big-size numerical examples (256-, 512- & 

1024-items). Likewise, in terms of the computational time (sec.), SA has the shortest CPU time 

tracked by WOA, GA, and ACO (see Table 5.8 and Fig. 5.5). Furthermore, there is an 

increasing trend in the improvement percentage of CPU time of the best algorithms with 

increasing the size of numerical examples (see Fig. 5.6). 

 

Fig.5.4. The fuzzy total exergy (MJ) comparisons of algorithms for numerical examples (Phase 2) 

 

 

Fig.5.5. The CPU time (second) comparisons of algorithms for numerical examples (Phase 2) 
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Fig.5.6. The improvement (%) of CPU time between top two algorithms (Phase 2) 
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Table 5.7: The fuzzy total exergy found by the algorithms (Eq. 5.35) in Iran 

No. of 

items 

Fuzzy total exergy (MJ) 

The best algorithms 

Difference 

between two 

bests 

Improvement 

% WOA GA ACO SA 

4 2,124,316.51 2,103,423.54 2,149,239.07 2,229,865.34 GA-WOA-ACO-SA 20,892.97 0.99 

8 4,018,749.66 4,024,539.99 4,013,395.32 4,484,607.78 ACO-WOA-GA-SA 5,354.34 0.13 

16 8,022,249.53 8,111,533.36 8,028,403.95 9,268,720.34 WOA-ACO-GA-SA 6,154.42 0.08 

32 17,614,298.66 17,360,279.60 17,771,544.19 18,561,033.21 GA-WOA-ACO-SA 254,019.06 1.46 

64 35,155,787.91 34,664,673.10 36,043,124.05 37,192,458.33 GA-WOA-ACO-SA 491,114.81 1.42 

128 68,875,447.15 68,268,875.27 69,455,453.56 76,802,024.78 GA-WOA-ACO-SA 606,571.88 0.89 

256 137,679,030.04 137,723,302.18 139,170,388.10 152,060,059.56 WOA-GA-ACO-SA 44,272.14 0.03 

512 275,080,936.61 275,221,821.44 277,971,334.66 307,251,073.62 WOA-GA-ACO-SA 140,884.83 0.05 

1024 519,346,028.93 547,658,039.42 518,222,683.09 618,273,942.66 ACO-WOA-GA-SA 1,123,345.84 0.22 

Exact method’s result (4 items) = 2,063,660.06 (MJ); Difference with GA=39,763.48; % Error=1.92 

 

Table 5.8: The CPU times of solving test problems by the algorithms (Eq. 5.35) in Iran 

No. of 

items 

CPU time (second) 

The best algorithms 

Difference 

between 

two bests 

Improvement 

% WOA GA ACO SA 

4 0.159 0.212 0.129 0.019 SA-ACO-WOA-GA 0.11 593.28 

8 0.200 0.306 0.199 0.021 SA-ACO-WOA-GA 0.18 865.94 

16 0.331 0.313 0.326 0.026 SA-GA-ACO-WOA 0.29 1121.92 

32 0.486 0.480 0.375 0.029 SA-ACO-GA-WOA 0.35 1173.23 

64 0.762 0.720 0.652 0.035 SA-ACO-GA-WOA 0.62 1750.68 

128 1.464 1.312 1.302 0.055 SA-ACO-GA-WOA 1.25 2252.62 

256 2.164 2.387 2.421 0.082 SA-WOA-GA-ACO 2.08 2542.30 

512 3.885 4.076 5.333 0.156 SA-WOA-GA-ACO 3.73 2387.74 

1024 7.451 7.874 9.669 0.234 SA-WOA-GA-ACO 7.22 3079.42 

Exact method’s result (4 items) = 4.186 Sec.; Difference with GA=3.97 Sec.; % Error= 1876.30 

 



113 
 

5.6.2.3. Phase 3: Find the “exact” results and compare them with metaheuristic ones. 

To develop a good knowledge and understanding of the solution obtained through the 

suggested algorithms, a solution may be contrasted with an “exact method.” This “exact result” 

can be achieved through exact optimizer software such as “GAMS” or an optimization library 

in “Python.” In this study, the proposed mathematical model (Eq. 5.35) under emission tax 

policy is solved in small sizes (example with four items) by GAMS. A comparison with the 

best metaheuristic algorithm is made. 

For the 4-item numerical example under emission tax policy and Eq. (5.35), the exact 

result for the fuzzy total exergy is 2,063,660.06 (MJ), while the outcome of the best 

metaheuristic algorithm (GA) for this example is 2,149,239.07 (MJ). Consequently, the 

difference between them is 39,763.48 (MJ), and the percentage penalty or error is 1.92%. 

Because the percentage penalty is minor, indicating the fair dominance of the solutions 

obtained through the best-suggested algorithm (Cárdenas-Barrón et al., 2012), as it is 

remarkably close to the exact method (see Table 5.7 and Fig. 5.7). Considering computation 

time, the difference between the exact method and GA is 3.97 (Sec.), while the percentage 

penalty is 1876.30%. Similarly, it means the metaheuristic algorithm (GA) solved the tax policy 

model more quickly (see Table 5.8 and Fig. 5.8). Moreover, the diagrams of fuzzy total exergy 

by the suggested algorithms are presented in Fig. 5.9. 

 

Fig.5.7. Comparison of the fuzzy total exergy between exact method and the best metaheuristic algorithm 

(Phase 3) 
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Fig.5.8. Comparison of CPU time between exact method and the best metaheuristic algorithm (Phase 3) 
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Fig.5.9. The diagrams of fuzzy total exergy by the suggested algorithms (Phases 2 & 3) 
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33-33). Considering each exergy set, we obtained the fuzzy total exergy for a 4-item test 

problem under the carbon tax policy for coal supply chain in each country using the GAMS. 

Moreover, the exergy parameters of five countries are presented in Table 5.5, and all sensitivity 

results are presented in Table 5.9. In the following, we explain the results in detail. 

 

 

Fig.5.10. Sensitivity analysis - Min. & Max. of the total fuzzy exergy of each country (Phase 4) 

 

5.6.2.4.1 Analysis of each country 

Considering Table 5.9 and Fig. 5.10, for coal supply chain in each country, we have: 

➢ Afghanistan: in this country, the top exergy components are Set A (30-60-10) since 

more exergy weight is assigned for Labor (60%) and less for Environment (10%). It 
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Furthermore, the worst exergy components in Afghanistan are Set E (33-33-33) when 
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➢ Canada: The best exergy components are Set D (30-20-50) when Environment has 
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➢ Turkey: Like Iran, the best exergy components in Turkey are Set A (30-60-10), while 

more exergy percentage is given to Labor (60%). It established the least amount of 

fuzzy total exergy with 4,351,316.03 (MJ) for coal supply chain. Likewise, the worst 

exergy components are Set D (30-20-50) when more weight is provided to the 

Environment (50%), which generated the highest fuzzy total exergy of 4,780,003.95 

(MJ). 

➢ Respecting Table 5.9 and Fig. 5.10, the minimum total exergy (MJ) in coal supply chain 

of each country is as follow Afghanistan (1,504,757.85), Canada (2,055,844.41), 

Germany (2,109,044.72), Iran (2,110,974.62), and Turkey (4,351,316.03). 

➢ Among all presented countries, the coal supply chain in Afghanistan has the lowest 

total exergy (1,504,757.85 MJ), followed by Canada, Germany, Iran, and Turkey, 

respectively (see Fig. 5.10).  

➢ Moreover, coal supply chain in Turkey creates the highest total exergy under exergy 

Sets of B (50-30-20), D (30-20-50) and E (33-33-33), among other countries. Similarly, 

Canada, under exergy Sets of A (30-60-10) and C (20-50-30), forms the greatest total 

exergy in coal supply chain (see Table 5.9).  

 

5.6.2.4.2 Analysis of each exergy set 

Considering Table 5.9 and Fig. 5.11, for each exergy set, we have: 

➢ Exergy Set A (30%-60%-10%): In this set, more weight is assigned to Labor (60%) 

and only 10% to Environment. Although this set works well for coal supply chain in 

Afghanistan, with the minimum total exergy of 1,504,757.85 (MJ), Canada has 

4,606,147.99 (MJ). 

➢ Exergy Set B (50%-30%-20%): In this set, more weight is assumed for Capital (50%) 

along with Labor (30%) and Environment (20%), respectively. Regardless of coal 

supply chain in Turkey (4,654,099.79 MJ), exergy set B operates well in Afghanistan 

with 1,533,788.62 (MJ). 

➢ Exergy Set C (20%-50%-30%): In this set, Labor has 50% weight, followed by 

Environment (30%) and Capital (20%), respectively. Exergy set C performs well in 

coal supply chain in Afghanistan (1,533,954.88 MJ), even though in Canada, the total 

exergy is 4,606,446.58 (MJ). 

➢ Exergy Set D (30%-20%-50%): In this set, Labor has only 20% while 50% is for 

Environment. Despite the high result in Turkey with 4,780,003.95 (MJ), exergy set D 

runs well in Afghanistan with 1,512,552.55 (MJ). 

➢ Exergy Set E (33%-33%-33%): In this set, all three exergy components have equal 

33% weight. Although exergy set E does not perform well in Turkey with 4,602,880.36 

(MJ), it runs well in Afghanistan with 1,540,156.67 (MJ). 

➢ Moreover, all exergy Sets (A-E) generated the minimum total exergy for coal supply 

chain in Afghanistan (see Fig. 5.11). 
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Fig.5.11. Sensitivity analysis - Min. and Max. of each exergy set (Phase 4) 
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Table 5.9: Sensitivity analysis of different percentages for exergy costs in five countries (example with four items) 

%(Cap-L-Env.) 
Fuzzy total exergy (Emission Tax) MJ 

Min. 
Country 

min. 
Max. 

Country 

max. AF* CA GE IR TR 

Set A 30-60-10 1,504,757.85 4,606,147.99 4,479,364.93 2,110,974.62 4,351,316.03 1,504,757.85 AF 4,606,147.99 CA 

Set B 50-30-20 1,533,788.62 2,667,490.61 2,655,420.96 2,230,157.59 4,654,099.79 1,533,788.62 AF 4,654,099.79 TR 

Set C 20-50-30 1,533,954.88 4,606,446.58 4,492,797.20 2,234,708.24 4,412,490.90 1,533,954.88 AF 4,606,446.58 CA 

Set D 30-20-50 1,512,552.55 2,055,844.41 2,109,044.72 2,274,445.14 4,780,003.95 1,512,552.55 AF 4,780,003.95 TR 

Set E 33-33-33 1,540,156.67 3,007,167.24 2,928,353.16 2,220,750.94 4,602,880.36 1,540,156.67 AF 4,602,880.36 TR 

Balanced 

point 

Min. 1,504,757.85 2,055,844.41 2,109,044.72 2,110,974.62 4,351,316.03 Min. Min.  Max. Max.  

Set min A D D A A 1,504,757.85 AF 4,780,003.95 TR 

 Max. 1,540,156.67 4,606,446.58 4,492,797.20 2,274,445.14 4,780,003.95 Set A  Set D  

 Set max E C C D D     

*AF: Afghanistan, CA: Canada, GE: Germany, IR: Iran, TR: Turkey 
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5.7. Conclusions and future research works 

Classical models do not consider inventory systems' unseen (indirect) costs. In fact, in 

earlier research, the meaning of the cost is workflow-associated cost aspects, and it is limited to 

finding a study that evaluates the supply chain in terms of Joules (rather than conventional 

monetary objectives) and, at the same time, assesses all sustainability features, for example, 

economic, labour, and environmental. Moreover, to the best of the authors' knowledge, no exergy 

analysis approach like the EEA in the literature take into account the carbon tax strategy in supply 

chain. With increasing awareness of global warming and environmental issues, problems such as 

carbon emission and imperfect quality items discarded to the environment related to coal mining 

and steel manufacturing have become crucial indicators of coal supply chain evaluation. Moreover, 

there is a lack of research in the literature that evaluates the supply chain under a carbon tax 

strategy with vague parameters such as buyer demand. Finally, there is an absence of studies that 

evaluate the sustainability of coal supply chains in developed and developing countries with a 

carbon tax strategy in terms of Joules. 

Hence, this research considers the studies of Jawad et al. (2015) and Naderi et al. (2021a) 

and, more precisely, develops it into a multi-item multi-constraint multi-buyer EOQ model in coal 

supply chain under uncertainty conditions. This supply chain has a single vendor and multi-buyer 

(SVMB) that coordinate with the VMI approach and considers inventory stockout as a backorder. 

Additionally, to make the model green, a penalty cost for imperfect quality items disposal to the 

environment is considered. By employing the EEA method and Mega-Joules (MJ) as a universal 

unit of measure, the total exergy of the coal supply chain can be calculated. Additionally, a carbon 

tax is utilized to assess the sustainability performance of coal supply chain. Four metaheuristic 

algorithms were suggested to solve the model, including GA, ACO, SA, and WOA, and their 

results were compared with the exact method, like GAMS. In the last part, a sensitivity analysis 

with different exergy values (for Capital, Labor, and Environment) was done to find the best exergy 

set for coal supply chain in five countries, including Iran, Afghanistan, Turkey, Germany, and 

Canada. 

In this study, we presented three research questions (in Section 5.1) and attempted to 

answer them. 

Q1. Does incorporating a carbon tax strategy with the EEA method in coal supply 

chain trigger financial benefits and sustainability advantages? 

In subsection 5.3.4, we developed a non-exergy mathematical model of the coal supply 

chain for carbon tax strategy. Then the model has converted to a fuzzy model in subsection 5.3.5, 

and finally, a recent supply chain assessment method entitled the EEA (regarding Joules) was used 

in section 4. This technique covers energy and material's primary aggregate exergy subject and 

costs related to monetary externality (labor and capital) and environmental externality 

(environmental aspects). Consequently, this technique could promote both the financial system 

and the environment. Four famous metaheuristic algorithms (WOA, GA, ACO, and SA) are 

employed to solve the exergy fuzzy nonlinear integer programming (EFNIP) problem modelled in 

Eq. (5.35). Concerning this model, and the results in subsection 6.2 for all test problems (from 4-

item to 512-item), GA and WOA are the top two algorithms with the lowest fuzzy total exergy 

except for test problem 1024-item, which ACO is superior. When comparing the results with the 

exact method (GAMS), there is a small percentage error (1.92%) between them. Therefore, it could 

validate the results of metaheuristic algorithms in this study. The percentage penalty in CPU 
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running time between the exact method and suggested metaheuristic algorithms is high while 

solving the model by the metaheuristic algorithm (GA) is faster. 

Q2. The coal supply chain in developing countries is supposed to have the lowest cost 

overall; however, in terms of sustainability (social, economic, and environmental aspects) and 

considering Joules rather than monetary objectives, does this assumption remain accurate? 

Considering the sensitivity analysis in subsection 5.6.2.4, we evaluated the sustainability 

of coal supply chain in five countries, such as Iran, Afghanistan, Turkey, Germany, and Canada 

(see Table 5.9). Subject to the findings, coal supply chains in Canada and Germany have better 

sustainability performance in Joules than Iran and Turkey. For example, the lowest total exergy of 

a coal supply chain in Canada and Germany are 2,055,844.41 and 2,109,044.72 (MJ), respectively, 

while in Iran and Turkey, they are 2,110,974.62 and 4,351,316.03 (MJ), respectively. The 

explanation is that conventional supply chain evaluation techniques consider monetary measures 

while the technique of EEA reflects all three characteristics of sustainability (Labour, Money, and 

Environmental remediation) in goods or services. Furthermore, in our study, there is one 

exceptional country; the coal supply chain in Afghanistan has far better sustainability performance 

than all countries, with the lowest total exergy equal to 1,504,757.85 (MJ). The reason behind this 

outstanding result is that the exergy parameters of Capital (𝑒𝑒𝐶𝑎𝑝 = 1.1,𝑀𝐽/𝐸𝑢𝑟𝑜) and Labour 

(𝑒𝑒𝐿 = 0.41,𝑀𝐽/𝑊𝐻) in Afghanistan are less than other countries in this study (see Table 5.5). 

Q3. Which percentage set of exergy components (social, economic, and environmental 

characteristics) creates the lowest total exergy of supply chain? which country has more 

sustainable conditions for coal supply chain? 

Regarding subsection 5.6.2.4 and Table 5.9, it is examined that with carbon tax strategy, 

exergy Set A (30-60-10) that is assigned more weight (60%) on Labor and less (10%) on 

Environment could create the lowest fuzzy total exergy in coal supply chain of the countries such 

as Afghanistan, Iran, and Turkey. Moreover, exergy Set D (30-20-50), which is given more weight 

(50%) to Environment, followed by 30% to Capital and only 20% to Labor, could form the lowest 

fuzzy total exergy in Canada and Germany. As mentioned in the previous answer, with 

1,504,757.85 (MJ), Afghanistan has the finest sustainable coal supply chain among all countries 

in this study, followed by Canada, Germany, and Iran with 2,055,844.41; 2,109,044.72 and 

2,110,974.62 (MJ), respectively. Among all countries in this study, the weakest sustainability 

condition (highest fuzzy total exergy) for coal supply chain belongs to Turkey, with 4,351,316.03 

(MJ). 

In contrast to the conventional financial and commercial models, the outcomes of our 

analysis propose that even though we supposed that the factors of inventory models are unchanged 

for the five coal supply chains, sustainability improvement could be achieved because of the 

adjustments among exergy’s inflows/outflows in the five countries. It means no fixed exergy 

components amount creates the highest sustainability in all countries. For example, based on our 

results in Table 5.9, considering more weight (50%) to Environment and only 20% to Labor as set 

D (30-20-50) creates the maximum sustainability for coal supply chain in Canada and Germany 

(with 2,055,844.41 and 2,109,044.72 MJ) and at the same time the weakest sustainability for Iran 

and Turkey (with 2,110,974.62 and 4,351,316.03 MJ). 

Another point is that, for developed countries like Canada and Germany, improving the 

sustainability of coal supply chain in terms of Joules takes place when more weight is given to the 
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exergy of the Environment (for example, 50% in Set D) and less on exergy of Labour. In contrast, 

more emphasis on the exergy of Labor and less on the Environment (for example, Labor=60%, 

Environment=10% in Set A) for developing countries creates sustainability improvement. 

Therefore, decision-makers in coal supply chain could realize that adjusting which sustainability 

aspect (Capital, Labor and Environment) is more important in each country. 

Regarding Table 5.9, on the one hand, the sustainability performance of coal supply chain 

in Afghanistan is 36.62% better than in Canada. Afghanistan has the best sustainability condition 

for coal supply chain with only 1,504,757.85 (MJ). Considering Table 5.5, one can conclude that 

all exergy parameters in Afghanistan, such as (𝑒𝑒𝐶𝑎𝑝, 𝑒𝑒𝐿 , 𝛼𝑥, 𝛽𝑥) are less than other countries. On 

the other hand, the mentioned exergy parameters (precisely 𝑒𝑒𝐶𝑎𝑝, 𝑒𝑒𝐿) in Turkey are higher than 

other countries, which creates the weakest sustainability condition. Therefore, these exergy 

parameters significantly impact the total exergy cost of coal supply chain in each country. 

Consequently, another way to improve the sustainability in each country is to find ways to decrease 

exergy parameters. If we look at Eqs. (5.23) and (5.24), exergy parameters of (𝑒𝑒𝐶𝑎𝑝, 𝑒𝑒𝐿) are 

dependent on two econometric coefficients (𝛼𝑥, 𝛽𝑥) as well as (𝐸𝑥𝑖𝑛). As mentioned in subsection 

4.1, these are related to the type of societal organization, the historical period, the technological 

level, the pro-capital resource consumption, and the geographic location of the country they are 

(Sciubba, 2011). Adjusting (𝛼𝑥, 𝛽𝑥, 𝐸𝑥𝑖𝑛), if possible, is a complicated mission that demands great 

attempts from all shareholders, governments, individuals, societies, business organisations, 

scientists, etc. For example, controlling the importing and exporting of goods from and to the 

country, extraction of ores and minerals placed within the control level of the society. Individuals, 

societies, and business organisations can support in this way by promoting locally made goods. 

This, also, can enhance the rate of labor force in the country by establishing more job opportunities 

(Jawad et al., 2018). Moreover, effective productivity (output per hour worked) growth can boost 

per capita GDP and income of a country. Interested readers are encouraged to study Sciubba (2011) 

for more information. 

Moreover, looking at exergy equations in Section 4 (For example, Eqs. 5.25-5.34), all 

exergy parameters in Table 5.5 have a direct relation to the cost elements of the inventory models 

(such as ordering, purchasing, and holding), and accordingly highly impact on the total exergy 

functioning of a coal supply chain. Therefore, decreasing the cost elements of the inventory model 

in coal supply chain is another way to improve sustainability. For example, employing stock 

classification, shorter order cycles, supplier lead time reduction, eliminating obsolete inventory, 

apply a Just-in-Time inventory system, and monitor key performance indicators. 

Top management in coal supply chains must reduce waste resources such as energy, labor, 

material, and pollution to diminish the negative impact on coal supply chain sustainability. 

Additionally, a coal supply chain may need to find the potential prospects to moderate its total 

exergy cost without losing its benefits or customers. From another point of view, these results may 

encourage the government to regulate sustainability policies better. It means reducing the negative 

impacts of economic growth without losing the speed of development (a win-win strategy).  

The following topics for future research are suggested: 

(a) The multi-objective model can be considered. 

(b) Economic production quantity (EPQ) or a production system can be considered. 

(c) Lead times can be included. 
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(d) Quantity discounts in cost per unit of items can be permitted.  

(e) Other emission gas such as SO2 and NOx could be considered. 

(f) Other carbon policies like cap, trade or offset can be investigated. 

(g) Fuzzy parameters can be considered as an Interval type 2. 

(h) Multi-echelon supply chains such as single-buyer multi-supplier and multi-buyer 

multi-supplier supply chains can be investigated. 

(i) Other new meta-heuristic algorithms such as sperm whale algorithm (SWA), sine 

cosine algorithm (SCA), moth-flame optimization algorithm (MFO), ant lion Optimizer 

(ALO), and differential evolution (DE) can also be used. 

 

 

 

 

 

 

Postscripts: 

This chapter considered carbon tax policy for coal SC to improve the sustainability of coal SC in 

both developed and developing countries by incorporating extended exergy accounting. In the next 

chapter, carbon trade policy will be applied to coal SC. Additionally, carbon cap and offset policies 

will be presented in Chapters 7 and 8, respectively as additional material. 
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Paper Appendix-Chapter 5 

Table 5.A.1. Fuzzy demands of all buyers for all items (a vendor and five buyers) 

Item 

(i) 1iD  2iD  3iD  4iD  5iD  

1 (330000, 340000, 

380000) 

(185000, 190000, 

225000) 

(137000, 140000, 

173000) 

(90000, 95000, 

115000) 

(75000, 78000, 

87000) 

2 (140000, 150000, 

190000) 

(105000, 110000, 

145000) 

(87000, 90000, 

123000) 

(80000, 85000, 

105000) 

(65000, 68000, 

77000) 

3 (80000, 

90000,130000) 

(65000, 70000, 

105000) 

(47000, 50000, 

83000) 

(30000, 35000, 

55000) 

(15000, 18000, 

27000) 

4 (20000, 30000, 

70000) 

(5000, 10000, 

45000) 

(7000, 10000, 

43000) 

(0, 5000, 25000) (0, 3000, 12000) 

5 (330000, 340000, 

380000) 

(185000, 190000, 

225000) 

(137000, 140000, 

173000) 

(90000, 95000, 

115000) 

(75000, 78000, 

87000) 

6 (140000, 150000, 

190000) 

(105000, 110000, 

145000) 

(87000, 90000, 

123000) 

(80000, 85000, 

105000) 

(65000, 68000, 

77000) 

7 (80000, 

90000,130000) 

(65000, 70000, 

105000) 

(47000, 50000, 

83000) 

(30000, 35000, 

55000) 

(15000, 18000, 

27000) 

8 (20000, 30000, 

70000) 

(5000, 10000, 

45000) 

(7000, 10000, 

43000) 

(0, 5000, 25000) (0, 3000, 12000) 

9 (330000, 340000, 

380000) 

(185000, 190000, 

225000) 

(137000, 140000, 

173000) 

(90000, 95000, 

115000) 

(75000, 78000, 

87000) 

10 (140000, 150000, 

190000) 

(105000, 110000, 

145000) 

(87000, 90000, 

123000) 

(80000, 85000, 

105000) 

(65000, 68000, 

77000) 

11 (80000, 

90000,130000) 

(65000, 70000, 

105000) 

(47000, 50000, 

83000) 

(30000, 35000, 

55000) 

(15000, 18000, 

27000) 

12 (20000, 30000, 

70000) 

(5000, 10000, 

45000) 

(7000, 10000, 

43000) 

(0, 5000, 25000) (0, 3000, 12000) 

13 (330000, 340000, 

380000) 

(185000, 190000, 

225000) 

(137000, 140000, 

173000) 

(90000, 95000, 

115000) 

(75000, 78000, 

87000) 

14 (140000, 150000, 

190000) 

(105000, 110000, 

145000) 

(87000, 90000, 

123000) 

(80000, 85000, 

105000) 

(65000, 68000, 

77000) 

15 (80000, 

90000,130000) 

(65000, 70000, 

105000) 

(47000, 50000, 

83000) 

(30000, 35000, 

55000) 

(15000, 18000, 

27000) 

16 (20000, 30000, 

70000) 

(5000, 10000, 

45000) 

(7000, 10000, 

43000) 

(0, 5000, 25000) (0, 3000, 12000) 

17 (330000, 340000, 

380000) 

(185000, 190000, 

225000) 

(137000, 140000, 

173000) 

(90000, 95000, 

115000) 

(75000, 78000, 

87000) 

18 (140000, 150000, 

190000) 

(105000, 110000, 

145000) 

(87000, 90000, 

123000) 

(80000, 85000, 

105000) 

(65000, 68000, 

77000) 

19 (80000, 

90000,130000) 

(65000, 70000, 

105000) 

(47000, 50000, 

83000) 

(30000, 35000, 

55000) 

(15000, 18000, 

27000) 

20 (20000, 30000, 

70000) 

(5000, 10000, 

45000) 

(7000, 10000, 

43000) 

(0, 5000, 25000) (0, 3000, 12000) 

21 (330000, 340000, 

380000) 

(185000, 190000, 

225000) 

(137000, 140000, 

173000) 

(90000, 95000, 

115000) 

(75000, 78000, 

87000) 

22 (140000, 150000, 

190000) 

(105000, 110000, 

145000) 

(87000, 90000, 

123000) 

(80000, 85000, 

105000) 

(65000, 68000, 

77000) 

23 (80000, 

90000,130000) 

(65000, 70000, 

105000) 

(47000, 50000, 

83000) 

(30000, 35000, 

55000) 

(15000, 18000, 

27000) 

24 (20000, 30000, 

70000) 

(5000, 10000, 

45000) 

(7000, 10000, 

43000) 

(0, 5000, 25000) (0, 3000, 12000) 

25 (330000, 340000, 

380000) 

(185000, 190000, 

225000) 

(137000, 140000, 

173000) 

(90000, 95000, 

115000) 

(75000, 78000, 

87000) 
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26 (140000, 150000, 

190000) 

(105000, 110000, 

145000) 

(87000, 90000, 

123000) 

(80000, 85000, 

105000) 

(65000, 68000, 

77000) 

27 (80000, 

90000,130000) 

(65000, 70000, 

105000) 

(47000, 50000, 

83000) 

(30000, 35000, 

55000) 

(15000, 18000, 

27000) 

28 (20000, 30000, 

70000) 

(5000, 10000, 

45000) 

(7000, 10000, 

43000) 

(0, 5000, 25000) (0, 3000, 12000) 

29 (330000, 340000, 

380000) 

(185000, 190000, 

225000) 

(137000, 140000, 

173000) 

(90000, 95000, 

115000) 

(75000, 78000, 

87000) 

30 (140000, 150000, 

190000) 

(105000, 110000, 

145000) 

(87000, 90000, 

123000) 

(80000, 85000, 

105000) 

(65000, 68000, 

77000) 

31 (80000, 

90000,130000) 

(65000, 70000, 

105000) 

(47000, 50000, 

83000) 

(30000, 35000, 

55000) 

(15000, 18000, 

27000) 

32 (20000, 30000, 

70000) 

(5000, 10000, 

45000) 

(7000, 10000, 

43000) 

(0, 5000, 25000) (0, 3000, 12000) 

 

Table 5.A.2. Initial data of all test problems (monetary value) and their equivalent exergy values (MJ) for 

Iran 

Item 

(i) 

Cost values (€) Exergy equivalent (MJ) 

𝐴𝑖,𝑆 𝐴𝑖𝑗,𝑏  𝐴𝑖𝑗,𝑡 ℎ𝑖𝑗 𝐶𝑖 𝐴(𝑥)𝑖,𝑆 A(x)ij,b 𝐴(𝑥)𝑖𝑗,𝑡 ℎ(𝑥)𝑖𝑗 𝐶(𝑥)𝑖 

1 20 15 10 5 200 49 36.75 85.20 12.25 490 

2 20 15 10 4 170 49 36.75 85.20 9.80 416.50 

3 20 15 10 3 140 49 36.75 85.20 7.36 343 

4 20 15 10 3 100 49 36.75 85.20 7.35 245 

5 20 15 10 5 200 49 36.75 85.20 12.25 490 

6 20 15 10 4 170 49 36.75 85.20 9.80 416.50 

7 20 15 10 3 140 49 36.75 85.20 7.36 343 

8 20 15 10 3 100 49 36.75 85.20 7.35 245 

9 20 15 10 5 200 49 36.75 85.20 12.25 490 

10 20 15 10 4 170 49 36.75 85.20 9.80 416.50 

11 20 15 10 3 140 49 36.75 85.20 7.36 343 

12 20 15 10 3 100 49 36.75 85.20 7.35 245 

13 20 15 10 5 200 49 36.75 85.20 12.25 490 

14 20 15 10 4 170 49 36.75 85.20 9.80 416.50 

15 20 15 10 3 140 49 36.75 85.20 7.36 343 

16 20 15 10 3 100 49 36.75 85.20 7.35 245 

17 20 15 10 5 200 49 36.75 85.20 12.25 490 

18 20 15 10 4 170 49 36.75 85.20 9.80 416.50 

19 20 15 10 3 140 49 36.75 85.20 7.36 343 

20 20 15 10 3 100 49 36.75 85.20 7.35 245 

21 20 15 10 5 200 49 36.75 85.20 12.25 490 

22 20 15 10 4 170 49 36.75 85.20 9.80 416.50 

23 20 15 10 3 140 49 36.75 85.20 7.36 343 

24 20 15 10 3 100 49 36.75 85.20 7.35 245 

25 20 15 10 5 200 49 36.75 85.20 12.25 490 

26 20 15 10 4 170 49 36.75 85.20 9.80 416.50 

27 20 15 10 3 140 49 36.75 85.20 7.36 343 

28 20 15 10 3 100 49 36.75 85.20 7.35 245 

29 20 15 10 5 200 49 36.75 85.20 12.25 490 

30 20 15 10 4 170 49 36.75 85.20 9.80 416.50 

31 20 15 10 3 140 49 36.75 85.20 7.36 343 

32 20 15 10 3 100 49 36.75 85.20 7.35 245 

* For the test problems with greater than 32 items, these data are repeated 
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Table 5.A.3. Resource data of all test problems (monetary value) and their equivalent exergy values (MJ) 

Test 

problem 
Resource Buyer 1 Buyer 1 Buyer 1 Buyer 4 Buyer 5 

4 items 

(real case 

study) 

      

𝐵𝑗  840000 830000 820000 810000 800000 

𝐵(𝑥)𝑗 4771200 4714400 4657600 4600800 4544000 

𝐹𝑗 9600 9500 9400 9300 9200 

�̃� (35000, 40000, 60000)   

8 items 

      

𝐵𝑗  1680000 1660000 1640000 1620000 1600000 

𝐵(𝑥)𝑗 9542400 9428800 9315200 9201600 9088000 

𝐹𝑗 19200 19000 18800 18600 18400 

�̃� (80000, 85000, 105000)   

16 items 

      

𝐵𝑗  3360000 3320000 3280000 3240000 3200000 

𝐵(𝑥)𝑗 19084800 18857600 18630400 18403200 18176000 

𝐹𝑗 38400 38000 37600 37200 36800 

�̃� (170000, 175000, 195000)   

32 items 

      

𝐵𝑗  6720000 6640000 6560000 6480000 6400000 

𝐵(𝑥)𝑗 38169600 37715200 37260800 36806400 36352000 

𝐹𝑗 76800 76000 75200 74400 73600 

�̃� (350000, 355000, 375000)   

64 items 

      

𝐵𝑗  13440000 13280000 13120000 12960000 12800000 

𝐵(𝑥)𝑗 176339200 75430400 74521600 73612800 72704000 

𝐹𝑗 1536000 152000 150400 148800 147200 

�̃� (710000, 715000, 735000)   

128 items 

      

𝐵𝑗  26880000 26560000 26240000 25920000 25600000 

𝐵(𝑥)𝑗 152678400 150860800 149043200 147225600 145408000 

𝐹𝑗 307200 304000 300800 297600 294400 

�̃� (1430000, 1435000, 1455000)  

256 items 

      

𝐵𝑗  53760000 53120000 52480000 51840000 51200000 

𝐵(𝑥)𝑗 305356800 301721600 298086400 294451200 290816000 

𝐹𝑗 614400 608000 601600 595200 588800 

�̃� (2870000, 2875000, 2895000)  

512 items 

      

𝐵𝑗  107520000 106240000 104960000 103680000 102400000 

𝐵(𝑥)𝑗 610713600 603443200 596172800 588902400 581632000 

𝐹𝑗 1228800 1216000 1203200 1190400 1177600 

�̃� (5750000, 5755000, 5775000)  

1024 

items 

      

𝐵𝑗  215040000 212480000 209920000 207360000 204800000 

𝐵(𝑥)𝑗 1221427200 1206886400 1192345600 1177804800 1163264000 

𝐹𝑗 2457600 2432000 2406400 2380800 2355200 

�̃� (115190000, 115195000, 115215000)  
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Table 5.A.4. The exergy values of inventory parameters (values in MJ) for 𝟏𝒔𝒕 item (i=1) 

Country  𝑒𝑒𝐶𝑎𝑝(𝑖,𝑠) 𝑒𝑒𝐿(𝑖,𝑠) 𝑒𝑒𝐸𝑛𝑣(𝑖,𝑠) Total 

Iran 𝐴(𝑥)𝑖,𝑆 34.08 3.56 11.36 49.00 

 A(x)ij,b 25.56 2.67 8.52 36.75 

 ℎ(𝑥)𝑖𝑗 8.52 0.89 2.84 12.25 

 𝐶(𝑥)𝑖 340.80 35.60 113.60 490.00 

Afghanistan 𝐴(𝑥)𝑖,𝑆 6.6 0.41 2.2 9.21 

 A(x)ij,b 4.95 0.31 1.65 6.91 

 ℎ(𝑥)𝑖𝑗 1.65 0.10 0.55 2.30 

 𝐶(𝑥)𝑖 66.00 4.10 22.00 92.10 

Turkey 𝐴(𝑥)𝑖,𝑆 123.06 91.36 41.02 255.44 

 A(x)ij,b 92.29 68.52 30.76 191.58 

 ℎ(𝑥)𝑖𝑗 30.77 22.84 10.26 63.86 

 𝐶(𝑥)𝑖 1230.60 913.60 410.20 2554.40 

Germany 𝐴(𝑥)𝑖,𝑆 18.96 68.25 6.32 93.53 

 A(x)ij,b 14.22 51.19 4.74 70.15 

 ℎ(𝑥)𝑖𝑗 4.74 17.06 1.58 23.38 

 𝐶(𝑥)𝑖 189.60 682.50 63.20 935.30 

Canada 𝐴(𝑥)𝑖,𝑆 18.78 68.61 6.26 93.65 

 A(x)ij,b 14.085 51.4575 4.695 70.24 

 ℎ(𝑥)𝑖𝑗 4.70 17.15 1.57 23.41 

 𝐶(𝑥)𝑖 187.80 686.10 62.60 936.50 

 

 

 

Fig. 5.A.1. Coal consumption by region in 2021 
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CHAPTER 6. PAPER FOUR - ASSESSMENT OF COAL SUPPLY CHAIN UNDER 

CARBON TRADE POLICY BY EXTENDED EXERGY ACCOUNTING METHOD 

 

Forewords 

Previous chapter considered carbon tax policy for coal SC. Now, this chapter aims to improve the 

sustainability of coal SC in both developed and developing countries by incorporating extended 

exergy accounting and carbon trade policy. Moreover, carbon cap and offset policies will be 

presented in Chapters 7 and 8, respectively as additional material. 

 

Abstract  

Within an uncertain environment and following carbon trade policies, this study uses the 

Extended Exergy Accounting (EEA) method for coal supply chains (SCs) in eight of the world's 

most significant coal consuming countries. The purpose is to improve the sustainability of coal 

SCs in terms of Joules rather than money while considering economic, environmental, and social 

aspects. This model is a multi-product economic production quantity (EPQ) with a single-vendor 

multi-buyer with shortage as a backorder. Within the SC, there are some real constraints, such as 

inventory turnover ratio, waste disposal to the environment, carbon dioxide emissions, and 

available budgets for customers. For optimization purposes, three recent metaheuristic algorithms, 

including Ant Lion Optimizer, Lion Optimization Algorithm, and Whale Optimization Algorithm, 

are suggested to determine a near-optimum solution to an "exergy fuzzy nonlinear integer-

programming (EFNIP)." Moreover, an exact method (GAMS) is employed to validate the results 

of the suggested algorithms. Additionally, sensitivity analyses with different percentages of exergy 

parameters, such as capital, labor, and environmental remediation, are done to gain a deeper 

understanding of sustainability improvement in coal SCs. The results showed that sustainable coal 

SC in the USA has the lowest fuzzy total exergy, while Poland and China have the highest. 

 

Keywords Extended Exergy Accounting (EEA); Coal supply chain (SC); Sustainability; Carbon 

emission; Fuzzy price; Inventory model 

 

6.1. Introduction 

Production systems rely heavily on traditional fossil fuels, mainly coal and oil (Wang et 

al., 2023). It is estimated that industrial sectors account for over 50% of global energy 

consumption (Safarian, 2023). Almost all coal is composed of dead plant material. As a result of 

accumulated plant material being buried under anoxic conditions for millions of years and being 

exposed to high temperatures and pressures over that time, coal was formed (Australian 

Government, 2022). Coal is the world’s largest source of energy for electricity generation and 

the production of steel, cement, and paper (U.S. Energy Information Administration (EIA), 

2021). About 75% of coal is found in only 5 countries (USA, Russia, Australia, China, and India), 

while the biggest coal consumers are China (54%), India (18%), USA (6%), Japan (3%), and South 

Africa (2.3%) (Phengsaart et al., 2023). According to Notes from Poland (2022), Poland ranks 9th 

in the world in coal consumption to generate 70% of electricity, by far the highest figure in Europe. 
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In terms of production, China tops the list supplying about 50% of global coal demand. Other key 

players in the global coal trade include India (9.9%), Indonesia (7.5%), USA (6.4%), Australia 

(5.9%), Russia (5.3%) and Poland (1.3%) (Phengsaart et al., 2023). 

Moreover, coal related SCs represent one of the major concerns for stakeholders 

(Mehmood et al., 2015) since these industries constitute a significant proportion of carbon dioxide 

(CO2) emissions (Sun and Yang, 2021). Iron and steel manufacturing, for instance, emitted about 

2,600 million tons of carbon in 2019. This number is expected to rise to 2,700 million tons by 2050 

if no sustainable development scenario is applied (U.S. Energy Information Administration (EIA), 

2022). As society becomes more aware of the value of the environment, waste disposal (imperfect 

quality items) and carbon dioxide emissions must become leading indicators of coal SC 

assessment. According to the European Union's Joint Research Centre, China is the largest emitter 

of CO2 in the world, with 11680 Mt (11.680 GT) of carbon dioxide emissions in 2020. This is just 

over 32% of the world’s total 2020 emissions. The United States and India released the second- 

and third-highest amount of carbon emissions at 4.535 and 2.411 GT (or roughly 12.6% and 6% 

of total global emissions). Moreover, Japan and Iran are the 5th and 6th CO2-emitting countries in 

the world. It should be mentioned that China, the USA, and India are also three of the most 

populous countries on Earth. In general, developed countries and major emerging markets lead in 

total carbon dioxide emissions. 

Various countries worldwide have set impressive emission-cut goals in the outlook to 

tackle climate change and the function of sustainable development (Malladi and Sowlati, 2020; 

Sun and Yang, 2021). In this effort, environmental administrations around the globe agree that 

pricing carbon emissions is the most inexpensive and successful means to achieve their emission 

reduction goals (Environment and Climate Change Canada, 2018). The primary carbon pricing 

strategies are carbon tax, carbon cap, carbon offset, and carbon trade (Malladi and Sowlati, 2020), 

whereas each approach has different costs and carbon reductions. The benefits of applying each 

carbon emission policy are not equal for companies involved in coal SC. While some carbon 

policies are more environmentally friendly, others are more economically beneficial.  

Moreover, emerging Industry 4.0 technologies and concerns about global warming show 

that decision-makers need to change their point of view in assessing the SC's performance 

(Roozbeh Nia et al., 2020). Shifting from traditional assessment methods to novel and more 

sustainable methods is one of the critical aspects of the fourth industrial revolution. Extended 

Exergy Accounting is an innovative method that can help SCs become more sustainable 

(Aghbashlo et al., 2018). This method integrates the effect of non-energetic manufacturing features 

into the complete loss assessment (Jawad et al., 2018; Sciubba, 2011). The primary benefit of 

employing the extended exergy accounting method in the production system is that this method 

states all outcomes in Joules (instead of dollars); therefore, acceptable assessments among different 

products can be achieved (Naderi et al., 2021b; Jawad et al., 2018). Moreover, energy (in terms of 

Joules) is essential to operate all manufacturing and SC processes (Jawad et al., 2015).  

It is true that the energy market (natural gas, oil, and coal) today tends to be maturing and 

unbalanced, characterized by increasing demand and fluctuating supply (Roozbeh Nia et al., 2021). 

There are tangible signs to verify that demand and price are not predetermined and can influence 

a broad collection of market influences and customer behaviors. While some scholars have focused 

on the direct issues, there are also unforeseen issues such as the economic environment, business 

events, and global politics (Su et al., 2021). For example, oil and gas prices have risen to their 
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highest levels in nearly a decade because of Russia's unprovoked invasion of Ukraine. As a result, 

many countries have re-evaluated their energy sources. The fact is that uncertainties in demand 

and energy consumption significantly affect the total SC cost as the penalty cost of unsatisfied 

demand increases (Priyan et al. 2022). In response to this issue, Zadeh (1965) proposed "fuzzy set 

theory (FST)," which translates "ill-defined" data into mathematical terms. 

Considering these issues, we can present the main research questions of this study as 

follows: 

Q1. Is it possible to assess the sustainability of coal SC under a carbon reduction policy in 

terms of Joules rather than money to benefit the economy and the environment? 

Q2. Generally speaking, coal SC in developing countries, or even China, has the lowest overall 

cost; however, considering sustainability aspects (social, economic, and environmental 

characteristics) in Joules, does this assumption still hold true? 

Q3. Which country has the most sustainable coal SC in terms of Joules? 

Q4. What is the best percentage of exergy components (social, economic, environmental 

characteristics) to achieve the most significant saving wherever coal SCs are working? 

Consequently, the first goal of this study is to find the optimum total exergy of coal SC in 

different developed and developing countries under carbon trade policy in an uncertain 

environment (for carbon trade price and customer demand). The second objective is comparing 

the sustainability of coal SC in eight countries in terms of Joules rather than money. Finally, this 

research aims to improve the sustainability of coal SC by performing a sensitivity analysis on the 

three exergy parameters of sustainability (economic, environmental, and social) in the extended 

exergy accounting method. 
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Table 6.1. A short review of studies on carbon policies in heavy industries 

Author/s 

(year) 
Objective Results 

EEA 

method 

Fuzzy 

price 

Devlin and 

Yang (2022) 

Focused on assessing potential green SCs for an Australia-Japan 

iron and steel case study 

Suggested to reduce the green premium, a carbon tax of 

A$66–192/t CO2 would be required in 2030 and A$0–70/t 

CO2 in 2050 

No No 

Kunche and 

Mielczarek 

(2021) 

Presented a comparative overview of studies using the system 

dynamics approach to evaluate carbon mitigation strategies 

This study included their scope, model description, test 

scenarios, and mitigation methods 

No No 

Da et al., 

(2021) 

Examined optimal inputs for clean coal technology in a coal 

enterprise and optimal carbon reduction quantities in a 

manufacturer 

Focusing on the dominant mode, can affect carbon reduction 

under different leading models of cap-and-trade with 

government subsidies 

No No 

Hančlová et 

al., (2020) 

Identified and evaluated the interactions between the factors of the 

EU ETS (prices of emission allowances and grandfathering) and 

factors of the steel industry such as prices and production levels 

Steel companies in the Czech Republic pass on the costs for 

emissions to their customers 

No No 

Li et al., 

(2020) 

Examined the impact of different carbon policies on coal SC 

networks 

The government could guide organizations in reducing 

carbon by formulating reasonable emission policies 

No No 

Da et al., 

(2019) 

Developed a coal-electric power SC strategy that reduces carbon at 

two levels and operated with financial constraints 

The government could encourage a low-carbon economy by 

controlling bank loan interest rates 

No No 

Duan et al., 

(2019) 

Explored the impact of emission reduction policies on China's 

steel production and economic level 

The government should consider the overall and regional 

balance as well as benchmark values for carbon trading when 

deciding whether to implement a single or mixed policy 

No No 

Gonela (2018) Designed a hybrid electric SC (HESC) based on coal and biomass 

for electricity generation in a case study of North Dakota (ND) in 

the USA 

coal-based electricity generation is preferred if the goal is to 

reduce costs, whereas biomass-based electricity generation is 

preferred if the goal is to reduce carbon emissions 

No No 

Li et al., 

(2018) 

Examined the carbon trading method's consequences in China's 

power sector 

Using a carbon trade policy would negatively affect the entire 

economy, but the adverse effects would be removed in the 

future 

No No 

Chaabane et 

al., (2012) 

Provided a framework for designing a sustainable SC, in the 

aluminum industry 

Top management will achieve sustainability goals through 

effective carbon management policies 

No No 
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6.2. Literature review 

The leading publications related to carbon policies in coal-based industries such as cement, 

steel, etc. are shown in Table 6.1. Based on this table, there is no study that employs the extended 

exergy accounting method or considers uncertain environment for carbon. Therefore, in this 

section, the literature related to our study is reviewed in two categories: exergy analysis concepts, 

and the extended exergy accounting method. After that, research gaps and our contributions in this 

research compared to existing studies are presented.  

 

6.2.1. Exergy analysis concepts 

Although Rant (1956) first introduced the name "exergy," parallel denotations had 

previously been defined by other researchers. Exergy is the capability to produce work or adequate 

energy or a quantity of work (Liu et al., 2020). Jaber et al. (2004) tried to connect thermodynamics 

with inventory management and showed the pertinency of the first and second laws of 

thermodynamics to manufacture systems through the economic order (production) quantity 

(EOQ/EPQ) model. Later, Jaber et al. (2006) supposed that the performance of the production 

systems is like physical systems. Their results showed that the order quantity strategy is to order in 

more oversized lots less often than when the entropy cost is omitted considering entropy cost. 

Moreover, Jaber et al. (2009) established Jaber et al. (2004) 's research paper by extending an 

entropic mathematical model for deciding batch sizes for deteriorating goods. The outcomes of the 

entropy EOQ model indicated ordering in larger quantities than recommended by the traditional 

model. Later, Jaber et al. (2011) presented the notion of exergy (valuable energy) cost. The authors 

added exergy and entropy costs to the EOQ model and established it in a simple reverse logistics 

system. They supposed forward and backward product streams to be cost-related, and 

consequently, a revenue method is accepted. 

In another study, Jawad and Jaber (2015) proposed using exergy-economics and exergetic 

costing when developing inventory models. The authors encourage that employing the suggested 

inventory modeling may be more effective for other sustainable industries. Additionally, Jaber et 

al. (2017) developed the traditional models of the economical manufacture quantity (EMQ) and 

Just-in-time (JIT) by comprising other issues. Their outcomes indicated that JIT, which produces 

items in small quantities more often, experiences lower costs than the EMQ model once associated 

stress and entropy costs were not counted. Afterward, Jawad et al. (2018) studied the chief issues 

that can impact the entire cost of an SC, for example, emissions, labor, energy, social effects of 

shipping, and entropy. The outcomes presented that optimizing the exergetic cost function grows 

the money significantly to society for a slight extra rise in cost on the section of the SC. 

Moreover, in an industrial bread SC in the Netherlands, Banasik et al. (2017a) studied a 

multi-objective mixed-integer linear programming model to evaluate the collection of eco-efficient 

solutions relating to manufacturing planning decisions. The authors employed exergy analysis to 

state environmental performance of the SC. Their outcomes approve the results from the literature 

that avoidance is the most acceptable waste management policy from an ecological viewpoint. In 

another study for a mushroom SC, Banasik et al. (2017b) investigated a multi-objective mixed-

integer linear programming model to calculate interchanges among financial and ecological gauges 

and investigate quantitatively substitute recycling tools. The total exergy loss is used in this study 

as a single metric gauge for environmental performance. They discovered that accepting closing 

loop tools in modern mushroom manufacture can grow both the overall productivity of the SC and 
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the environmental functioning. Naderi et al. (2021a) presented a mathematical model for enhancing 

sustainability involving the cost of exergy demolition (entropy) for a coal SC in Iran. The authors 

employed exergy analysis for a model that involves economic and wasted exergy costs. Their 

outcomes showed an extra-economic cost, but it will support managers to measure this added cost 

which is essential for other decisions.  

 

6.2.2. Extended exergy accounting method 

It was Sciubba (1998) who developed the traditional analysis of exergy and later introduced 

the “Extended Exergy Accounting” method (Sciubba, 2003a, 2003b). The extended exergy 

accounting is expressed as the quantity of the main exergy aggregately exploited to manufacture 

and discard actual products or services (Song et al., 2019). This method contains energy and 

material's main aggregate exergy subject and cost corresponding to economic externality (labor 

and capital) and ecological externality (environmental remediation). The extended exergy 

accounting connects production systems' processes with surrounding systems (Song et al., 2019). 

Regarding the method, to the best of the authors' knowledge, only three studies employed this 

method for inventory management or SC. For example, Jawad et al. (2015) employed the notions 

of the extended exergy accounting method in inventory management for three factories in the USA, 

China, and Germany to involve the three aspects of sustainability: financial, ecological, and social. 

The outcomes presented that the order quantity in the companies is different since the 

corresponding exergy of money, labor and environment costs are not the same in each company. 

Later, Jawad et al. (2016) extended the traditional EPQ model by employing the extended exergy 

accounting method and thermodynamics laws to determine the degree of sustainability of a 

manufacture-inventory model. The outcomes revealed that an item’s cost has a crucial function in 

diminishing the model's entropy creation (exergy lost). Moreover, for a conventional cement 

production SC in China, Song et al. (2019) utilized the extended exergy accounting method to 

estimate the cumulative exergy consumption (CExC), labor and money exergy, and ecological 

remediation exergy. They measured cement manufacture's environmental costs and the segments 

with exergy deficiencies. Finally, Naderi et al. (2021b) studied the utilized exergy for a sustainable 

SC through an extended exergy accounting method for a food SC in Iran. They suggested a hybrid 

global- and local-search metaheuristic algorithm to solve the model. Their findings revealed that 

exergy minimization substantially reduces the cost for society as different from raising the cost in 

some sections of the SC. For example, the recommended method delivers 4.48% savings in the 

utilized exergy of the SC through undertaking added economic costs.  

To explore more about exergy components, exergy analysis and the extended exergy 

accounting method in detail, we suggest Arango-Miranda et al. (2018), Dincer and Rosen (2013), 

and Ehyaei et al. (2019) to interested readers. Additionally, a brief review of papers that used exergy 

analysis and the extended exergy accounting method (comparing with our proposed model) is 

available in Table 6.2. Based on this table, for example, no study considers carbon policy with the 

extended exergy accounting method. 
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Table 6.2. A brief review of research works in exergy analysis of supply chain 

Authors 

(years) 
Objective 
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Naderi et al. 

(2021a) 

Provide a mathematical model 

for improving coal SC 

sustainability while minimizing 

the cost of exergy destruction 

(entropy) in SC 

Single 
Metaheuristic 

algorithm 
No No No No No No No No No No No Yes 

Naderi et al. 

(2021b) 

Provide an exergy analysis to 

model and minimize the 

consumed exergy for sustainable 

SC 

Single 
Metaheuristic 

algorithm 

Branch 

& 

bound 

No No Yes No No No No No No No Yes 

Jawad et al. 

(2018) 

Minimize the total cost of the 

developed SC model while 

focusing on the pillars of 

sustainable developments. 

Single Exact method N/A No Yes No No No No No No No No No 

Banasik et al. 

(2017a) 

Develop a mathematical model 

for quantitative assessment of 

alternative production options 

that are associated with different 

ways to deal with waste in food 

SCs 

Multi Exact method N/A No No No No No No Yes No No No No 

Banasik et al. 

(2017b) 

Quantify trade-offs between 

economic and environmental 

indicators and explore 

quantitatively alternative 

recycling technologies 

Multi Exact method N/A No No No No No No No No No No Yes 

Jawad et al. 

(2016) 

Re-examines the economic 

production quantity (EPQ) model 

to reflect sustainability needs by 

using EEA and the laws of 

thermodynamics. 

Single 
Exact method 

(EPQ formula) 
N/A N/A Yes Yes No No No No No No No No 
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Jawad et al. 

(2015) 

Use an exergy model to 

determine the EOQ inventory 

policies for three firms operating 

in the USA, Germany, and China. 

Single 
Exact method 

(EOQ formula) 
N/A N/A Yes Yes No No No No No No No No 

Santhi and 

Karthikeyan 

(2015) 

Determine the cycle length and 

the replenishment order quantity 

of an EOQ model to maximize 

the profit. 

Single 
Exact method 

(EOQ formula) 
N/A N/A Yes No No No No No Yes No No No 

Jawad and 

Jaber (2015) 

Use exergo-economics and 

exergetic costing when 

developing inventory models 

Single Exact method N/A N/A Yes No No No No No No No No No 

Jaber and 

Jawad (2015) 

Estimate the entropy created in 

EPQ and JIT systems 
Single 

Exact method 

(EPQ formula) 
N/A N/A Yes No No No No No No No No No 

Jaber et al. 

(2009) 

A mathematical model to 

determine batch sizes for 

deteriorating items while 

minimizing the entropy of the 

EOQ model. 

Single 
Exact method 

(EOQ formula) 
N/A N/A Yes No No No No No No No No No 

Jaber and 

Rosen (2008) 

Improve production system 

performance by applying 

thermodynamics' first and second 

laws to reduce system entropy 

(or disorder). 

Single 
Exact method 

(EOQ formula) 
N/A No Yes No No No No No No No No No 

Jaber (2007) 

Estimate the hidden costs of the 

EOQ model by applying the first 

and second laws of 

thermodynamics to reduce 

system entropy (or disorder) at a 

cost. 

Single 
Exact method 

(EOQ formula) 
N/A N/A Yes No No No No No No No No No 

Proposed 

model 

Optimize the fuzzy exergy cost 

of an SC with the EEA method 

under trade emission policy 

Single 
Metaheuristic 

algorithm 
GAMS Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
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6.2.3. Research gaps and our contributions 

Regarding literature review, Tables 6.1 and 6.2, there are still several research gaps, 

including G1. There is a lack of research that assess a SC under carbon policy within an uncertain 

environment, for example, fuzzy carbon price or customer demand. G2. It is rare to find studies 

that assess a SC in terms of Joules instead of money (as traditional performance measures) and 

simultaneously evaluate all sustainability aspects, such as economic, labour, and environmental. 

G3. There is a lack of examinations that employ the extended exergy accounting method to assess 

a SC under any carbon reduction policy. As a matter of fact, no exergy analysis method in the 

literature takes into consideration carbon emission policy. G4. There is a scarcity of studies that 

compare the sustainability of coal SCs between developed and developing countries under carbon 

trade policy with the extended exergy accounting method. G5. There is a deficiency of investigation 

to find the best percentage of exergy components (social, economic, environmental aspects) in the 

extended exergy accounting method for a SC. G6. In addition, some real-world issues are ignored, 

such as considering the inventory turnover ratio for SC models, defective quality products 

discarded into the environment, shipping charges on the whole of coal SC (mining, railway 

transportation and steel making), vendor managed inventory (VMI) policy for coordinating SC, 

and the costs of loan/investment for budget limitation. In brief, the three contributions of this study 

to the literature are as follows: 

➢ Improving the sustainability of coal SCs in terms of Joules (total exergy rather than 

traditional monetary objectives) in developed and developing countries under carbon 

trade policy and the uncertain environment by employing the extended exergy 

accounting method. 

➢ Comparing the sustainability of coal SC in eight countries to determine which country 

has the most sustainable coal SC in terms of Joules. 

➢ Finding the best value of exergy components (social, economic, environmental 

characteristics) for coal SC in both developed and developing countries which creates 

the highest sustainability.  

The remainder of the study is structured as follows. In Section 6.3, the problem is outlined, 

the suppositions are stated, and the problem is mathematically expressed into a fuzzy nonlinear 

integer-programming model under emission trade policy. In Section 6.4, exergy modeling of fuzzy 

optimization using extended exergy accounting is presented. The proposed solution method is 

presented in Section 6.5 to solve the problem. Section 6.6 presents computational test problems 

and sensitivity analysis of exergy values to reveal the recommended solution methods' relevance. 

Finally, conclusions and potential studies are offered in Section 6.7. 

 

6.3. Problem description and model formulation 

6.3.1. Problem description 

Elevated energy market uncertainties (e.g., price and demand), disruptions (e.g., COVID-

19 and global warming), and competition (e.g., global market and customer satisfaction) over 

current years have produced variations (negative and positive) to coal SC administration 

(Teerasoponpong and Sopadang, 2022). It is true that coal is a low-cost and plentiful resource, but 

carbon dioxide (CO2) from coal usage in industries such as power plant, cement, steel and paper 

is responsible for about 40% of global greenhouse gas (GHG) emissions. Therefore, it is the 
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responsibility of legislations and coal SC decision making to invest and innovate for cutting their 

carbon emissions.  

This paper is inspired by the studies of Jawad et al. (2016) and Naderi et al. (2021a) and 

uses them to develop a multi-product multi-limitation EPQ model with backorder for a coal SC in 

eight countries under the fuzzy environment. Moreover, a VMI contract is employed for a single 

supplier and multi-buyer to coordinate the coal SC. The extended exergy accounting method with 

Mega-Joules (MJ) as a universal unit of measure is used to find the total exergy of the model. 

Besides, the buyers' demand, purchasing price per unit of product, cost of goods sold per unit of 

product, and carbon price of each unit of carbon are considered fuzzy. A famous carbon reduction 

policy, called carbon trade, is used to compare the model's performance as a sustainability measure 

and control the produced carbon emission of SC enterprises. Moreover, three recent metaheuristic 

algorithms are exercised to obtain a near-optimum solution of the developed exergy fuzzy nonlinear 

integer programming (EFNIP) to diminish the fuzzy total exergy of a coal SC. Additionally, ten 

numerical examples, including an actual case study in coal SC in Iran, were presented to display 

the pertinency of the proposed model. Likewise, the results are compared with the exact method 

(GAMS) to confirm the outcomes. Finally, a sensitivity analysis with changing the percentage of 

exergy parameters, including the capital, labor, and environmental remediation, has been done with 

seven different exergy sets of percentages (A-G) in eight developed and developing countries. 

Sensitivity analysis aims to find the best exergy values (capital, labour, and environmental 

remediation) of the extended exergy accounting method that create the highest sustainability for 

coal SC of Iran, Australia, China, India, Japan, Poland, the USA, and Zimbabwe. 

 

6.3.2. Assumptions 

Considering the purpose of this research to develop the sustainability of coal SC by 

integrating carbon trade policy and the extended exergy accounting method, we consider the 

succeeding assumptions for the mathematical preparation. More sophisticated assumptions are 

considered for future research in Section 6.7. There is a single supplier, multi-buyer coal SC with 

n products (different grades of coal) when stockout is permitted in the type of backorder for all 

products. The supplier’s production rate for all products is fixed and known (EPQ model). In this 

model, quantity discount is not permitted, and the supplier pays the shipping cost whereas the setup 

and keeping costs are known. There are constraints on the capacity of the buyer’s warehouse, 

budget and order quantity of a product and the total number of orderings. Additionally, all 

transportation between supplier and buyers are done by the railway system when distance between 

them is fixed and known. Moreover, 

(a) Buyer’s demand for the entire product, the price for all products and the price of carbon trade 

are fuzzy (trapezoidal fuzzy number) 

(b) The linear backorder cost per unit per time unit is known for the entire products while the time-

independent fixed backorder cost per unit is supposed to be zero 

(c) Orders are supposed to be immediate (lead time=0) 

(d) Coal Mining (supplier), shipping, and utilizing coal in the steel companies (buyers) produce 

carbon emission and waste (defective quality products) disposal to the environment. 
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6.3.3. Notations 

The indices, factors, and decision variables of the SC model are described in Table 6.3.  

 The following subsections will develop a non-exergy mathematical model (a basic 

model) of the coal SC for carbon trade policy (subsection 6.3.4). Then it has converted to a fuzzy 

model in subsection 6.3.5. 

 

Table 6.3. Notations 

Indices: 

𝑖: Index of the products; (𝑖 = 1,2, … , 𝑛) 

 

𝑗: Index of buyers; (𝑗 = 1,2, … ,𝑚) 

Factors: 

𝐷𝑖𝑗: Demand rate of product i for buyer j 

𝑃𝑖: Rate of production of the 
thi  product (𝑃𝑖 ≥

∑ 𝐷𝑖𝑗
𝑚
𝑗=1 ) 

𝑄𝑀𝑎𝑥: Upper limit of transportation capacity on 

each order quantity  

𝑁𝑀𝑎𝑥: Max. total number of orders by all 

buyers 

𝐶𝑖: Buying price per unit of product i by buyers 

𝐶𝑜: Cost of goods sold per unit of product i by 

the supplier 

𝐼𝑇𝑅 𝑗: Inventory turnover ratio of buyer j 

𝐶𝑡𝑟𝑎𝑑𝑒: Emission trade price of each unit of 

produced carbon  

𝑋𝑗: Total available budget of all products for 

buyer j 

𝑖𝑛𝑡−: The interest rate of the essential loan for 

buyer j 

𝑖𝑛𝑡+: Interest (benefit) rate of new investment 

for buyer j 

𝐾𝑖,𝑠: Supplier’s fixed setup cost per unit of 

product i 

𝐾𝑖𝑗,𝑏: Constant ordering cost per unit of product 

i for buyer j 

𝛿𝑚: Proportion of imperfect quality items in 

mine process 

𝛿𝑡: Proportion of imperfect quality items in the 

transportation process 

𝛿𝑘: Proportion of imperfect quality items in 

steel manufacturer 

𝑡𝑓: Constant shipping cost of each order which is paid by the 

supplier (VMI contract) 

𝑡𝑣: Variable shipping cost per unit of a product which is paid by 

the supplier (VMI contract) 

𝑡𝐿: Labor cost for loading/unloading of coal per hour 

𝑡𝑀: Machine/equipment cost for loading/unloading of coal 

𝐿𝑜: Loading time of coal in a railcar (railway wagon) 

𝑈𝑛: Unloading time of coal from a railcar 

ℎ𝑖𝑗: Keeping cost per unit of product i held in the warehouse of 

buyer j in a period 

𝑠1: fixed backorder cost per unit (time-independent) 

𝑠2: Linear backorder cost per unit per time unit 

𝑊𝑗: Available storage area of buyer j for all products 

𝐿𝑗: Distance between supplier and buyer j (km) 

𝜃𝑚: Emissions factor of mining (ton/unit) 

𝜃𝑡: Emissions factor of shipping (ton/unit) 

𝜃𝑘: Emissions factor of furnace in steel manufacturer (ton/unit) 

𝐸𝑗: Upper limit on aggregate carbon emissions of all products 

of each buyer 

𝐹: Upper limit on total imperfect quality items disposal to the 

environment by all processes  

Decision variables: 

𝑄𝑖𝑗: Order quantity of product i for buyer j  

𝑏𝑖𝑗: Maximum backorder level of product i for 

buyer j in a cycle 

𝑥𝑗
+: Total new investment for buyer j 

𝑥𝑗
−: Total required loan for buyer j   

 

𝑒𝑗
+: Emission credits that should be bought by buyer j  

𝑒𝑗
−: Emission credits that could be sold by buyer j 
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6.3.4. A non-exergy modeling of coal SC under carbon trade policy 

6.3.4.1. Objective function  

Carbon trade integrates government regulations and market methods in a flexible policy 

that the Kyoto Protocol plans. With this policy, companies' carbon emissions are restricted (see Eq. 

9); consequently, if a company generates carbon dioxide further than the launched cap, it must 

purchase extra carbon credits (𝑒+). In contrast, the company could sell its carbon credits (𝑒−) to 

other companies on the carbon market (Jiang et al., 2016), whereas the carbon price (𝐶𝑡𝑟𝑎𝑑𝑒) is 

determined by supply and demand in this market (Li et al., 2020). Although the price of carbon is 

considered known and fixed in the literature, this study considers it fuzzy (see subsection 6.3.5). 

The trading strategy provides businesses with a great motivation to save money by reducing 

emissions in the most economical methods. This policy is employed in the European Union, 

Quebec province in Canada, California in the United States of America, and seven areas in China 

(Haites 2018). Consequently, the carbon trade cost is  

𝑍1 = ∑𝐶𝑡𝑟𝑎𝑑𝑒 × (𝑒𝑗
+ − 𝑒𝑗

−)

𝑚

𝑗

                                                                                              (6.1) 

The shipping costs accounted for about 40% of the entire delivered cost of coal in 2019 

(U.S. Energy Information Administration (EIA), 2019). Transportation costs are also impacted by 

road distance, accessibility of shipping mode and supply source alternatives, and the competition 

among coal and other goods for shipping. Therefore, the total transportation cost of coal includes 

constant (𝑡𝑓) and variable (𝑡𝑣) costs, along with the cost of loading/unloading coal (𝑡𝐿) in/from 

railcars and cost of equipment (𝑡𝑀) is 

𝑍2 = ∑∑[(
𝐷𝑖𝑗

𝑄𝑖𝑗
. 𝑡𝑓) + (𝑄𝑖𝑗. 𝑡𝑣) + (

𝐷𝑖𝑗

𝑄𝑖𝑗
. (𝐿𝑜 + 𝑈𝑛). (𝑡𝐿 + 𝑡𝑀))]

𝑚

𝑗

𝑛

𝑖

                       (6.2) 

Where (𝐿𝑜, 𝑈𝑛) are the loading/unloading time of coal in/from a railcar. The vendor-

managed inventory (VMI) strategy is the regular inventory management in SC in which the 

upstream company completely controls the inventory at the downstream company’s location 

(Giovanni, 2021). In the VMI system, the determinations about scheduling and amount of buyer’s 

replenishment are decided by the supplier that is assumed to have comprehensive information 

concerning the customers’ requirements, to prevent stockouts (Çomez-Dolgan et al., 2021, Maio 

and Lagana, 2020). Therefore, it is expected that the supplier gives the ordering, shipping, and 

keeping costs rather than the buyer as a part of the stated contract; the buyer gives no cost (Mateen 

et al., 2014; Yao et al., 2007; Razmi et al., 2010; Pasandideh et al., 2011; Roozbeh Nia et al., 2014, 

2015). Furthermore, in an EPQ model with defective quality items and stockout as a backorder that 

utilizes the VMI strategy, the coal SC’s total inventory cost is established by calculating the 

ordering/setup (𝑇𝐶𝑂𝑖𝑗
), keeping (𝑇𝐶𝐻𝑖𝑗

), stockout (𝑇𝐶𝑆𝑖𝑗
), and purchasing (𝑇𝐶𝑃𝑖𝑗

) costs as 

(Pasandideh et al., 2010, 2011)  

𝑍3 = 𝑇𝐶𝑂𝑖𝑗
+ 𝑇𝐶𝐻𝑖𝑗

+ 𝑇𝐶𝑆𝑖𝑗
+ 𝑇𝐶𝑃𝑖𝑗

                                                 (6.3) 

Where,  
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𝑇𝐶𝑂𝑖𝑗
= ∑∑

𝐷𝑖𝑗

𝑄𝑖𝑗
(𝐾𝑖,𝑠 + 𝐾𝑖𝑗,𝑏)

𝑚

𝑗

𝑛

𝑖

                                                                                      (6.4) 

𝑇𝐶𝐻𝑖𝑗
= ∑∑

ℎ𝑖𝑗

2𝑄𝑖𝑗 (1 −
𝐷𝑖𝑗

𝑃𝑖
)

(𝑄𝑖𝑗(1 − 𝛿𝑚) (1 −
𝐷𝑖𝑗

𝑃𝑖
) − 𝑏𝑖𝑗)

2𝑚

𝑗

𝑛

𝑖

                              (6.5) 

𝑇𝐶𝑆𝑖𝑗
= ∑∑(

𝑠1. 𝑏𝑖𝑗
2

2𝑄𝑖𝑗 (1 −
𝐷𝑖𝑗

𝑃𝑖
)

+
𝑠2. 𝑏𝑖𝑗 . 𝐷𝑖𝑗

𝑄𝑖𝑗 (1 −
𝐷𝑖𝑗

𝑃𝑖
)

)

𝑚

𝑗

𝑛

𝑖

                                                      (6.6) 

𝑇𝐶𝑃𝑖𝑗
= ∑∑𝐶𝑖 . 𝐷𝑖𝑗

𝑚

𝑗

𝑛

𝑖

                                                                                                           (6.7) 

Where (𝐷𝑖𝑗 , 𝑄𝑖𝑗, ℎ𝑖𝑗) are the demand rate, order quantity and holding cost per unit of coal i 

for buyer j, respectively. As mentioned previously, the existing budget of each buyer could be 

deposited in a bank account or invested in other projects to get profits. Now, we take into account 

a real-world balanced limitation (see subsection 6.3.4.2) where the total amount of the existing 

budget for each buyer is restricted (see Eq. 6.8). To the best of the authors' knowledge, this type of 

objective function and limitation, have not been studied yet. On the one hand, each buyer's under-

achievement budget (𝑥𝑗
+ as a decision variable) is regarded as the benefit. It means this amount of 

money (𝑥𝑗
+) may be invested in a new project with an actual interest rate (𝑖𝑛𝑡+) and make a profit 

(as a 𝑖𝑛𝑡+ × 𝑥𝑗
+) for the buyer. On the other hand, the over-achievement budget (𝑥𝑗

− as a decision 

variable) is regarded as the cost. It means the buyer must get a loan with the amount of (𝑥𝑗
−) and 

an interest rate of (𝑖𝑛𝑡−). After All, the buyer should pay this loan as well as the interest rate (𝑥𝑗
− +

[𝑖𝑛𝑡− × 𝑥𝑗
−]) at the end of the period. Therefore, the total cost/benefit associated with the budget 

of all buyers is  

𝑍4 = ∑[𝑥𝑗
− + (𝑖𝑛𝑡− × 𝑥𝑗

−) − (𝑖𝑛𝑡+ × 𝑥𝑗
+)]

𝑚

𝑗

                                                                 (6.8) 

Wherever in Eq. (6.8), the first two components are linked to the cost functions, and the 

last part with a negative symbol is related to the benefit obtained. Moreover, under and over-

achievement budgets (𝑥𝑗
+, 𝑥𝑗

−) are not known parameters and are considered decision variables. 

Hence, the non-exergy total cost of coal SC under the carbon trade policy is the summation of 

𝑇𝐶𝑡𝑟𝑎𝑑𝑒 = 𝑍1 + 𝑍2 + 𝑍3 + 𝑍4.  

 

6.3.4.2. The constraints  

The constraints of this model are as follows: 
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∑ ∑ 𝐶0
𝑚
𝑗 . 𝐷𝑖𝑗

𝑛
𝑖

∑ ∑
𝐶0. (𝑄𝑖𝑗(1 − 𝛿𝑚) (1 −

𝐷𝑖𝑗

𝑃𝑖
) − 𝑏𝑖𝑗)

2

2𝑄𝑖𝑗 (1 −
𝐷𝑖𝑗

𝑃𝑖
)

𝑚
𝑗

𝑛
𝑖  

≥ 𝐼𝑇𝑅 𝑗                                                      (6.9) 

∑[(𝑄𝑖𝑗. 𝜃𝑚) + (
𝐷𝑖𝑗

𝑄𝑖𝑗
. 𝐿𝑗 . 𝜃𝑡) + (𝑄𝑖𝑗. 𝐷𝑖𝑗 . 𝜃𝑘)] + (𝑒𝑗

− − 𝑒𝑗
+) = 𝐸𝑗

𝑛

𝑖

                           (6.10) 

∑∑[(𝑄𝑖𝑗. 𝛿𝑚) + (𝑄𝑖𝑗. (1 − 𝛿𝑚). 𝛿𝑡) + (𝑄𝑖𝑗(1 − 𝛿𝑚). (1 − 𝛿𝑡). 𝛿𝑘)] ≤ 𝐹

𝑚

𝑗

𝑛

𝑖

           (6.11) 

∑[𝑄𝑖𝑗(1 − 𝛿𝑚) (1 −
𝐷𝑖𝑗

𝑃𝑖
) − 𝑏𝑖𝑗] ≤ 𝑊𝑗

𝑛

𝑖

                                                                         (6.12) 

∑[𝐶𝑖. 𝑄𝑖𝑗(1 − 𝛿𝑚)] + (𝑥𝑗
+ − 𝑥𝑗

−) = 𝑋𝑗

𝑛

𝑖

                                                                          (6.13) 

∑∑
𝐷𝑖𝑗

𝑄𝑖𝑗
≤ 𝑁𝑀𝑎𝑥

𝑚

𝑗

𝑛

𝑖

                                                                                                               (6.14) 

𝑄𝑖𝑗 ≤ 𝑄𝑀𝑎𝑥                                                                                                                             (6.15) 

𝑏𝑖𝑗 ≤ 𝑄𝑖𝑗                                                                                                                                  (6.16) 

Eq. (6.9) is an inventory turnover ratio (𝐼𝑇𝑅 𝑗) limitation. To the best of the authors' 

knowledge, this limitation has not been presented in SC literature before. The inventory turnover 

ratio is applied as a comparative measure of inventory performance between competitors and is 

crucial to control inventory (Beklari et al., 2018). This proportion is an economic index that merges 

the cost of goods sold with average inventories at cost (Kwak 2019). The inventory turnover ratio 

shows how often inventories are turned over a period. For Eq. (6.10), as mentioned before, with 

the policy of carbon trade, each buyer inside coal SC can only produce within an offered cap (𝐸𝑗) 

of emission. If this actual emission amount goes above the emission limit, the company must 

purchase carbon credits (𝑒+). The company can vend these extra emission credits (𝑒−) if the actual 

emission amount runs under the emission limit (Li et al., 2020). Hence, with the emission trade 

policy, a new emission restriction is included in the model where Eq. (6.10) corresponds to the total 

generated carbon in mining, shipping, and steelmaking processes. In Eq. (6.10), (𝜃𝑚, 𝜃𝑡 , 𝜃𝑘) are 

emissions factors in mining, transportation, and steel manufacturer processes, respectively. 

Additionally, 𝐿𝑗 is the distance between the coal vendor and buyer j. Eq. (6.11) aims to make the 

model green since it considers a limitation (𝐹) on total defective products (waste) disposal to the 

environment by all processes in coal SC. In this equation, (𝛿𝑚, 𝛿𝑡 , 𝛿𝑘) are the proportions of 

imperfect quality items in mining, transportation, and steel manufacturer processes, respectively. 

Furthermore, Eq. (6.12) expresses that the warehouse space of each buyer (𝑊𝑗) is restricted, where 

(𝑏𝑖𝑗) is the backorder amount of coal i for buyer j in a cycle (a decision variable). 
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As shown before, a real-world contractual agreement grants balanced constraints (Eq. 6.13) 

for the existing budget of each buyer (𝑋𝑗). To the best of the authors' knowledge, this type of 

limitation has not been given in SC literature in the past. Where Eq. (6.13) indicates that, on the 

one hand, if the total paid-out money of a buyer is below the existing budget (∑ 𝐶𝑖. 𝑄𝑖𝑗(1 − 𝛿𝑚) <𝑛
𝑖

𝑋𝑗), the buyer saves an amount of (𝑥𝑗
+ > 0). It is possible the company invests this amount in a 

new project and makes a profit (see Eq. 6.8). On the other hand, if the total paid out money of a 

buyer is more than the existing budget (∑ 𝐶𝑖. 𝑄𝑖𝑗(1 − 𝛿𝑚) > 𝑋𝑗
𝑛
𝑖 ), so the buyer demands to get a 

loan with the amount of (𝑥𝑗
− > 0). The total cost/benefit linked to this balanced limitation is 

expressed in Eq. (6.8). In addition, Eq. (6.14) is related to the limitation on the total number of 

orders (𝑁𝑀𝑎𝑥) by all buyers. Additionally, there is a constraint for the shipping system (railway) 

while the Max. of shipping capacity (𝑄𝑀𝑎𝑥) for each order quantity is stated in Eq. (6.15). Finally, 

based on Eq. (6.16), the quantity of backorder of product i for
thj buyer (𝑏𝑖𝑗) in a cycle should be 

fewer than or equal to its order amount (𝑄𝑖𝑗). It should be mentioned that intending to simplify the 

mathematical model; we ignore the cost of purchasing (Eq. 6.7) in our model. Regarding Eqs. (6.1)-

(6.16) and under carbon trade policy, the non-exergy crisp model of “multi-product” balanced 

limitations single-vendor multi-buyer (SVMB) EPQ can be easily achieved as 

𝑇𝐶𝑡𝑟𝑎𝑑𝑒 = ∑∑[
𝐷𝑖𝑗

𝑄𝑖𝑗
(𝐾𝑖,𝑠 + 𝐾𝑖𝑗,𝑏) +

ℎ𝑖𝑗

2𝑄𝑖𝑗 (1 −
𝐷𝑖𝑗

𝑃𝑖
)

(𝑄𝑖𝑗(1 − 𝛿𝑚) (1 −
𝐷𝑖𝑗

𝑃𝑖
) − 𝑏𝑖𝑗)

2𝑚

𝑗

𝑛

𝑖

+ (
𝑠1. 𝑏𝑖𝑗

2

2𝑄𝑖𝑗 (1 −
𝐷𝑖𝑗

𝑃𝑖
)

+
𝑠2. 𝑏𝑖𝑗 . 𝐷𝑖𝑗

𝑄𝑖𝑗 (1 −
𝐷𝑖𝑗

𝑃𝑖
)

)] + ∑𝐶𝑡𝑟𝑎𝑑𝑒 × (𝑒𝑗
+ − 𝑒𝑗

−)

𝑚

𝑗

 

              +∑[𝑥𝑗
− + (𝑖𝑛𝑡− × 𝑥𝑗

−) − (𝑖𝑛𝑡+ × 𝑥𝑗
+)]

𝑚

𝑗

+ ∑∑[(
𝐷𝑖𝑗

𝑄𝑖𝑗
. 𝑡𝑓) + (𝑄𝑖𝑗. 𝑡𝑣) + (

𝐷𝑖𝑗

𝑄𝑖𝑗
. (𝐿𝑜 + 𝑈𝑛). (𝑡𝐿 + 𝑡𝑀))]

𝑚

𝑗

𝑛

𝑖

 

𝑠. 𝑡. 

∑ ∑ 𝐶0
𝑚
𝑗 . 𝐷𝑖𝑗

𝑛
𝑖

∑ ∑
𝐶0. (𝑄𝑖𝑗(1 − 𝛿𝑚) (1 −

𝐷𝑖𝑗

𝑃𝑖
) − 𝑏𝑖𝑗)

2

2𝑄𝑖𝑗 (1 −
𝐷𝑖𝑗

𝑃𝑖
)

𝑚
𝑗

𝑛
𝑖  

≥ 𝐼𝑇𝑅𝑗 

∑[(𝑄𝑖𝑗. 𝜃𝑚) + (
𝐷𝑖𝑗

𝑄𝑖𝑗
. 𝐿𝑗 . 𝜃𝑡) + (𝑄𝑖𝑗. 𝐷𝑖𝑗 . 𝜃𝑘)] + (𝑒𝑗

− − 𝑒𝑗
+) = 𝐸𝑗

𝑛

𝑖
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∑∑[(𝑄𝑖𝑗. 𝛿𝑚) + (𝑄𝑖𝑗. (1 − 𝛿𝑚). 𝛿𝑡) + (𝑄𝑖𝑗(1 − 𝛿𝑚). (1 − 𝛿𝑡). 𝛿𝑘)] ≤ 𝐹

𝑚

𝑗

𝑛

𝑖

 

∑(𝑄𝑖𝑗(1 − 𝛿𝑚) (1 −
𝐷𝑖𝑗

𝑃𝑖
) − 𝑏𝑖𝑗) ≤ 𝑊𝑗

𝑛

𝑖

 

∑𝐶𝑖. 𝑄𝑖𝑗(1 − 𝛿𝑚) + (𝑥𝑗
+ − 𝑥𝑗

−) = 𝑋𝑗

𝑛

𝑖

 

∑∑
𝐷𝑖𝑗

𝑄𝑖𝑗
≤ 𝑁𝑀𝑎𝑥

𝑚

𝑗

𝑛

𝑖

 

𝑄𝑖𝑗 ≤ 𝑄𝑀𝑎𝑥 

𝑏𝑖𝑗 ≤ 𝑄𝑖𝑗 

𝑄𝑖𝑗 > 0, 𝑖𝑛𝑡𝑒𝑔𝑒𝑟, 𝑖 = 1,2, … , 𝑛 

𝑏𝑖𝑗 ≥ 0, 𝑖𝑛𝑡𝑒𝑔𝑒𝑟, 𝑗 = 1,2, … ,𝑚 

𝑥𝑗
+, 𝑥𝑗

−, 𝑒𝑗
+, 𝑒𝑗

− ≥ 0,                                                                                                                 (6.17)  

In this non-exergy sustainable model, we are looking to optimize four objectives 

simultaneously: (a) the total inventory cost, (b) the entire cost associated with the additional 

required budget of all buyers, (c) the total coal transportation cost among SC members, (d) and the 

cost of produced carbon emission by all processes. Consequently, we have six decision variables, 

for example, the amount of required loan/investment for each buyer (𝑥𝑗
−, 𝑥𝑗

+), the carbon credits 

for each buyer (𝑒𝑗
+, 𝑒𝑗

−), the order quantity of each item for each buyer (𝑄𝑖𝑗), and the amount of 

backorder of each item for each buyer (𝑏𝑖𝑗). The following subsection considers uncertainty to the 

non-exergy model in Eq. (6.17). 

 

6.3.5. The inventory model in fuzzy environment 

Stochastic modelling methods can solve the inventory model with sufficient historical data 

for ambiguous parameters (Aka and Akyüz, 2021). Despite this, it is problematic to have actual 

and exact random distributions because of the unavailability of historical data on the coal SC in 

Iran. Moreover, in the real coal SC business world, the market environments are full of ambiguities 

in a non-stochastic sense (Panja and Mondal, 2019). Therefore, most inventory models in the 

literature consider an impractical assumption; all the inventory settings occur in a deterministic and 

particular condition. To cope with this unrealistic assumption, Zadeh (1965) proposed “fuzzy set 

theory (FST),” which converts “ill-defined” data to mathematical terminologies. Accordingly, the 

problem considered in this study is a fuzzy EPQ SVMB multi-product SC. As discussed in Hanss 

(2005), different types of fuzzy numbers exist, for example, triangular, trapezoidal, and Gaussian 

fuzzy numbers. Trapezoidal numbers are usually used to express ambiguous or uncertain 

information since they can deal with the ambiguity or uncertainty of complex fuzzy information 
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(Wan et al., 2021). Moreover, the trapezoidal fuzzy number is a commonly used representation of 

uncertain information in real applications (He et al., 2018). Therefore, in this study, the buyer's 

demands, the unit price of products, the cost of goods sold per unit of product, and the carbon trade 

price are considered ill-defined and trapezoidal fuzzy numbers. 

 

6.3.5.1. Graded Mean Integration representation technique 

To figure out and employ the consequent responses from fuzzy SC, the results should be 

relevant for the top management of the companies. Therefore, defuzzification is necessary 

(Shekarian et al., 2017). As several techniques for the defuzzification of fuzzy numbers can be 

applied, one of the most employed, the “graded mean integration” technique (Chen and Hseih, 

1998), is used in this paper. In most circumstances employing the extension rule to get the 

membership function of the fuzzy total cost function is not easy. Because the membership function 

does not alter with fuzzy arithmetic procedures, it is probable to estimate the defuzzified amount 

immediately through the graded mean integration technique through arithmetic procedures 

(Mahata and Goswami, 2013). Chen and Hseih (1998) method is helpful since it scores each point 

of support set of fuzzy numbers, and it is probable to determine the level of resemblance among 

fuzzy numbers concerning graded mean integration amounts. Suppose �̃� = (𝑎1, 𝑎2, 𝑎3, 𝑎4) is a 

trapezoidal fuzzy number and 𝐿−1 , 𝑅−1 are correspondingly the inverse functions of L and R. 

Describe the graded mean h-level amount of �̃�  as 
ℎ[𝐿−1(ℎ)+𝑅−1(ℎ)]

2
 (Mahata and Goswami, 2013). 

So, the graded mean integration description of fuzzy number �̃� can be calculated as  

𝑃(�̃�) =
∫

ℎ[𝐿−1(ℎ)+𝑅−1(ℎ)]

2
𝑑ℎ

1
0

∫ ℎ.𝑑ℎ
1
0

= ∫ ℎ[𝐿−1(ℎ) + 𝑅−1(ℎ)]. 𝑑ℎ
1

0
      (6.18) 

For trapezoidal fuzzy number �̃� = (𝑎1, 𝑎2, 𝑎3, 𝑎4), 𝐿−1(ℎ) = 𝑎1 + (𝑎2 − 𝑎1)ℎ and 

𝑅−1(ℎ) = 𝑎4 + (𝑎4 − 𝑎3)ℎ. Afterward, the graded mean integration depiction of trapezoidal fuzzy 

number �̃� = (𝑎1, 𝑎2, 𝑎3, 𝑎4) by Eq. (6.18) is given by 

𝑃(�̃�) =
𝑎1+2𝑎2+2𝑎3+𝑎4

6
                  (6.19) 

Therefore, in this study the buyers’ demand (𝐷𝑖�̃�), purchasing price per unit of product i 

(𝐶�̃�), cost of goods sold per unit of product i (𝐶0̃), and trade price of each unit of carbon (𝐶𝑡𝑟𝑎𝑑�̃�) 

are considered trapezoidal fuzzy numbers i.e. 𝐷𝑖�̃� = (𝐷𝑖𝑗,1, 𝐷𝑖𝑗,2, 𝐷𝑖𝑗,3, 𝐷𝑖𝑗,4), �̃�𝑖 =

(𝐶𝑖,1, 𝐶𝑖,2, 𝐶𝑖,3, 𝐶𝑖,4), �̃�0 = (𝐶0,1, 𝐶0,2, 𝐶0,3, 𝐶0,4), and 𝐶𝑡𝑟𝑎𝑑�̃� = (𝐶𝑡,1, 𝐶𝑡,2, 𝐶𝑡,3, 𝐶𝑡,4). 

 

6.4. Exergy modeling of fuzzy optimization of multi-buyer coal SC 

The earlier section presents a fuzzy monetary sustainable EPQ model (minimum Dollar or 

Euro) for a coal SC under a carbon trade policy. In this section, we consider three factors of hidden 

cost in a coal SC such as capital (Cap), labor (L), and environment (Env.) remediation by employing 

the extended exergy accounting method and then convert the monetary model (Eq. 6.17) to the 

equivalent exergy model. 
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6.4.1. Extended exergy accounting 

Extended exergy accounting is the quantity of initial exergy (in Joules; J) aggregate 

consumed in the manufacture, operation, and discarding procedure of certain goods or services. 

This method delivers more information than an entirely financial method, which cannot support 

any suggestion about utilizing global resources (Jawad et al., 2016). The initial aggregate exergy 

includes material (M), and energy (E), corresponding exergy of labor (L), money (Cap.), and 

ecological (Env.) remediation costs, of which the last three components are counted as the cost 

correspondence of economic externality and ecological externality (Song et al., 2019). It can be 

expressed as (Naderi et al., 2021b) 

𝐸𝐸𝐴 = 𝑒𝑒𝑀 + 𝑒𝑒𝐸 + 𝑒𝑒𝐶𝑎𝑝 + 𝑒𝑒𝐿 + 𝑒𝑒𝐸𝑛𝑣                                                                       (6.20) 

Where (𝑒𝑒𝑀 + 𝑒𝑒𝐸) are the exergy of raw materials and energy flows, used in producing a 

product. The summation of these two exergies (𝑒𝑒𝑀 + 𝑒𝑒𝐸) could be determined by transforming 

the summation of purchasing costs (∑ ∑ 𝐶𝑖𝐷𝑖𝑗
𝑚
𝑗

𝑛
𝑖 ) in the inventory model to the exergy equivalents 

(Jawad et al., 2015). As mentioned in subsection 6.3.4.2, for simplifying the mathematical model, 

we ignore the purchasing costs (and therefore exergy equivalents: 𝑒𝑒𝑀 + 𝑒𝑒𝐸) since it does not 

affect the model’s order quantity (𝑄𝑖𝑗 as decision variable). All related costs should be transformed 

into comparable exergetic amounts to employ the extended exergy accounting method in an 

inventory model. The setup (K), buying (C), and keeping (h) costs can be categorized into the 

summation of three exergetic amounts of capital, labor, and environment (𝑒𝑒𝐶𝑎𝑝,𝑖 + 𝑒𝑒𝐿,𝑖 +

𝑒𝑒𝐸𝑛𝑣,𝑖), respectively (Jawad et al. 2018),  

𝑒𝑒𝐶𝑎𝑝,𝑖 = (𝑖𝐶𝑎𝑝) × 𝑒𝑒𝐶𝑎𝑝                                                                                           (6.21) 

𝑒𝑒𝐿,𝑖 = 𝑖𝐿 × 𝑒𝑒𝐿/𝐿𝑎𝑏𝑜𝑟 𝑐𝑜𝑠𝑡                                                                                      (6.22) 

𝑒𝑒𝐸𝑛𝑣,𝑖 = 𝑖𝐸𝑛𝑣 × 𝑒𝑒𝐸𝑛𝑣                                                                                              (6.23) 

where 𝑖 = 𝐾, 𝐶, 𝑜𝑟 ℎ are calculated in J/order, J/unit, and J/unit/year, respectively. 

Concerning Eq. (6.23) for the exergy of environment characteristic, we accept the approach of 

Chen and Chen (2009), who respected (𝑒𝑒𝐸𝑛𝑣 = 𝑒𝑒𝐶𝑎𝑝). Consequently, Eq. (6.23) is switched to 

(𝑒𝑒𝐸𝑛𝑣,𝑖 = 𝑖𝐸𝑛𝑣 × 𝑒𝑒𝐶𝑎𝑝). It comprises any cost paid to get labor, capital, material, and other items 

used to reduce the damaging environmental effect of manufacturing a product, operating a SC, or 

delivering some other service (Jawad et al., 2015). Moreover (Jawad et al., 2015, 2018; Sciubba, 

2011; Naderi et al., 2021b), 

𝑒𝑒𝐶𝑎𝑝 = 𝛼. 𝛽 (
𝐸𝑥𝑖𝑛

𝑀2
)                                                                                                   (6.24) 

𝑒𝑒𝐿 =
𝛼.𝐸𝑥𝑖𝑛

(𝑁𝑊𝐻)𝑡𝑜𝑡𝑎𝑙
                                                                                                        (6.25) 

Where (𝑒𝑒𝐶𝑎𝑝, 𝑒𝑒𝐿) are the specific exergy equivalent of one monetary unit (€, $, £, ¥) and 

the unit equivalent exergy of labor, respectively. Additionally, (𝐸𝑥𝑖𝑛) is the total incoming exergy 

fluctuation (J/yr), can be defined based on the energy budget of the country under investigation. 

Based on Sciubba (2011), the extended exergy accounting method determines the exergy 

corresponding to Labour, Money, and Ecological remediation (Eqs. 6.24 and 6.25) in goods or 

services by elements of “α” and “β” and some financial factors like GDP. These aspects are highly 
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inspired by population, labor statistics, regular and international income, and normal workload. 

The stated aspects and exergy counterparts were examined and figured out by Sciubba (2011) for 

some developed and developing countries. For example, if setup cost (𝐾 = €30) and we consider 

the percentages of money, labor, and ecological remediation denote the order cost, e.g., 60%, 30%, 

and 10%, therefore, 𝐾𝐶𝑎𝑝 = 0.6 × 30 = €18, 𝐾𝐿 = 0.3 × 30 = €9 and 𝐾𝐸𝑛𝑣 = 0.1 × 30 = €3. 

Considering Eqs. (6.21)-(6.25), one can calculate the three exergetic values of capital, labor, and 

environment (𝑒𝑒𝐶𝑎𝑝,𝐾 + 𝑒𝑒𝐿,𝐾 + 𝑒𝑒𝐸𝑛𝑣,𝐾) related to setup/order cost to achieve exergy 𝐾(𝑥).  

 

6.4.2. Applying extended exergy accounting to fuzzy optimization of multi-buyer coal SC 

Under the carbon trade policy, the exergy equivalent of the total cost is (𝑇𝐶(𝑥) = 𝑍(𝑥)1 +

𝑍(𝑥)2 + 𝑍(𝑥)3 + 𝑍(𝑥)4), These equivalents can be done with the following formulas (Jawad et al. 

2015) 

𝐾(𝑥)𝑖,𝑠 = (𝑒𝑒𝐶𝑎𝑝,𝐾(𝑖,𝑠) + 𝑒𝑒𝐿,𝐾(𝑖,𝑠) + 𝑒𝑒𝐸𝑛𝑣,𝐾(𝑖,𝑠))                                                             (6.26) 

𝐾(𝑥)𝑖𝑗,𝑏 = (𝑒𝑒𝐶𝑎𝑝,𝐾(𝑖𝑗,𝑏) + 𝑒𝑒𝐿,𝐾(𝑖𝑗,𝑏) + 𝑒𝑒𝐸𝑛𝑣,𝐾(𝑖𝑗,𝑏))                                                      (6.27) 

ℎ(𝑥)𝑖𝑗 = (𝑒𝑒𝐶𝑎𝑝,ℎ(𝑖𝑗) + 𝑒𝑒𝐿,ℎ(𝑖𝑗) + 𝑒𝑒𝐸𝑛𝑣,ℎ(𝑖𝑗))                                                                 (6.28) 

𝑠(𝑥)1 = 𝑠1 × (𝑒𝑒𝐶𝑎𝑝)                                                                                                              (6.29) 

𝑠(𝑥)2 = 𝑠2 × (𝑒𝑒𝐶𝑎𝑝)                                                                                                              (6.30) 

𝑡(𝑥)𝑓 = 𝑡𝑓 × (𝑒𝑒𝐶𝑎𝑝)                                                                                                              (6.31) 

𝑡(𝑥)𝑣 = 𝑡𝑣 × (𝑒𝑒𝐶𝑎𝑝)                                                                                                              (6.32) 

𝑡(𝑥)𝐿 = 𝑡𝐿 × (𝑒𝑒𝐶𝑎𝑝)                                                                                                              (6.33) 

𝑡(𝑥)𝑀 = 𝑡𝑀 × (𝑒𝑒𝐶𝑎𝑝)                                                                                                            (6.34) 

𝐶(𝑥)�̃� = (𝑒𝑒𝐶𝑎𝑝,𝐶(𝑖)̃ + 𝑒𝑒𝐿,𝐶(𝑖)̃ + 𝑒𝑒𝐸𝑛𝑣,𝐶(𝑖)̃)                                                                       (6.35) 

𝐶(𝑥)𝑡𝑟𝑎𝑑𝑒
̃ = 𝐶𝑡𝑟𝑎𝑑�̃� × (𝑒𝑒𝐶𝑎𝑝)                                                                                               (6.36) 

𝑋(𝑥)𝑗 = 𝑋𝑗 × (𝑒𝑒𝐶𝑎𝑝)                                                                                                             (6.37) 

Therefore, by using the above formulas to the objective functions and limitations of the 

model in Eq. (6.17), it is converted to a fuzzy exergy model as follows: 
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6.4.3. A fuzzy exergy modeling of coal SC with carbon trade policy 

𝑇𝐶(𝑥)𝑡𝑟𝑎𝑑𝑒 = ∑∑

[
 
 
 
 
𝐷𝑖�̃�

𝑄𝑖𝑗
(𝐾(𝑥)𝑖,𝑠 + 𝐾(𝑥)𝑖𝑗,𝑏) +

ℎ(𝑥)𝑖𝑗

2𝑄𝑖𝑗 (1 −
𝐷𝑖�̃�

𝑃𝑖
)

(𝑄𝑖𝑗(1 − 𝛿𝑚) (1 −
𝐷𝑖�̃�

𝑃𝑖
) − 𝑏𝑖𝑗)

2𝑚

𝑗

𝑛

𝑖

+

(

 
 𝑠(𝑥)1. 𝑏𝑖𝑗

2

2𝑄𝑖𝑗 (1 −
𝐷𝑖�̃�

𝑃𝑖
)

+
𝑠(𝑥)2. 𝑏𝑖𝑗 . 𝐷𝑖�̃�

𝑄𝑖𝑗 (1 −
𝐷𝑖�̃�

𝑃𝑖
)
)

 
 

]
 
 
 
 

+ ∑𝐶(𝑥)𝑡𝑟𝑎𝑑𝑒
̃ × (𝑒𝑗

+ − 𝑒𝑗
−)

𝑚

𝑗

 

                           +∑[𝑥(𝑥)𝑗
− + (𝑖𝑛𝑡− × 𝑥(𝑥)𝑗

− ) − (𝑖𝑛𝑡+ × 𝑥(𝑥)𝑗
+ )]

𝑚

𝑗

+ ∑∑[(
𝐷𝑖�̃�

𝑄𝑖𝑗
. 𝑡(𝑥)𝑓) + (𝑄𝑖𝑗. 𝑡(𝑥)𝑣) + (

𝐷𝑖�̃�

𝑄𝑖𝑗
. (𝐿𝑜 + 𝑈𝑛). (𝑡(𝑥)𝐿 + 𝑡(𝑥)𝑀))]

𝑚

𝑗

𝑛

𝑖

 

𝑠. 𝑡. 

∑ ∑ 𝐶(𝑥)0
𝑚
𝑗 . 𝐷𝑖�̃�

𝑛
𝑖

∑ ∑

𝐶(𝑥)0. (𝑄𝑖𝑗(1 − 𝛿𝑚) (1 −
𝐷𝑖�̃�

𝑃𝑖
) − 𝑏𝑖𝑗)

2

2𝑄𝑖𝑗 (1 −
𝐷𝑖�̃�

𝑃𝑖
)

𝑚
𝑗

𝑛
𝑖  

≥ 𝐼𝑇𝑅𝑗 

∑[(𝑄𝑖𝑗. 𝜃𝑚) + (
𝐷𝑖�̃�

𝑄𝑖𝑗
. 𝐿𝑗 . 𝜃𝑡) + (𝑄𝑖𝑗. 𝐷𝑖�̃�. 𝜃𝑘)] + (𝑒𝑗

− − 𝑒𝑗
+) = 𝐸𝑗

𝑛

𝑖

 

∑∑[(𝑄𝑖𝑗. 𝛿𝑚) + (𝑄𝑖𝑗. (1 − 𝛿𝑚). 𝛿𝑡) + (𝑄𝑖𝑗(1 − 𝛿𝑚). (1 − 𝛿𝑡). 𝛿𝑘)] ≤ 𝐹

𝑚

𝑗

𝑛

𝑖

 

∑(𝑄𝑖𝑗(1 − 𝛿𝑚) (1 −
𝐷𝑖�̃�

𝑃𝑖
) − 𝑏𝑖𝑗) ≤ 𝑊𝑗

𝑛

𝑖

 

∑(𝐶(𝑥)�̃�. 𝑄𝑖𝑗(1 − 𝛿𝑚)) + (𝑥(𝑥)𝑗
+ − 𝑥(𝑥)𝑗

− ) = 𝑋(𝑥)𝑗

𝑛

𝑖

 

∑∑
𝐷𝑖�̃�

𝑄𝑖𝑗
≤ 𝑁𝑀𝑎𝑥

𝑚

𝑗

𝑛

𝑖

 

𝑄𝑖𝑗 ≤ 𝑄𝑀𝑎𝑥 

𝑏𝑖𝑗 ≤ 𝑄𝑖𝑗 
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𝑄𝑖𝑗 > 0, 𝑖𝑛𝑡𝑒𝑔𝑒𝑟, 𝑖 = 1,2, … , 𝑛 

𝑏𝑖𝑗 ≥ 0, 𝑖𝑛𝑡𝑒𝑔𝑒𝑟, 𝑗 = 1,2, … ,𝑚 

𝑥(𝑥)𝑗
+ , 𝑥(𝑥)𝑗

− , 𝑒𝑗
+, 𝑒𝑗

− ≥ 0,                                                                                                          (6.38)  

Under the extended exergy accounting technique, the following section suggests three 

recent metaheuristic algorithms to solve the fuzzy exergy model in Eq. (6.38). 

 

6.5. A solution algorithm  

In general, for solving optimization models like Eq. (6.38), there are three solution search 

methods such as exact (complete), heuristic, and metaheuristic (Shokouhifar and Jalali, 2017). The 

weakness of “Exact” approaches, for instance, LINGO, CPLEX, and GAMS are primarily on 

demanded CPU running time, particularly in real-size problems (Diabat 2014; Zahedi et al., 2016), 

while “heuristics” approaches do not explore the search space effectively (Naderi et al., 2021b). In 

contrast, “metaheuristics” algorithms have enhanced the global search implementation slightly 

(Yan et al., 2021; Guo et al., 2020) and have the most precision results with a reasonable CPU 

running time (Stojanovic et al., 2017). Since the model in Eq. (6.38) is “nonlinear integer-

programming (NIP)” and “NP-complete,” finding an “analytical solution” (if any) is demanding 

(Diabat, 2014; Gen and Cheng, 1997; Peng et al., 1998). The fact is that the objective function has 

a non-derivative arrangement, and the decision variables are integers (Roozbeh Nia et al., 2014). 

Optimization with metaheuristic algorithms is an influential and well-known method utilized in 

several engineering and real-world problems (Islam et al., 2021; Maier et al., 2019). These 

algorithms focus on improved reliability, enhanced system performance, efficient resources, 

superior system response, profit intensification, error, and cost reduction. (Maier et al., 2019).  

Metaheuristic algorithms employ a stochastic manner for the optimization process created 

on random operators (Islam et al., 2021). Moreover, natural or biological phenomena have 

stimulated metaheuristic algorithms based on swarm intelligence and evolution (Abdullah and 

Ahmed, 2020; Islam and Ahmed, 2020) and applied them to various models (Wang et al., 2020a). 

Many researchers have successfully employed traditional swarm intelligence and evolutionary 

algorithms, for instance, ant colony optimization (ACO), particle swarm optimization (PSO), and 

genetic algorithm (GA) (Roozbeh Nia et al., 2017a, 2017b). Despite these algorithms, there are 

some modern and attractive examples involving the Horse herd Optimization Algorithm (HOA) 

(MiarNaeimi et al., 2021; Moldovan, 2020), Whale Optimization Algorithm (WOA) (Mirjalili and 

Lewis, 2016; Islam et al., 2021; Yan et al., 2021; Zhang and Wen, 2021; Wang et al., 2021b), Lion 

Optimization Algorithm (LOA) (Yazdani and Jolai, 2016; Varshney et al., 2021; Selvi and 

Ramakrishnan, 2020; Wang et al., 2020b; Gope et al., 2019), Ant Lion Optimizer (ALO) (Mirjalili, 

2015; Wang et al., 2020a; Bekakra et al., 2021; Singh et al., 2021; Chen et al., 2020a; Pradhan et 

al., 2020), and Grey wolf optimizer (GWO) (Mirjalili et al., 2014; Padhy and Panda, 2021; Bekakra 

et al., 2021; Wang et al., 2021a; Liu et al., 2021; Tütüncü et al., 2021).  

The GA and ACO presents a high risk of falling into local optimal, accordingly might lead 

to an inconsistent result thus needed more iteration to find the optimal solutions (Varshney et al., 

2021). Moreover, GA, ACO and PSO have many factors, and it is complicated to decide on correct 

parameters (Shinoda and Miyata, 2019). In this study we consider three recent metaheuristic 
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algorithms: ALO, LOA, and WOA, to solve the “exergy fuzzy NIP (EFNIP) problem” modeled in 

Eq. (38). The reasons for selecting these three modern algorithms are as follows: 

➢ ALO has been demonstrated as an efficient optimization algorithm in many areas 

(Mirjalili, 2015; Dubey et al., 2016; Ali et al., 2017; Wang et al., 2020a) and has a good 

performance in deciding global optimum (Pradhan et al., 2020; Mirjalili, 2015). The 

crucial aspect of selecting ALO is by reason of its efficient search space employing 

random walk and choice of search agents by chance. (Pradhan et al., 2020). ALO has 

drawn extensive interest because of its relatively adequate efficiency, flexibility, and 

simplicity (Wang et al., 2020a). 

➢ In most circumstances, the outcomes achieved by LOA deliver outstanding solutions in 

fast convergence and global optima accomplishment (Yazdani and Jolai, 2016). This 

approach uses the local as well as global optima and thus gives the optimal solution 

with minimum cost (fitness function) and takes less iteration (Varshney et al., 2021). 

➢ WOA demands no added modification parameters to come to an outstanding balance 

between its exploration and exploitation (Aala Kalananda and Komanapalli, 2021). 

Study findings present that WOA is outstanding to other optimization methods, for 

instance, PSO, ACO, GA, differential evolution (DE), and gravitational search for 

solution precision and convergence speed (Chen et al., 2020c; Kaur and Arora, 2018; 

Mohammed et al., 2019, Jahromi et al., 2018). Since the benefits of effortless 

assumption, simple operation, straightforward application, few modification 

parameters, and strong robustness, the WOA algorithm has received widespread interest 

and has achieved many significant research outcomes (Du et al., 2021; Zhang et al., 

2021; Long et al., 2020). 

Based on the literature, metaheuristic algorithms' parameters substantially impact outcome 

quality and running time (Yang et al., 2009; Kao and Zahara, 2008). Consequently, the algorithm’s 

parameters employed are based on a pilot study, and the algorithm’s results will be validated with 

GAMS output in small-size problems. In the following subsections, short explanations primarily 

supported three metaheuristic algorithms. Interested readers are encouraged to see referred studies 

about these algorithms in detail. Afterward, the phases concerned in the proposed solutions are 

described. 

 

6.5.1. The Ant Lion Optimization algorithm (ALO) 

The Ant Lion Optimization algorithm, which Mirjalili (2015) proposed, is one of the nature-

stimulated optimization procedures for solving one-dimensional and multidimensional 

optimization models (Pradhan et al., 2020). The algorithm is stimulated by the hunting behavior of 

antlions that catch their prey, ants, by digging a pit in the sand (Singh et al., 2021; Mirjalili, 2015). 

A larva of an ant lion builds a conical-formed hole by going along a spherical route in the sand and 

putting the sand with its enormous jaw. After excavating the hole, larvae conceal at the bottom, 

stopping for ants to be stuck in the hole. When an ant has been stuck in the hole, the ant lion drops 

sand towards the outside, so it falls its target into the hole. Once an ant is stuck into the jaw, the ant 

lion draws the prey toward itself and eats (Mirjalili, 2015; Chen et al., 2020a). Six main processes 

were planned in ALO to replicate communication between the ant and the ant lion in the hole, 

comprising of random walk of ants, getting caught in the ant lion’s trap, the construction of a hole, 

descending ants towards the ant lion, sticking prey, re-construction of the hole, and elitism, 
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respectively (Mirjalili 2015; Wang et al., 2020a). An analysis of all prior studies on ALO is newly 

offered by (Heidari et al., 2020; Abualigah et al., 2020; Abderazek et al., 2020). Moreover, 

Appendix Fig. 6.A.1. presents pseudo-code of the ALO algorithm. 

 

6.5.2. The lion optimization algorithm (LOA)  

Yazdani and Jolai (2016) suggested Lion Optimization Algorithm (LOA) as a population-

based metaheuristic approach. It is an optimization naturally motivated by the attributes of lions. 

It replicates lions' social and hunting performance, for instance, prey capturing, roaming, mating, 

and defence (Selvi and Ramakrishnan, 2020). The lion has specific social behavior; hence it is the 

most powerful mammal globally. Lions have two forms of social behavior: inhabitants and 

travelers, and lions can switch over them. Inhabitants live in parties known as pride, in which 

resident females and males appear to give birth. The second structural behavior is so-called 

travelers, who occasionally move about in pairs or singularly. A detailed explanation of all LOA 

steps is presented in Yazdani and Jolai (2016). Moreover, Appendix Fig. 6.A.2. presents pseudo-

code of the LOA algorithm. 

 

6.5.3. The whale optimization algorithm (WOA) 

The whale optimization algorithm (WOA) is a recent swarm intelligence optimization 

method suggested by Mirjalili and Lewis (2016). The WOA algorithm is motivated by the hunting 

method of humpback whales. Their predation process is called the bubble-net attacking method, 

and it has been seen that it is done by producing unique bubbles along a circle (Goldbogen et al., 

2013). The hunting behavior primarily includes three stages: search for prey, diminishing 

encircling, and spiral revising location (Mirjalili and Lewis, 2016; Wang et al., 2021b; Chen et al., 

2020b, 2020c; Lee and Lu, 2020). The WOA uses three operators that simulate these phases. 

Among them, the operator replicating the bubble-net hunting behavior of humpback whales is an 

essential process in WOA (Li et al., 2021). In WOA, the location of each humpback whale stands 

for a search agent. During the search process, the whales progressively acquire the proper location 

of the prey by encircling, twisting, and capturing it at the end (Zhang et al., 2021). The WOA 

obtains the best solution to the global optimization problem by continuously revising the search 

agent (Yan et al., 2021). Moreover, WOA depends on a linearly declining vector whose value 

reduces from 2 to 0 as the repetitions develop (Aala Kalananda and Komanapalli, 2021). Appendix 

Fig. 6.A.3. presents pseudo-code of the WOA algorithm. 

At the end of this section, the main steps in the recommended solution process of Eq. (38) 

under carbon trade emission policy and uncertain environment are presented in Fig. 6.1. Moreover, 

an illustration of the chromosomes related to the order quantity (𝑄) and backorder amount (𝑏) of a 

numerical example with one supplier and ten buyers who have four products are presented in Fig. 

6.2, correspondingly.  
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Fig.6.1. Flow chart of the proposed solving procedure 

 

 

 

 

 

Fig.6.2. An example of the chromosomes for the numerical example with four products and ten buyers 
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6.6. Numerical examples 

This section gives numerical test problems, including one real-world coal SC case study in 

Iran and nine arbitrary cases related to it. We are looking to optimize sustainability in a coal SC by 

considering the indirect (hidden) costs in Joules and including all three factors simultaneously 

(using the extended exergy accounting method) under a carbon trade policy in an uncertain 

environment. Based on the recommended solution steps in Fig. 6.1, we are examining to get the 

optimum value of six decision variables, such as the amount of required loan/investment for each 

buyer (𝑥𝑗
−, 𝑥𝑗

+), the required carbon credits for each buyer (𝑒𝑗
+, 𝑒𝑗

−), order quantity of each product 

for each buyer (𝑄𝑖𝑗), and amount of backorder of each product for each buyer (𝑏𝑖𝑗). Moreover, a 

sensitivity analysis considers different percentages for exergy costs in coal SC of eight countries: 

Iran, India, China, Australia, Japan, Poland, the USA, and Zimbabwe to find the best exergy values 

that great the highest sustainability in each country. These countries are ranked in the top 20 

countries with the most coal consumption globally (Statista, 2020). 

 

6.6.1 Case study in Iran 

The real-world case study includes one supplier and ten buyers of coal products in an SC 

in Iran. Tabas Parvadeh Coal Company (TPCCO), located in Tabas city, is the biggest coal producer 

in Iran. Consistent with the statistics printed by the Iranian Mines and Mining Industries 

Development and Renovation Organization (IMIDRO), TPCCO extracted 1.232 million tons of 

coal from March 21, 2019, to January 20, 2020. With about 1.15 billion tons of reserves, Iranian 

coal mines can deliver up to three million tons of coal concentrate yearly (IEA, clean coal center 

2020). From another point of view, the production of steel in Iran is highly dependent on coal since 

metallurgical coal, or coking coal, is an essential part of steel-making operations. TPCCO produces 

four diverse types (grades) of coal, and this company has ten key customers (steel producers) in 

different cities in Iran. TPCCO and all buyers use the public rail transport system to transport coal 

orders. Since demand of each steel producer (buyer) for each type of coal, coal purchasing price, 

and carbon emission price is not stated precisely, we consider them trapezoidal fuzzy numbers (see 

Appendix Tables 6.A.1 & 6.A.2). Moreover, the initial data of the test problems (parameters and 

resource values) and their equivalent exergy parameters are presented in Appendix Tables 6.A.3-

6.A.10, respectively. Moreover, all inventory costs and their equivalent exergy cost related to real 

case study in Iran are presented in Table 6.4. Consistent with the informed values in Sciubba (2011) 

as the only reference study for the extended exergy accounting method in the literature, we take 

equivalent exergy parameters of Egypt due to the resemblances between Iran and Egypt regarding 

economic development, population, religion, and culture. Therefore, exergy parameters of Iran and 

selected countries are presented in Table 6.5. 

After consulting with SC managers of TPCCO, it was estimated that each cost 

of 𝐾𝑖,𝑆, 𝐾𝑖𝑗,𝑏 , ℎ𝑖𝑗  𝑎𝑛𝑑 𝐶𝑖 can be divided to Cap=30% for capital, L=60% for labor, and Env=10% 

for ecological remediation. In Subsection 4.1, we described the method of extended exergy 

accounting and related formulas that we applied to our model. For example, in Table 6.4, the cost 

of 𝐾𝑖,𝑆 is assumed €20 for the first product which includes €6 (20 × 0.30), €12 (20 × 0.60) and €2 

(20 × 0.10) (monetary values) for capital (Cap=30%), labor (L=60%) and environmental 

(Env=10%) remediation, respectively. Moreover, these three numbers are converted to the exergy 

values of 34.08, 3.56, and 11.36 MJ, respectively (in total 𝐾(𝑥)𝑖,𝑆 =49 MJ). To show better the 

performance of our suggested modern metaheuristic algorithms in solving big-size test problems, 
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besides the actual case study, we considered nine arbitrary numerical examples related to it with 

10, 20, 40, 80, 160, 320, 640, 1280, and 2560 products in a sustainable coal SC in Iran with one 

supplier and 15 buyers. The initial data of all numerical examples are shown in Appendix Tables 

(6.A.1)-(6.A.10), respectively. As noted previously, a pilot study is used for the parameter tuning 

of all suggested metaheuristic algorithms, and the test problems are solved on a PC with an Intel 

Core i7-7500U CPU with 2.70GHz and 8.00 GB RAM in Windows 10. The “MATLAB” 2017a 

software is also employed for coding all the algorithms. 

 

Table 6.4: Inventory costs and their equivalent exergy based on capital (30%), labor (60%), and environment 

(10%) values (Test with four products) 

 Prod. value Unit 
Monetary values Exergy values (MJ) 

Total exergy 
 

Cap. L. Env. 𝑒𝑒𝐶𝑎𝑝,𝑖 𝑒𝑒𝐿,𝑖 𝑒𝑒𝐸𝑛𝑣,𝑖  

𝐾𝑖,𝑆 i 20 Euro/order 6 12 2 34.08 3.56 11.36 49 𝐾(𝑥)𝑖,𝑆 

𝐾𝑖𝑗,𝑏 i 15 Euro/order 4.5 9 1.5 25.56 2.67 8.52 36.75 𝐾(𝑥)𝑖𝑗,𝑏 

𝐶𝑖 1 200 Euro/unit 60 120 20 340.8 35.6 113.6 490 𝐶(𝑥)𝑖 

 2 170  51 102 17 289.68 30.26 96.56 416.50  

 3 140  42 84 14 238.56 24.92 79.52 343.00  

 4 100  30 60 10 170.40 17.80 56.80 245.00  

ℎ𝑖𝑗 1 5 Euro/unit/year 1.5 3 0.5 8.52 0.89 2.84 12.25 ℎ(𝑥)𝑖𝑗 

 2 4  1.2 2.4 0.4 6.82 0.71 2.27 9.80  

 3 3  0.9 1.8 0.3 5.11 0.53 1.70 7.35  

 4 3  0.9 1.8 0.3 5.11 0.53 1.70 7.35  

 
Table 6.5: The exergy parameters of selected countries (sensitivity analysis) (Sciubba, 2011) 

 Unit Iran Australia China India Japan Poland USA Zimbabwe 

𝜶𝒙 - 0.0121 0.018 0.0015 0.0419 0.773 0.55 0.145 0.0026 

𝜷𝒙 - 2.94 1.69 0.477 1.32 1.9 0.57 1.43 3.9 

𝒆𝒆𝑪𝒂𝒑 MJ/Euro 5.68 3.56 14.01 4.34 3.35 14.02 2.85 3.35 

𝒆𝒆𝑳 MJ/WH 3.56 71.21 48.66 1.64 70.18 76.55 72.82 70.18 

 

6.6.2 Solving phases and related results 

6.6.2.1 Step one - Metaheuristic algorithms 

Based on solving procedure (Fig. 6.1), at the first step, all suggested metaheuristic 

algorithms are executed 15 times for the fuzzy exergy model with carbon trade policy (Eq. 6.38). 

The outputs of algorithms include the lowest fuzzy total exergy (MJ), and the CPU times (seconds) 

are presented in Tables 6.6 and 6.7, respectively. Based on the results, the superior metaheuristic 

algorithm for the smallest fuzzy total exergy (MJ) and running times (seconds) could be found for 

the model (Eq. 6.38). 

Concerning the fuzzy total exergy and in line with the fallouts shown in Table 6.6, ALO is 

the best algorithm (with 32,753,094.69 and 122,319,654.35 MJ) in the actual case study in Iran 

with four products as well as the numerical test with ten products, while for test problems from 20 

to 2560 products, WOA is the best. For our large size test problems (640, 1280 & 2560 products), 

WOA gets the lowest fuzzy total exergy cost (3,964,974,414.68; 8,490,424,760.63 & 
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20,715,326,512.04 MJ) followed by LOA, and ALO, respectively (see Fig. 6.3). Regarding 

Appendix Fig. 6.A.4, performance improvement between top two algorithms from 20p to 80p test 

problems, are less since the results of them are very close together. But in large-size test problems 

the average performance enhancement between the results of WOA and LOA is about 90%, which 

means the results of WOA are outstanding. In opposition, ALO has the highest fuzzy total exergy 

(MJ) results in our medium and large-size test problems.  

Considering the CPU time (Sec.), WOA is absolutely the best algorithm with the lowest 

running time in all test problems (see Fig. 6.4). For example, in our large-size test problems (640, 

1280 & 2560 products), the WOA CPU times were 49.23, 78.89, and 154.47 (Sec.), respectively 

(see Table 6.7). Moreover, in large-size test problems, the average of WOA’s performance 

improvement (%) with the second-best algorithm is about 700% which means WOA solves the 

models fast (see Appendix Fig. 6.A.5). Conversely, ALO has the highest CPU time among other 

algorithms in all test problems except for 1285 products, where LOA (with 829.7169 Sec.) is the 

worse algorithm (see Table 6.7). In Fig. 6.5, we presented some convergence diagrams of the 

smallest fuzzy total exergy by the proposed algorithms. 
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Table 6.6: The fuzzy total exergy (MJ) observed by the algorithms under carbon trade policy in Iran (Eq. 6.38) 

Test ALO LOA WOA Min. (MJ)  The bests 
Performance 

improvement (%) 

4p  32,753,094.69   56,130,526.91   48,504,010.50   32,753,094.69  ALO-WOA-LOA 48.09 

10p  122,319,654.35   291,716,085.98   265,533,078.08   122,319,654.35  ALO-WOA-LOA 117.08 

20p  620,356,160.82   464,274,771.96   444,387,816.87   444,387,816.87  WOA-LOA-ALO 4.48 

40p  1,229,059,326.54   606,789,259.79   556,126,023.95   556,126,023.95  WOA-LOA-ALO 9.11 

80p  2,772,002,306.09   950,139,646.13   887,480,983.66   887,480,983.66  WOA-LOA-ALO 7.06 

160p  6,468,347,547.44   2,366,142,295.46   1,010,480,171.31   1,010,480,171.31  WOA-LOA-ALO 134.16 

320p  12,809,569,710.57   5,295,722,151.09   2,409,465,266.86   2,409,465,266.86  WOA-LOA-ALO 119.79 

640p  28,098,451,686.15   7,622,351,301.01   3,964,974,414.68   3,964,974,414.68  WOA-LOA-ALO 92.24 

1280p  57,806,847,743.44   18,118,616,031.71   8,490,424,760.63   8,490,424,760.63  WOA-LOA-ALO 113.40 

2560p  112,083,644,493.09   37,319,812,944.67   20,715,326,512.04   20,715,326,512.04  WOA-LOA-ALO 80.16 

 

 

 

 

Table 6.7: The CPU times (Sec.) of solving numerical examples by the algorithms under carbon trade policy in Iran (Eq. 6.38) 

Test ALO LOA WOA Min. (Sec.) The bests 
Performance 

improvement (%) 

4p  3.07   3.23   0.97   0.97  WOA-ALO-LOA 214.90 

10p  8.29   7.53   1.52   1.52  WOA-LOA-ALO 395.23 

20p  14.71   12.62   2.60   2.60  WOA-LOA-ALO 384.68 

40p  27.78   26.81   4.03   4.03  WOA-LOA-ALO 565.62 

80p  53.99   51.63   5.57   5.57  WOA-LOA-ALO 826.17 

160p  104.94   98.24   8.72   8.72  WOA-LOA-ALO 1026.17 

320p  207.59   190.57   18.37   18.37  WOA-LOA-ALO 937.27 

640p  406.38   339.40   49.23   49.23  WOA-LOA-ALO 589.36 

1280p  801.43   829.72   78.89   78.89  WOA-ALO-LOA 915.85 

2560p  1,606.61   1,442.98   154.47   154.47  WOA-LOA-ALO 834.17 
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Fig.6.3. The total fuzzy exergy comparisons of algorithms in large size test problems (step 1) 

 

 

 

 

 
Fig.6.4. The CPU time comparisons of all algorithms (step 1) 
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ALO 4-product WOA 2560-product  

Fig.6.5. The convergence diagram of the total fuzzy exergy by the proposed algorithms (step 1) 

6.6.2.2 Step two - Exact method  

A solution may be compared with an “exact method” to validate the results by suggested 

algorithms. Exact optimizer software, for example, “GAMS” or an optimization library in 

“Python,” can find the “exact result.” In this research, the proposed mathematical model (Eq. 6.38) 

under carbon trade strategy is solved in small size (test with four products) by GAMS. A contrast 

with the best metaheuristic algorithm is made in Table 6.8. Taking into account Eq. (38) for the 4-

product test problem, the exact result for the fuzzy total exergy is 31,537,292.44 (MJ), while the 

outcome of the best metaheuristic algorithm (ALO) for this test is 32,753,094.69 (MJ). Therefore, 

the percentage penalty between the exact method and ALO is 3.86% (see Table 6.8). Because the 

percentage penalty is minor, suggesting the excellent dominance of the solutions got by the best-

suggested algorithm (Cárdenas-Barrón et al., 2012) since it is remarkably close to the exact method 

(see Fig. 6.6). Concerning CPU running time and Table 6.8, the distinction between exact method 

and ALO is 1.21 (Sec.), but the percentage penalty is 39.48%. It shows that the metaheuristic 

algorithm (ALO) solved the carbon trade model more rapidly (see Appendix Fig. 6.A.6). 

 

Table 6.8: Comparing the results of the exact method (GAMS) with the best algorithm (ALO)  

 ALO Exact Difference Penalty (%) 

Fuzzy total exergy: 32,753,094.69 31,537,292.44 1,215,802.25 3.86 

CPU time: 3.07 4.28 1.21 39.48 
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Fig.6.6. Comparison of the total fuzzy exergy between exact method and the best metaheuristic algorithm for 

test problem with four products (step 2) 

6.6.2.3 Step three- Sensitivity analysis 

In the earlier subsections, we studied the optimization of a sustainable fuzzy EPQ model of 

coal SC in Iran by taking into account different objectives simultaneously: the costs of the inventory 

system, an additional required budget of each buyer, coal transportation cost among SC members, 

and carbon emission cost. All goals in the models and related limitations under the emission trade 

strategy are in MJ in place of monetary values. This step tries to balance economic and sustainable 

advantages for coal SC companies. Considering that our proposed model is sustainable, we modify 

the exergy percentage for capital, labor, and environmental remediation by a sensitivity analysis to 

find the best values of exergy components that improve the sustainability of coal SC more than 

before. Additionally, to gain further insight into this adjustment, we evaluate sustainable coal SC 

in Iran as well as seven selected developing and developed countries with the world's most 

significant coal consumption. They are India, China, Australia, Japan, Poland, the USA, and 

Zimbabwe (Statista, 2020). We assumed the same coal SC and products for all these countries to 

make a comparative analysis. In the previous section, we mentioned that in our numerical 

examples, it was assumed that each cost of  𝐾𝑖,𝑆, 𝐾𝑖𝑗,𝑏 , ℎ𝑖𝑗  𝑎𝑛𝑑 𝐶𝑖 can be allocated to Cap=30% for 

capital, L=60% for labor, and Env=10% for ecological remediation (consider it as exergy Set A). 

In this section, to get more insight, we have changed these percentages to make seven different 

exergy sets (see Appendix Fig. 6.A.7), including A (30-60-10), B (60-20-20), C (20-50-30), D (20-

40-40), E (20-30-50), F (30-10-60) and G (33-33-33). Considering each exergy set, we computed 

the fuzzy total exergy for a 4-item test problem under carbon trade policy for all countries by 

GAMS (see Table 6.9). For example, we consider coal SC in the USA and exergy Set C (Cap=20%, 

L=50%, and Env=30%), then employing extended exergy accounting method to convert all 

monetary costs of  𝐾𝑖,𝑆, 𝐾𝑖𝑗,𝑏 , ℎ𝑖𝑗  𝑎𝑛𝑑 𝐶𝑖 to equivalent (MJ). After that, we run model Eq. (38) with 

four product test problems using the Exact method (GAMS). Likewise, the same process was done 

for other exergy Sets (A-G) and considering other countries' coal SC. Finally, all results are 

presented in Table 6.9. In the following we explain the results in detail. 
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Table 6.9: Sensitivity analysis of different percentages for exergy elements (example with four products) 

Sets (%) 

* 

Fuzzy total exergy (Emission trade) MJ Min. 

(MJ) 

Country 

min. 

Max. 

(MJ) 

Country 

max. AU** CH IN IR JA PO US ZI 

A (30-60-

10) 

37,386,6

44.58 

121,884,4

57.74 

32,520,6

76.90 

31,537,2

92.44 

38,038,4

72.22 

106,551,3

02.66 

31,673,7

57.27 

31,803,4

58.12 

31,537,2

92.44 
Iran 

121,884,4

57.74 
China 

B (60-20-

20) 

27,362,6

03.27 

109,229,9

63.03 

56,664,3

03.08 

50,042,1

80.33 

40,279,2

08.50 

110,155,0

55.08 

22,604,5

64.59 

23,779,7

47.58 

22,604,5

64.59 
USA 

110,155,0

55.08 
Poland 

C (20-50-

30) 

36,172,0

81.05 

83,731,24

2.82 

24,826,1

36.13 

35,822,2

52.13 

30,489,6

73.91 

86,131,62

7.76 

29,064,2

37.19 

26,772,1

35.64 

24,826,1

36.13 
India 

86,131,62

7.76 
Poland 

D (20-40-

40) 

30,457,3

41.89 

94,201,68

5.52 

32,528,3

08.04 

43,914,3

27.75 

36,862,1

47.59 

92,933,11

4.17 

31,090,8

27.64 

25,762,8

54.83 

25,762,8

54.83 

Zimbabw

e 

94,201,68

5.52 
China 

E (20-30-

50) 

35,641,7

76.33 

111,411,4

81.62 

43,026,7

17.09 

43,802,2

95.45 

36,228,0

06.97 

109,302,8

25.19 

25,320,9

51.45 

28,886,5

60.45 

25,320,9

51.45 
USA 

111,411,4

81.62 
China 

F (30-10-

60) 

24,251,6

04.43 

128,734,2

40.79 

29,354,4

58.87 

49,114,88

5.31 

22,873,5

47.02 

123,315,6

02.00 

19,675,6

09.14 

22,873,5

47.02 

19,675,6

09.14 
USA 

128,734,2

40.79 
China 

G (33-33-

33) 

33,163,7

23.31 

121,351,1

02.11 

31,623,7

90.11 

44,552,8

27.66 

32,432,0

70.96 

118,125,5

44.27 

29,934,3

68.36 

24,146,3

38.65 

24,146,3

38.65 

Zimbabw

e 

121,351,1

02.11 
China 

Min. 
24,251,6

04.43 

83,731,24

2.82 

24,826,1

36.13 

31,537,2

92.44 

22,873,5

47.02 

86,131,62

7.76 

19,675,6

09.14 

22,873,5

47.02 
Min. Min. (MJ) Max. Max.  (MJ) 

Set Min. F C C A F C F F 
19,675,6

09.14 
USA 

128,734,2

40.79 
China 

Max. 
37,386,6

44.58 

128,734,2

40.79 

56,664,3

03.08 

50,042,1

80.33 

40,279,2

08.50 

123,315,6

02.00 

31,673,7

57.27 

31,803,4

58.12 
    

Set Max. A F B B B F A A     

*Set (Cap%-L%-Environment%); **AU: Australia, CH: China, IN: India, IR: Iran, JA: Japan, PO: Poland, US: the USA, ZI: Zimbabwe 
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6.6.2.3.1 Analysis of each country 

Considering Table 6.9 and Fig. 6.7, for coal SC in each country, we have: 

➢ Australia: For coal SC under the carbon trade policy in this country, the top exergy 

components are Set F (30-10-60) since more exergy percentage is assumed for Environment 

(60%) and less for Labor (10%). It created the minimum fuzzy total exergy of 

24,251,604.43 (MJ) for coal SC. Besides, the worst exergy components are Set A (30-60-

10) since Labor has 60% while Environment has only 10%, which created the highest fuzzy 

total exergy with 37,386,644.58 (MJ). 

➢ China: The best exergy components are Set C (20-50-30) when Labor has 50% weight, 

followed by Environment (30%) and Capital (20%), respectively. It created the minimum 

fuzzy total exergy of 83,731,242.82 (MJ) for coal SC. Likewise, the weakest exergy 

components are Set F (30-10-60) when more exergy percentage is assumed for 

Environment (60%) and only 10% for Labor, which generated the greatest fuzzy total 

exergy of 128,734,240.79 (MJ). 

➢ India: Like China, the finest exergy components in India are Set C (20-50-30), when Labor 

has 50% weight, while Environment and Capital are 30% and 20%, respectively. It 

produced the minimum fuzzy total exergy of 24,826,136.13 (MJ) for coal SC. Moreover, 

the unpleasant exergy components are Set B (60-20-20) when more weight is expected for 

Capital (60%) and the same weights (20%) for Labor and Environment, which formed the 

maximum fuzzy total exergy of 56,664,303.08 (MJ). 

➢ Iran: For coal SC in this country, the top exergy components are Set A (30-60-10) as Labor 

has 60% while Environment has only 10%. It made the minimum fuzzy total exergy of 

31,537,292.44 (MJ). Like India, the unhealthiest exergy components in Iran are Set B (60-

20-20) when more weight is assigned to Capital (60%) and the same weights for Labor and 

Environment (20%), which generated the maximum fuzzy total exergy of 50,042,180.33 

(MJ). 

➢ Japan: Like Australia, the best exergy components in Japan are Set F (30-10-60), while 

more exergy percentage is given to Environment (60%) and less to Labor (10%). It 

established the least amount of fuzzy total exergy with 22,873,547.02 (MJ) for coal SC. 

Furthermore, the unhealthiest exergy components are Set B (60-20-20) when more weight 

is provided to Capital (60%) and the same weights for Labor and Environment (20%), 

which generated the highest fuzzy total exergy of 40,279,208.50 (MJ). 

➢ Poland: Like India and China, the excellent exergy components in Poland are Set C (20-

50-30), when Labor has 50% weight, followed by Environment (30%) and Capital (20%), 

respectively. It created the least possible fuzzy total exergy of 86,131,627.76 (MJ) for coal 

SC. Besides, the worst exergy components are Set F (30-10-60), when more exergy 

percentage is offered to Environment (60%) and less on Labor (10%), which created the 

maximum fuzzy total exergy of 123,315,602.00 (MJ). 

➢ The USA: Like Australia and Japan, the superior exergy components in the USA are Set F 

(30-10-60) as more exergy percentage is assumed to Environment (60%) and less on Labor 

(10%). It generated the minimum fuzzy total exergy of 19,675,609.14 (MJ) for coal SC. 

Additionally, the harmful exergy components are Set A (30-60-10) since Labor has 60% 

while Environment has only 10%, which established the highest fuzzy total exergy of 

31,673,757.27 (MJ). 

➢ Zimbabwe: Like Australia, Japan and the USA, the first-rate exergy components in 

Zimbabwe are Set F (30-10-60) because more exergy percentage is assumed to 
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Environment (60%) and less on Labor (10%). It crafted the minimum fuzzy total exergy of 

22,873,547.02 (MJ) for coal SC. Additionally, the weakest exergy components are Set A 

(30-60-10) since Labor has 60% while Environment has only 10%, which generated the 

greatest fuzzy total exergy of 31,803,458.12 (MJ). 

➢ Considering Table 6.9, the best total exergy (MJ) in each country is as follow: Australia 

(24,251,604.43), China (83,731,242.82), India (24,826,136.13), Iran (31,537,292.44), 

Japan (22,873,547.02), Poland (86,131,627.76), the USA (19,675,609.14) and Zimbabwe 

(22,873,547.02).  

➢ Among all presented countries, the coal SC in the USA has the smallest total exergy 

(19,675,609.14 MJ), followed by Japan, Zimbabwe, Australia, India, Iran, China, and 

Poland, respectively (see Fig. 6.7).  

➢ Moreover, coal SC in China creates the highest total exergy for all exergy sets except for 

Set B (60-20-20) and Set C (20-50-30) related to Poland (see Fig. 6.8).  

 

6.6.2.3.2 Analysis of each exergy set 

Considering Table 6.9, Fig. 6.8, and Appendix Fig. 6.A.7, for each exergy set, we have: 

➢ Exergy Set A (30%-60%-10%): This exergy set has 60% for Labor, while for 

Environment, it is only 10%. Although this set works well for coal SC in Iran, with the 

minimum total exergy of 31,537,292.44 (MJ), in China, it is 121,884,457.74 (MJ). 

➢ Exergy Set B (60%-20%-20%): In this set, more weight is assumed for Capital (60%) and 

the same for Labor and Environment (20%). Despite coal SC in Poland (110,155,055.08 

MJ), exergy set B operates well in the USA with 22,604,564.59 (MJ). 

➢ Exergy Set C (20%-50%-30%): In this set, Labor has 50% weight, followed by 

Environment (30%) and Capital (20%), respectively. Exergy set C performs well in coal 

SC in India (24,826,136.13 MJ), even though in Poland, the total exergy is 86,131,627.76 

(MJ). 

➢ Exergy Set D (20%-40%-40%): In this set, Capital has only 20% while 40% is for both 

Labor and Environment. In spite of the high result in China with 94,201,685.52 (MJ), 

exergy set D runs well in Zimbabwe with 25,762,854.83 (MJ). 

➢ Exergy Set E (20%-30%-50%): In this set, 50% is assigned to Environment and 20% and 

30% to Capital and Labor, respectively. Exergy set E operates well in the USA with 

25,320,951.45 (MJ), although the result is high in China (111,411,481.62 MJ). 

➢ Exergy Set F (30%-10%-60%): In this set, 60% is allocated to Environment and only 

10% Labor. Exergy set F performs well in the USA (19,675,609.14 MJ), despite the fact 

that the result is not healthy in China (128,734,240.79 MJ). 

➢ Exergy Set G (33%-33%-33%): In this set, all three exergy components have equal 33% 

weight. Even though exergy set G does not perform well in China with 121,351,102.11 

(MJ), it runs well in Zimbabwe with 24,146,338.65 (MJ). 

➢ Moreover, exergy Sets B (30-60-10), E (20-30-50) and F (30-10-60) created the minimum 

total exergy for coal SC in the USA, while all exergy sets except Set B (30-60-10) and Set 

C (20-50-30) created the highest total exergy in China (see Fig. 6.8). 
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Fig.6.7. Sensitivity analysis for each country – Min. & Max. of the total fuzzy exergy (step 3) 

 

 

Fig.6.8. Sensitivity analysis for each set - Min. & Max. of the total fuzzy exergy (step 3) 

 

6.7. Conclusions and future work 

According to the literature review, there is a lack of studies that assess a coal SC under a 

carbon trade policy with ambiguous parameters such as carbon price and customer demand. 

Likewise, it is scarce to obtain research that assesses a SC in terms of Joules (in place of traditional 

monetary measures of performance) and simultaneously evaluates all sustainability characteristics, 

such as economic, labour, and environmental. Similarly, to the best of the authors' knowledge, no 

exergy analysis method like the extended exergy accounting in the literature considers carbon 
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policy in SC. Therefore, this study develops the work in the papers by Jawad et al. (2016) and 

Naderi et al. (2021a) to a multi-product multi-limitation inventory (EPQ) model with backorder for 

a coal SC in Iran under an uncertain environment. By applying the extended exergy accounting 

technique and Mega-Joules (MJ) as a universal unit of measure, the total exergy of the coal SC can 

be calculated. Moreover, a well-known carbon reduction strategy (carbon trade) is employed to 

evaluate the sustainability performance of the model. In this study, we presented four research 

questions (in Section 6.3) and attempted to answer them. 

Q1. Is it possible to assess the sustainability of coal SC under a carbon reduction policy 

in terms of Joules rather than money, to benefit both the economy and the environment? 

In subsection 6.3.4, we developed a non-exergy mathematical model of the coal SC for 

carbon trade policy. Then the model has converted to a fuzzy model in subsection 6.3.5, and finally, 

a new SC assessment method called the extended exergy accounting (in terms of Joules) was 

employed in section 6.4. This method contains energy and material's main aggregate exergy subject 

and costs corresponding to economic externality (labor and capital) and ecological externality 

(environmental remediation). Therefore, employing this method could benefit both the economy 

and the environment. After that, three recent metaheuristic algorithms (ALO, LOA, and WOA) are 

utilized. When contrasting the best algorithm outcomes in small-size test problems (four products) 

with the exact method (GAMS), there is a small percentage error (3.86%) under the carbon trade 

policy between them. Therefore, it could validate the results of metaheuristic algorithms in this 

study.  

Q2. Generally speaking, coal SC in developing countries, or even China, has the lowest 

overall cost; however, considering sustainability aspects (social, economic, and environmental 

characteristics) in terms of Joules, does this assumption still hold true? 

Regarding the sensitivity analysis in subsection 6.6.2.3, we compared the sustainability of 

coal SC in eight developed and developing countries, such as Iran, India, China, Australia, Japan, 

Poland, the USA, and Zimbabwe (see Table 6.9). They are the world's most significant coal-

consuming countries (Statista, 2020). It was observed that, Poland and China have the highest fuzzy 

total exergy of a sustainable coal SC (86,131,627.76 and 83,731,242.82 MJ, respectively) among 

eight selected countries. The reason behind this issue is that traditional assessment methods 

consider economic measures. In contrast, the method of extended exergy accounting (as mentioned 

in Section 6.4) considers all three aspects of sustainability (Labour, Money, and Ecological 

remediation) in goods or services. It determines the exergy corresponding to them (in terms of 

Joules) by some elements significantly affected by population, normal workload, labor statistics, 

and local and international wages in each country. Therefore, the extended exergy accounting 

results show the total number of Joules that coal SC utilized in Labour, Money, and Ecological 

aspects. 

Q3. Which country has the most sustainable coal SC in terms of Joules? 

Based on Table 6.9, the lowest total exergy of a sustainable coal SC among all eight 

countries belongs to the USA (19,675,609.14 MJ) under the carbon trade policy. It means 

sustainable coal mining and related processes in the USA have economic and environmental 

advantages compared to China or developing countries such as Iran and Zimbabwe. Moreover, 

Japan, Zimbabwe, Australia, India, Iran, China, and Poland followed the USA (see Fig. 6.7).  
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Q4. What is the best percentage of exergy components (social, economic, environmental 

characteristics) to achieve the greatest saving wherever coal SCs are working? 

Considering subsection 6.2.3 and Table 6.9, it is observed that under carbon trade policy, 

exergy Set F (30-10-60) percentages created the minimum fuzzy total exergy (highest carbon and 

exergy reduction) in coal SC of the countries such as Australia, Japan, the USA, and Zimbabwe. 

Set F (30-10-60) is given more weight (60%) to Environment, 30% to Capital and only 10% to 

Labor. Likewise, for coal SC in China, India, and Poland, exergy Set C (20-50-30) generated the 

least amount of fuzzy total exergy (83,731,242.82; 24,826,136.13 & 86,131,627.76 MJ 

respectively). In Set C (20-50-30), the emphasis is on Labor with 50% weight, while Capital and 

Environment have 20% and 30%, respectively. Finally, for coal SC in Iran, Set A (30-60-10) has 

the best exergy component with the minimum fuzzy total exergy of (31,537,292.44 MJ). Labor 

with 60% is the first weight in Set A (30-60-10), while only 10% was assigned to Environment and 

30% to Capital. 

Moreover, the theoretical and managerial implications of this work are presented as 

follows: 

It is important to note that the EEA method has the advantage of enabling meaningful 

comparisons between coal SCs in different countries that produce the same coal type. By 

comparing the amount of exergy consumed in the coal production process and related SC processes, 

it becomes easier to determine where a coal SC business should be located. Due to this, selecting 

a product from a country with low wages, such as China or India, may not always be beneficial as 

more exergy is required for its production. Using the EEA method provides an indication of the 

sustainability impact of coal SCs in an era when climate change concerns are increasing prevalent. 

The exergy equations in Section 6.4 (for instance, Eqs. 6.26-6.37) show that all exergy 

parameters in Table 6.5 are directly related to the cost elements of inventory models (such as setup, 

purchasing, and holding), and affect the exergy functioning of the coal SC in a significant way. It 

is therefore critical to decrease the cost elements of a coal SC's inventory model to improve 

sustainability. The managers could use stock classification and shorter order cycles, reducing the 

lead time of suppliers, eliminating obsolete inventory, implementing a Just-in-Time inventory 

system, and monitoring key performance indicators. 

Unlike conventional financial and commercial models, the results of our study found that 

despite assumptions that inventory parameters in coal SC are unchanged for all eight countries, 

more savings could be achieved through the tuning of exergy's inflows and outflows in each 

country. It means that no fixed amount of exergy components (Capital, Labor and Environment) 

can deliver the highest sustainability in all countries. According to our results in Table 6.9, set F 

(30-10-60) with 60% weight allocated to the environment and only 10% to labor generates the 

greatest sustainability for the USA (19,675,609.14 MJ) as well as the most unpleasant sustainability 

for China (128,734,240.79 MJ). Hence, finding the most appropriate values of the exergy 

components of the SC would be another task for decision makers.  

Another point is that, considering Table 6.5, one can conclude that the exergy parameter of 

Capital (𝑒𝑒𝐶𝑎𝑝 = 2.85 MJ/Euro) in the USA is less than the other countries. In contrast, China and 

Poland have the highest exergy parameter of Capital (𝑒𝑒𝐶𝑎𝑝 = 14.01 & 14.02 MJ/Euro) among 

other countries. This would be one of the reasons why the USA has the most sustainable coal SC 

in terms of Joules whereas China and Poland are the least sustainable. Therefore, a way to increase 
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sustainability in each country is to find ways to decrease exergy parameters. If we look at Eqs. 

(6.24) and (6.25), exergy parameters of (𝑒𝑒𝐶𝑎𝑝, 𝑒𝑒𝐿) are dependent on two econometric coefficients 

(𝛼𝑥, 𝛽𝑥) as well as (𝐸𝑥𝑖𝑛). Subsection 6.4.1 explains that these are influenced by the type of societal 

organization, the historical period, the technological level, the pro-capital resource consumption, 

and the geographical location of the country (Sciubba, 2011). All shareholders, governments, 

individuals, societies, business organisations, scientists, etc., need to contribute significantly to 

adjusting parameters, if possible. An example is controlling the import and export of goods from 

and to the country, or extracting ores and minerals. Promoting locally made goods can be a way for 

individuals, societies, and business organizations to support this cause. As a result, there would be 

more jobs available in the country, and increasing the labor force rate (Jawad et al., 2018). 

Additionally, effective productivity growth (output per hour worked) can boost a country's income 

and GDP per capita. For more information, readers are encouraged to consult Sciubba (2011). 

In addition, decision-makers should find ways to improve the sustainability of their coal 

SC by reducing waste, labor, material, and pollution, which will reduce the damaging effects of 

coal SC. When calculating energy costs, managers of SC would have more flexibility since they 

could use available resources rather than just capital to calculate the quantity. Furthermore, this 

research will also guide managers of international coal mining companies who wish to decide 

which country has more sustainable conditions for their business and investments. Furthermore, 

the EEA method in this study is subject to some limitations, including the following: 

➢ When EEA is employed to a coal SC, the precision of the outcomes is dependent upon the 

assumptions made. 

➢ It is possible that the EEA method in coal SCs may have limitations when more than one 

country is involved in the SC processes (international companies). 

➢ Insufficient data regarding a country's total exergy input, the quantity of exergy represented in 

the workforce, the exergy of raw materials and energy consumed to supply a coal. 

The following avenues for future research are suggested for consideration: 

a) A coal production system. 

b) An international coal SC model that works in more than one country at the same time. 

c) Comparing a global coal SC with a national one. 

d) A model with multi-objective (integrating inventory measures). 

e) The strategy of increasing carbon price with increasing the amount of carbon (price 

dependent on amount) by each company. 

f) The SC of coal power plants. 

g) Quantity discounts in cost per unit of products can be allowed.  

h) Multi-echelon SCs, for example, single-buyer multi-supplier and multi-buyer multi-

supplier SCs, can be investigated. 

i) Lead times can be included. 

Postscripts: 

This chapter considered carbon trade policy for coal SC to improve the sustainability of coal 

SC in both developed and developing countries by incorporating extended exergy accounting. 

In the next chapter, carbon cap policy will be applied to coal SC. Additionally, carbon offset 

policy will be presented in Chapter 8, as additional material. 
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Paper Appendix-Chapter 6 
 

Table 6.A.1. Fuzzy demands of 15 buyers (j) and 10 products (i) (values: *1000) 

j i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8 i=9 i=10 

1 
(100, 110, 

125,150) 

(70, 80, 95, 

120) 

(65, 68, 72, 

75) 

(16, 18, 21, 

26) 

(115, 118, 122, 

125) 

(85, 88, 91, 

97) 

(66, 68, 71, 

76) 

(16, 18, 21, 

26) 

(112, 118, 121, 

130) 

(82, 88, 91, 

100) 

2 
(100, 110, 

125,150) 

(60, 70, 85, 

110) 

(55, 58, 62, 

65) 

(16, 18, 21, 

26) 

(115, 118, 122, 

125) 

(75, 78, 81, 

87) 

(56, 58, 61, 

66) 

(16, 18, 21, 

26) 

(112, 118, 121, 

130) 

(72, 78, 81, 

90) 

3 
(90, 100, 115, 

140) 

(60, 70, 85, 

110) 

(55, 58, 62, 

65) 

(11, 13, 16, 

21) 

(105, 108, 112, 

115) 

(75, 78, 81, 

87) 

(56, 58, 61, 

66) 

(11, 13, 16, 

21) 

(102, 108, 111, 

120) 

(72, 78, 81, 

90) 

4 (70, 80, 95, 120) 
(40, 50, 65, 

90) 

(35, 38, 42, 

45) 

(6, 8, 11, 

16) 
(85, 88, 92, 95) 

(55, 58, 

61,67) 

(36, 38, 41, 

46) 

(6, 8, 11, 

16) 
(82, 88, 91, 100) 

(52, 58, 61, 

70) 

5 (60, 70, 85, 110) 
(40, 50, 65, 

90) 

(25, 28, 32, 

35) 

(5, 7, 10, 

15) 
(75, 78, 82, 85) 

(55, 58, 

61,67) 

(26, 28, 31, 

36) 

(5, 7, 10, 

15) 
(72, 78, 81, 90) 

(52, 58, 61, 

70) 

6 (50, 60, 75, 100) 
(30, 40, 55, 

80) 

(15, 18, 22, 

25) 
(4, 6, 9, 14) (65, 68, 72, 75) 

(45, 48, 51, 

57) 

(16, 18, 21, 

26) 
(4, 6, 9, 14) (62, 68, 71, 80) 

(42, 48, 51, 

60) 

7 (40, 50, 65, 90) 
(20, 30, 45, 

70) 

(10, 13, 17, 

20) 
(3, 5, 8, 13) (55, 58, 62, 65) 

(35, 38, 41, 

47) 

(11, 13, 16, 

21) 
(3, 5, 8, 13) (52, 58, 61, 70) 

(32, 38, 41, 

50) 

8 (30, 40, 55, 80) 
(10, 20, 35, 

60) 

(5, 8, 12, 

15) 
(2, 4, 7, 12) (45, 48, 52, 55) 

(25, 28, 31, 

37) 

(6, 8, 11, 

16) 
(2, 4, 7, 12) (42, 48, 51, 60) 

(22, 28, 31, 

40) 

9 (20, 30, 45, 70) 
(10, 20, 35, 

60) 

(3, 6, 10, 

13) 
(1, 3, 6, 11) (35, 38, 42, 45) 

(25, 28, 31, 

37) 
(4, 6, 9, 14) (1, 3, 6, 11) (32, 38, 41, 50) 

(22, 28, 31, 

40) 

10 (10, 20, 35, 60) 
(0, 10, 25, 

50) 
(0, 3, 7, 10) (0, 2, 5, 10) (25, 28, 32, 35) 

(15, 18, 21, 

27) 
(1, 3, 6, 11) (0, 2, 5, 10) (22, 28, 31, 40) 

(12, 18, 21, 

30) 

11 
(100, 110, 

125,150) 

(70, 80, 95, 

120) 

(65, 68, 72, 

75) 

(16, 18, 21, 

26) 

(115, 118, 122, 

125) 

(85, 88, 91, 

97) 

(66, 68, 71, 

76) 

(16, 18, 21, 

26) 

(112, 118, 121, 

130) 

(82, 88, 91, 

100) 

12 
(100, 110, 

125,150) 

(60, 70, 85, 

110) 

(55, 58, 62, 

65) 

(16, 18, 21, 

26) 

(115, 118, 122, 

125) 

(75, 78, 81, 

87) 

(56, 58, 61, 

66) 

(16, 18, 21, 

26) 

(112, 118, 121, 

130) 

(72, 78, 81, 

90) 

13 
(90, 100, 115, 

140) 

(60, 70, 85, 

110) 

(55, 58, 62, 

65) 

(11, 13, 16, 

21) 

(105, 108, 112, 

115) 

(75, 78, 81, 

87) 

(56, 58, 61, 

66) 

(11, 13, 16, 

21) 

(102, 108, 111, 

120) 

(72, 78, 81, 

90) 

14 (70, 80, 95, 120) 
(40, 50, 65, 

90) 

(35, 38, 42, 

45) 

(6, 8, 11, 

16) 
(85, 88, 92, 95) 

(55, 58, 

61,67) 

(36, 38, 41, 

46) 

(6, 8, 11, 

16) 
(82, 88, 91, 100) 

(52, 58, 61, 

70) 

15 (60, 70, 85, 110) 
(40, 50, 65, 

90) 

(25, 28, 32, 

35) 

(5, 7, 10, 

15) 
(75, 78, 82, 85) 

(55, 58, 

61,67) 

(26, 28, 31, 

36) 

(5, 7, 10, 

15) 
(72, 78, 81, 90) 

(52, 58, 61, 

70) 

* Demand values are repeated for test problems with greater than ten products 
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Table 6.A.2. Fuzzy parameters for 15 buyers (j) and 10 products (i) (values: *10) 

 i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8 i=9 i=10 

𝐶�̃�: 
(5, 8, 12, 

15) 

(9, 12, 16, 

19) 

(12, 15, 19, 

22) 

(15, 18, 22, 

25) 

(5, 8, 12, 

15) 

(9, 12, 16, 

19) 

(12, 15, 19, 

22) 

(15, 18, 22, 

25) 

(5, 8, 12, 

15) 

(9, 12, 16, 

19) 

𝐶𝑡𝑟𝑎𝑑�̃� =(33.6, 36.6, 40.6, 43.6)  𝐶0̃ =(5, 8, 12, 15)      

* Parameter values are repeated for test problems with greater than ten products 

 

Table 6.A.3. Initial data (monetary value) of test problem with ten products and their equivalent of exergy values (MJ) 

Prod. 

(i) 

Cost values Exergy equivalent 

𝐾𝑖,𝑆 𝐾𝑖𝑗,𝑏 ℎ𝑖𝑗 𝐶𝑖 𝐾(𝑥)𝑖,𝑆 𝐾(𝑥)𝑖𝑗,𝑏 ℎ(𝑥)𝑖𝑗 𝐶(𝑥)𝑖 

1 20 15 5 200 49 36.75 14.94 597.67 

2 20 15 4 170 49 36.75 11.95 508.02 

3 20 15 3 140 49 36.75 8.97 418.37 

4 20 15 3 100 49 36.75 8.97 298.83 

5 20 15 5 200 49 36.75 14.94 597.67 

6 20 15 4 170 49 36.75 11.95 508.02 

7 20 15 3 140 49 36.75 8.97 418.37 

8 20 15 3 100 49 36.75 8.97 298.83 

9 20 15 5 200 49 36.75 14.94 597.67 

10 20 15 4 170 49 36.75 11.95 508.02 

* These values are repeated for test problems with greater than 10 products 

 

Table 6.A.4. Initial data of the actual case study in Iran with four products (without exergy) 

𝑠1=3, 𝑠2=0 𝑃𝑖 = (780000, 550000, 320000, 110000) 

𝑖𝑛𝑡−=0.04, 𝑖𝑛𝑡+=0.02 𝐿𝑗 = (635, 586, 1084, 1028, 763, 1102, 382, 688, 603, 877) 

𝜃𝑚 = 3.18 × 10−3 𝐸𝑗 = (18000, 16800, 15800, 12000, 10700, 8900, 7400, 5500, 5000, 3700) 

𝜃𝑡 = 1.4 × 10−5 𝑋𝑗 = (290000, 290000, 300000,290000,300000,280000,280000,280000,280000,280000) 

𝜃𝑘 = 5 × 10−5 𝑊𝑗 = (6400, 6500, 6600,6900, 7000, 7100, 7200, 7300, 7400, 7500) 

𝛿𝑚 = 0.10; 𝛿𝑡 = 0.08; 𝛿𝑘 = 0.12 𝑡𝑓 = 10; 𝑡𝑣 = 15; 𝑡𝑙 = 12; 𝑡𝑚 = 8 ;  

𝐿𝑂 = 1; 𝑈𝑛 = 2.5 𝑁𝑚𝑎𝑥 = 1300; 𝐹 = 22000; 𝐼𝑇𝑅 = 17; 𝑄𝑚𝑎𝑥 = 2500 
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Table 6.A.5. Equivalent exergy parameters of the actual case study in Iran with four products 

𝑡(𝑥)𝑓 = 56.80; 𝑡(𝑥)𝑣 = 85.20; 𝑡(𝑥)𝑙 = 68.16; 𝑡(𝑥)𝑚 = 45.44 

𝐿𝑎𝑏𝑜𝑟 𝑐𝑜𝑠𝑡 = 12; 𝐶(𝑥)𝑡𝑟𝑎𝑑𝑒 = 2192;  

𝑠(𝑥)1 = 17.04; 𝑠(𝑥)2 = 0 

𝑋(𝑥)𝑗 = (1647200, 1647200, 1704000, 1647200,1704000, 1590400,1590400, 1590400, 1590400,1590400) 

 

 

Table 6.A.6. Warehouse space (𝑾𝒋) of each buyer in all examples (10-2560 products) 

 10p 20p 40p 80p 160p 320p 640p 1280p 2560p 

Buyer 1 16,500 33,000 66,000 132,000 264,000 528,000 1,056,000 2,112,000 4,224,000 

Buyer 2 16,600 33,200 66,400 132,800 265,600 531,200 1,062,400 2,124,800 4,249,600 

Buyer 3 16,700 33,400 66,800 133,600 267,200 534,400 1,068,800 2,137,600 4,275,200 

Buyer 4 17,200 34,400 68,800 137,600 275,200 550,400 1,100,800 2,201,600 4,403,200 

Buyer 5 17,300 34,600 69,200 138,400 276,800 553,600 1,107,200 2,214,400 4,428,800 

Buyer 6 17,500 35,000 70,000 140,000 280,000 560,000 1,120,000 2,240,000 4,480,000 

Buyer 7 17,600 35,200 70,400 140,800 281,600 563,200 1,126,400 2,252,800 4,505,600 

Buyer 8 17,800 35,600 71,200 142,400 284,800 569,600 1,139,200 2,278,400 4,556,800 

Buyer 9 17,900 35,800 71,600 143,200 286,400 572,800 1,145,600 2,291,200 4,582,400 

Buyer 10 18,000 36,000 72,000 144,000 288,000 576,000 1,152,000 2,304,000 4,608,000 

Buyer 11 16,500 33,000 66,000 132,000 264,000 528,000 1,056,000 2,112,000 4,224,000 

Buyer 12 16,600 33,200 66,400 132,800 265,600 531,200 1,062,400 2,124,800 4,249,600 

Buyer 13 16,700 33,400 66,800 133,600 267,200 534,400 1,068,800 2,137,600 4,275,200 

Buyer 14 17,200 34,400 68,800 137,600 275,200 550,400 1,100,800 2,201,600 4,403,200 

Buyer 15 17,300 34,600 69,200 138,400 276,800 553,600 1,107,200 2,214,400 4,428,800 

 

Table 6.A.7. Available budget (𝑿𝒋) of each buyer (exergy values) in all examples (10-2560 products) 

 10p 20p 40p 80p 160p 320p 640p 1280p 2560p 

Buyer 1  4,260,000   8,520,000   17,040,000   28,400,000   56,800,000   113,600,000   221,520,000   443,040,000   886,080,000  

Buyer 2  4,260,000   8,520,000   17,040,000   32,376,000   64,752,000   129,504,000   227,200,000   454,400,000   908,800,000  

Buyer 3  3,976,000   7,952,000   15,904,000   30,672,000   61,344,000   122,688,000   227,200,000   454,400,000   908,800,000  
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Buyer 4  3,976,000   7,952,000   15,904,000   30,672,000   61,344,000   122,688,000   227,200,000   454,400,000   908,800,000  

Buyer 5  3,805,600   7,611,200   15,222,400   30,444,800   60,889,600   121,779,200   227,200,000   454,400,000   908,800,000  

Buyer 6  3,805,600   7,611,200   15,222,400   30,444,800   60,889,600   121,779,200   232,880,000   465,760,000   931,520,000  

Buyer 7  3,805,600   7,611,200   15,222,400   30,444,800   60,889,600   121,779,200   224,360,000   448,720,000   897,440,000  

Buyer 8  3,748,800   7,497,600   14,995,200   29,990,400   59,980,800   119,961,600   224,360,000   448,720,000   897,440,000  

Buyer 9  3,748,800   7,497,600   14,995,200   29,990,400   59,980,800   119,961,600   232,880,000   465,760,000   931,520,000  

Buyer 10  3,578,400   7,156,800   14,313,600   28,627,200   57,254,400   114,508,800   223,792,000   447,584,000   895,168,000  

Buyer 11  3,578,400   7,156,800   14,313,600   28,627,200   57,254,400   114,508,800   219,248,000   438,496,000   876,992,000  

Buyer 12  3,578,400   7,156,800   14,313,600   28,627,200   57,254,400   114,508,800   226,064,000   452,128,000   904,256,000  

Buyer 13  3,521,600   7,043,200   14,086,400   28,172,800   56,345,600   112,691,200   223,792,000   447,584,000   895,168,000  

Buyer 14  3,521,600   7,043,200   14,086,400   28,172,800   56,345,600   112,691,200   223,792,000   447,584,000   895,168,000  

Buyer 15  3,521,600   7,043,200   14,086,400   28,172,800   56,345,600   112,691,200   223,792,000   447,584,000   895,168,000  

 

Table 6.A.8. Permitted carbon emission (𝑬𝒋) of each buyer in all examples (10-2560 products) 

 10p 20p 40p 80p 160p 320p 640p 1280p 2560p 

Buyer 1  41,000   82,000   164,000   270,000   530,000   1,060,000   2,080,000   4,160,000   8,320,000  

Buyer 2  38,000   76,000   152,000   285,000   560,000   1,120,000   2,000,000   4,000,000   8,000,000  

Buyer 3  36,000   72,000   144,000   255,000   500,000   1,000,000   1,900,000   3,800,000   7,600,000  

Buyer 4  26,000   52,000   104,000   190,000   370,000   740,000   1,420,000   2,840,000   5,680,000  

Buyer 5  23,000   46,000   92,000   184,000   365,000   730,000   1,320,000   2,640,000   5,280,000  

Buyer 6  18,000   36,000   72,000   144,000   285,000   570,000   1,110,000   2,220,000   4,440,000  

Buyer 7  13,000   26,000   52,000   104,000   200,000   400,000   800,000   1,600,000   3,200,000  

Buyer 8  9,000   18,000   36,000   72,000   140,000   280,000   560,000   1,120,000   2,240,000  

Buyer 9  7,000   14,000   28,000   56,000   110,000   220,000   440,000   880,000   1,760,000  

Buyer 10  3,000   6,000   12,000   24,000   45,000   90,000   180,000   360,000   720,000  

Buyer 11  41,000   82,000   164,000   295,000   580,000   1,160,000   2,170,000   4,340,000   8,680,000  

Buyer 12  38,000   76,000   152,000   270,000   530,000   1,060,000   2,000,000   4,000,000   8,000,000  

Buyer 13  36,000   72,000   144,000   270,000   530,000   1,060,000   1,850,000   3,700,000   7,400,000  

Buyer 14  26,000   52,000   104,000   200,000   400,000   800,000   1,520,000   3,040,000   6,080,000  

Buyer 15  23,000   46,000   92,000   184,000   365,000   730,000   1,400,000   2,800,000   5,600,000  
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Table 6.A.9. Initial data of the resources of all examples (4-2560 products) 
 4p 10p 20p 40p 80p 160p 320p 640p 1280p 2560p 

Nmax 1300 8200 19000 43,000 96,000 192,000 405,000 840,000 1,680,000 3,500,000 

ITR 17 17 20 20 20 20 20 20 20 20 

F 22000 82000 164000 328,000 656,000 1,312,000 2,624,000 5,248,000 10,496,000 20,992,000 

 

 

 

Table 6.A.10. The exergy values of inventory parameters (values in MJ) for 𝟏𝒔𝒕 product (i=1) 

Country  𝒆𝒆𝑪𝒂𝒑(𝒊,𝒔) 𝒆𝒆𝑳(𝒊,𝒔) 𝒆𝒆𝑬𝒏𝒗(𝒊,𝒔) Total 

Iran K(x)i,S 34.08 3.56 11.36 49 

 K(x)ij,b 25.56 2.67 8.52 36.75 

 ℎ(𝑥)𝑖𝑗 8.52 0.89 2.84 12.25 

 𝐶(𝑥)𝑖 340.80 35.60 113.60 490 

Australia K(x)i,S 21.36 71.21 7.12 99.69 

 K(x)ij,b 16.02 53.41 5.34 74.77 

 ℎ(𝑥)𝑖𝑗 5.34 17.80 1.78 24.92 

 𝐶(𝑥)𝑖 213.60 712.10 71.20 996.90 

China K(x)i,S 84.06 48.66 28.02 160.74 

 K(x)ij,b 63.04 36.49 21.01 120.56 

 ℎ(𝑥)𝑖𝑗 21.02 12.17 7.01 40.19 

 𝐶(𝑥)𝑖 840.60 486.60 280.20 1607.40 

India K(x)i,S 26.04 1.64 8.68 36.36 

 K(x)ij,b 19.53 1.23 6.51 27.27 

 ℎ(𝑥)𝑖𝑗 6.51 0.41 2.17 9.09 

 𝐶(𝑥)𝑖 260.40 16.40 86.80 363.60 

Japan K(x)i,S 20.10 70.18 6.70 96.98 

 K(x)ij,b 15.07 52.63 5.02 72.74 

 ℎ(𝑥)𝑖𝑗 5.03 17.55 1.68 24.25 

 𝐶(𝑥)𝑖 201 701.80 67 969.80 

Poland K(x)i,S 84.12 76.55 28.04 188.71 

 K(x)ij,b 63.09 57.4125 21.03 141.53 
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 ℎ(𝑥)𝑖𝑗 21.03 19.14 7.01 47.18 

 𝐶(𝑥)𝑖 841.20 765.50 280.40 1887.10 

The USA K(x)i,S 17.1 72.82 5.7 95.62 

 K(x)ij,b 12.82 54.61 4.27 71.72 

 ℎ(𝑥)𝑖𝑗 4.28 18.21 1.43 23.91 

 𝐶(𝑥)𝑖 171.00 728.20 57.00 956.20 

Zimbabwe K(x)i,S 20.1 70.18 6.7 96.98 

 K(x)ij,b 15.07 52.63 5.02 72.74 

 ℎ(𝑥)𝑖𝑗 5.03 17.55 1.68 24.25 

 𝐶(𝑥)𝑖 201.00 701.80 67.00 969.80 
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Figure 6.A.1. Pseudo-code of the ALO algorithm (Mirjalili, 2015). 

 

 
Figure 6.A.2. Pseudo-code of the LOA algorithm (Yazdani and Jolai, 2016). 
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Figure 6.A.3. Pseudo-code of the WOA algorithm (Mirjalili and Lewis, 2016). 

 

 

 

 
Figure 6.A.4. Performance improvement (%) between top two algorithms in the total fuzzy exergy (step 1) 
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Figure 6.A.5. Performance improvement (%) of CPU time between top two algorithms (step 1) 

 

 

 

 
Figure 6.A.6. Comparison of CPU time between exact method and ALO algorithm for test problem with four 

products (step 2). 
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Figure 6.A.7. Seven exergy sets (capital, labor & environment) for coal SC. 
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CHAPTER 7. ADDITIONAL RESULTS FOR CHAPTER 5 

 

Forewords 

Previous chapters considered carbon tax and trade policies for coal SC. Now, this chapter follows 

Chapter 5 while considers carbon cap policy to improve the sustainability of coal SC in both 

developed and developing countries by extended exergy accounting. Moreover, carbon offset 

policy will be presented in Chapter 8, as additional material. 

 

As mentioned in Chapter 1, the main carbon pricing policies are carbon tax, carbon cap, 

carbon offset, and carbon trade (Malladi and Sowlati, 2020), whereas each carbon policy has 

different costs and carbon reductions. The advantages of employing each carbon emission policy 

are not equal for companies involved in coal SC. While some carbon policies are more 

environmentally friendly, others are more economically beneficial. In Chapter 5, carbon tax policy 

was applied to a EOQ model of the coal SC and then the model converted to a sustainable coal SC 

(in terms of Joules) by using EEA method. Now, this chapter extends the EOQ model and results 

presented in Chapter 5 by applying the carbon cap policy. To make a comparison between the 

results of the model under carbon tax and cap policies, the same assumptions, and concepts (as 

Chapter 5) are used here.  

The following subsections will develop a non-exergy EOQ model of the coal SC for carbon 

cap policy. Then the model is converted to an exergy fuzzy model in terms of Joules by applying 

the EEA method. 

 

7.1. A non-exergy Modeling of coal SC with carbon cap policy 

7.1.1. Objective function 

In the model under carbon cap policy, three objectives are defined. First, the total inventory 

cost of coal SC (𝑇𝐶1) include the ordering (𝑇𝑂𝑖𝑗), holding (𝑇𝐻𝑖𝑗), stockout (𝑇𝑆𝑖𝑗), purchasing 

(𝑇𝑃𝑖𝑗), and transportation (𝑇𝑇𝑖𝑗) costs (Pasandideh et al. 2010, 2011; Razmi et al. 2010) as 

𝑇𝐶1 = 𝑇𝑂𝑖𝑗 + 𝑇𝐻𝑖𝑗 + 𝑇𝑆𝑖𝑗 + 𝑇𝑃𝑖𝑗 + 𝑇𝑇𝑖𝑗                                  (7.1) 

Where,  

𝑇𝑂𝑖𝑗 = ∑∑
𝐷𝑖𝑗

𝑄𝑖𝑗
(𝐴𝑖,𝑠 + 𝐴𝑖𝑗,𝑏)

𝑚

𝑗

𝑛

𝑖

                                                                                        (7.2) 

𝑇𝐻𝑖𝑗 = ∑∑
ℎ𝑖𝑗

2𝑄𝑖𝑗
(𝑄𝑖𝑗(1 − 𝛼) − 𝑏𝑖𝑗)

2
𝑚

𝑗

𝑛

𝑖

                                                                         (7.3) 

𝑇𝑆𝑖𝑗 = ∑∑(
𝑠1. 𝑏𝑖𝑗

2

2𝑄𝑖𝑗
+

𝑠2. 𝑏𝑖𝑗 . 𝐷𝑖𝑗

𝑄𝑖𝑗
)

𝑚

𝑗

𝑛

𝑖

                                                                                 (7.4) 
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𝑇𝑃𝑖𝑗 = ∑∑𝐶𝑖𝐷𝑖𝑗

𝑚

𝑗

𝑛

𝑖

                                                                                                               (7.5) 

𝑇𝑇𝑖𝑗 = ∑∑
𝐷𝑖𝑗

𝑄𝑖𝑗
(𝐴𝑖𝑗,𝑡)

𝑚

𝑗

𝑛

𝑖

                                                                                                      (7.6) 

Where (𝐷𝑖𝑗 , 𝑄𝑖𝑗, ℎ𝑖𝑗) are the demand rate of coal i for buyer j, order quantity of item i for 

buyer j and holding cost per unit of coal i for buyer j, respectively. Second, the total cost associated 

with the additional required budget of all buyers. In our model, the over-achievement budget (𝐵𝑗
−) 

is considered as the cost. It means the buyer should get a loan (𝐵𝑗
− as a decision variable) with an 

interest rate of (𝑖𝑛𝑡−). In this case, the buyer should pay this loan and the corresponding interest 

rate (𝐵𝑗
− + [𝑖𝑛𝑡− × 𝐵𝑗

−]) after the end of the year. Consequently, the whole cost related to the 

budget of all buyers (𝑇𝐶2) is  

𝑇𝐶2 = ∑[𝐵𝑗
− + (𝑖𝑛𝑡− × 𝐵𝑗

−)]

𝑚

𝑗

                                                                                          (7.7) 

Third, to make the model green, we consider that all coal SC processes produced some 

wastes (imperfect quality items such as coal refuse, coal waste, and coal tailings) which to be 

discarded to the environment. This waste has a penalty cost as 

𝑇𝐶3 = 𝐶𝑤𝑎𝑠𝑡𝑒 × ∑∑[(𝑄𝑖𝑗. 𝛼) + (𝑄𝑖𝑗. (1 − 𝛼). 𝛽) + (𝑄𝑖𝑗(1 − 𝛼). (1 − 𝛽). 𝛾)]

𝑚

𝑗

𝑛

𝑖

 (7.8) 

Where (𝛼, 𝛽, 𝛾) are the proportions of imperfect quality items in mining, transportation, 

and steel manufacturer processes, respectively. Moreover, 𝐶𝑤𝑎𝑠𝑡𝑒 is the unit cost of imperfect 

quality items produced by different supply chain processes. So, the combination of the above three 

objectives (𝑇𝐶𝑐𝑎𝑝 = 𝑇𝐶1 + 𝑇𝐶2 + 𝑇𝐶3) makes the non-exergy total cost of coal SC under emission 

cap policy. 

 

7.1.2. The limitations 

The emission cap policies imply that each buyer inside the coal SC can merely manufacture 

within an assumed emission cap (𝐶𝑎𝑝𝑗). If this quantity surpasses the emission cap, the related 

buyer will hinder manufacture until the carbon emissions comply with the cap (Yang et al., 2018). 

Consequently, a limitation on carbon emissions is included in the problem with the emission cap 

strategies.  

∑∑[(𝑄𝑖𝑗. 𝑓𝑚) + (
𝐷𝑖𝑗

𝑄𝑖𝑗
. 𝐿𝑗 . 𝑓𝑡) + (𝑄𝑖𝑗. 𝐷𝑖𝑗 . 𝑓𝑘)] ≤ 𝐶𝑎𝑝𝑗

𝑛

𝑖

𝑚

𝑗

                                           (7.9) 

Where (𝑓𝑚, 𝑓𝑡 , 𝑓𝑘) are emissions factors in mining, transportation, and steel manufacturer 

processes, respectively. Moreover, 𝐿𝑗 is the distance between the coal vendor and buyer j. This 

constraint is the summation of produced carbon in mining, transportation, and steelmaking 
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processes, respectively. As revealed earlier, a real-world VMI prescribed contract includes the 

vendor and all the buyers in the coal SC. This type of VMI contract accepting a limitation for the 

available budget of each buyer (𝐵𝑗) and taking into account related costs for this issue can be 

expressed as follows:  

∑∑𝐶𝑖 . 𝑄𝑖𝑗(1 − 𝛼) ≤ 𝐵𝑗 + (𝐵𝑗
−)

𝑛

𝑖

𝑚

𝑗

                                                                                (7.10) 

Where (𝐶𝑖) is purchasing price per unit of item i. Eq. (7.10) demonstrates that if the total 

paid out money of a buyer is greater than the available budget (∑ 𝐶𝑖. 𝑄𝑖𝑗(1 − 𝛼) > 𝐵𝑗
𝑛
𝑖 ), then the 

buyer needs to get a loan with the amount of (𝐵𝑗
− > 0). This amount (𝐵𝑗

−) is not determined before 

since it is a decision variable in the model, and in Eq. (7.7), the total cost related to this constraint 

is formulated. Moreover, the storage capacity of each buyer (𝐹𝑗) is constrained (Cárdenas-Barrón 

et al. 2012), 

∑∑(𝑄𝑖𝑗(1 − 𝛼) − 𝑏𝑖𝑗) ≤ 𝐹𝑗

𝑛

𝑖

𝑚

𝑗

                                                                                       (7.11) 

Furthermore, the railway transportation system among a vendor and all buyers has some 

limitations for its capacity. So, the Min. (𝑉𝑖) and Max. (𝑊𝑖) of the transportation capacity for each 

order quantity (𝑄𝑖𝑗) are 

𝑉𝑖 ≤ 𝑄𝑖𝑗 ≤ 𝑊𝑖                                                                                                                (7.12) 

In addition, the vendor has a limitation for its total sales capacity (G), which is as follows: 

∑∑𝑄𝑖𝑗 ≤ 𝐺

𝑚

𝑗

𝑛

𝑖

                                                                                                                  (7.13) 

Likewise, there is a constraint on the total number of orders (N) by all buyers: 

∑∑
𝐷𝑖𝑗

𝑄𝑖𝑗
≤ 𝑁

𝑚

𝑗

𝑛

𝑖

                                                                                                                 (7.14) 

Lastly, the  buyer’s highest amount of backorder of an item  in a cycle should be fewer 

than or equal to its lot size amount (𝑄𝑖𝑗). Therefore 

𝑏𝑖𝑗 ≤ 𝑄𝑖𝑗                                                                                                                                   (7.15) 

It should be stated that for simplification of the mathematical model, we ignore the cost of 

purchasing (Eq. 7.5) in the model. With regards to Eqs. (7.1)-(7.15), the model of “multi-item” 

SVMB EOQ with the VMI strategy under carbon cap policy can be easily obtained as 

thj i
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𝑇𝐶𝑐𝑎𝑝 = ∑∑[
𝐷𝑖𝑗

𝑄𝑖𝑗
(𝐴𝑖,𝑠 + 𝐴𝑖𝑗,𝑏) +

ℎ𝑖𝑗

2𝑄𝑖𝑗
(𝑄𝑖𝑗(1 − 𝛼) − 𝑏𝑖𝑗)

2
+ (

𝑠1. 𝑏𝑖𝑗
2

2𝑄𝑖𝑗
+

𝑠2. 𝑏𝑖𝑗. 𝐷𝑖𝑗

𝑄𝑖𝑗
)

𝑚

𝑗

𝑛

𝑖

+
𝐷𝑖𝑗

𝑄𝑖𝑗
(𝐴𝑖𝑗,𝑡)] + ∑[𝐵𝑗

− + (𝑖𝑛𝑡− × 𝐵𝑗
−)]

𝑚

𝑗

+ 𝐶𝑤𝑎𝑠𝑡𝑒 × ∑∑[(𝑄𝑖𝑗. 𝛼) + (𝑄𝑖𝑗. (1 − 𝛼). 𝛽) + (𝑄𝑖𝑗(1 − 𝛼). (1 − 𝛽). 𝛾)]

𝑚

𝑗

𝑛

𝑖

 

𝑠. 𝑡. 

∑∑[(𝑄𝑖𝑗. 𝑓𝑚) + (
𝐷𝑖𝑗

𝑄𝑖𝑗
. 𝐿𝑗 . 𝑓𝑡) + (𝑄𝑖𝑗. 𝐷𝑖𝑗 . 𝑓𝑘)] ≤ 𝐶𝑎𝑝𝑗

𝑛

𝑖

𝑚

𝑗

 

∑∑𝐶𝑖 . 𝑄𝑖𝑗(1 − 𝛼) ≤ 𝐵𝑗 + (𝐵𝑗
−)

𝑛

𝑖

𝑚

𝑗

 

∑∑(𝑄𝑖𝑗(1 − 𝛼) − 𝑏𝑖𝑗) ≤ 𝐹𝑗

𝑛

𝑖

𝑚

𝑗

 

𝑉𝑖 ≤ 𝑄𝑖𝑗 ≤ 𝑊𝑖 

∑∑𝑄𝑖𝑗 ≤ 𝐺

𝑚

𝑗

𝑛

𝑖

 

∑∑
𝐷𝑖𝑗

𝑄𝑖𝑗
≤ 𝑁

𝑚

𝑗

𝑛

𝑖

 

𝑏𝑖𝑗 ≤ 𝑄𝑖𝑗 

𝑄𝑖𝑗 > 0, 𝑖𝑛𝑡𝑒𝑔𝑒𝑟, 𝑖 = 1,2, … , 𝑛 

𝑏𝑖𝑗 ≥ 0, 𝑖𝑛𝑡𝑒𝑔𝑒𝑟, 𝑗 = 1,2, … ,𝑚 

𝐵𝑗
− ≥ 0,                                                                                                                                    (7.16)  

In this non-exergy sustainable model, we are looking to optimize three objectives 

simultaneously: the total inventory cost, the entire cost associated with the additional required 

budget of all buyers, and the penalty cost of coal waste disposal to the environment. Consequently, 

we have three decision variables, for example, the amount of required loan (more budget) for each 

buyer (𝐵𝑗
−), order quantity of each item for each buyer (𝑄𝑖𝑗), and amount of backorder of each item 

for each buyer (𝑏𝑖𝑗).  
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7.2. The inventory model in fuzzy environment 

This subsection is the same as fuzzy environmental issues in chapter 5. 

 

7.3. Exergy Modeling of fuzzy optimization of SVMB coal SC under VMI 

This subsection is the same as Exergy Modeling in chapter 5. 

 

7.3.1 A fuzzy exergy Modeling of coal SC with carbon cap policy 

As a result, by employing the exergy formulas to the objective functions and limitations of 

model in Eq. (7.16), it is converted to fuzzy exergy models under carbon cap as follows: 

𝑇𝐶(𝑥)𝑐𝑎𝑝 = ∑∑[
𝐷𝑖�̃�

𝑄𝑖𝑗
(𝐴(𝑥)𝑖,𝑠 + 𝐴(𝑥)𝑖𝑗,𝑏) +

ℎ(𝑥)𝑖𝑗

2𝑄𝑖𝑗
(𝑄𝑖𝑗(1 − 𝛼) − 𝑏𝑖𝑗)

2
𝑚

𝑗

𝑛

𝑖

+ (
𝑠(𝑥)1. 𝑏𝑖𝑗

2

2𝑄𝑖𝑗
+

𝑠(𝑥)2. 𝑏𝑖𝑗. 𝐷𝑖�̃�

𝑄𝑖𝑗
) +

𝐷𝑖�̃�

𝑄𝑖𝑗
(𝐴(𝑥)𝑖𝑗,𝑡)] + ∑[𝐵(𝑥)𝑗

− + (𝑖𝑛𝑡− × 𝐵(𝑥)𝑗
− )]

𝑚

𝑗

+ 𝐶(𝑥)𝑤𝑎𝑠𝑡𝑒 × ∑∑[(𝑄𝑖𝑗. 𝛼) + (𝑄𝑖𝑗. (1 − 𝛼). 𝛽) + (𝑄𝑖𝑗(1 − 𝛼). (1 − 𝛽). 𝛾)]

𝑚

𝑗

𝑛

𝑖

 

𝑠. 𝑡. 

∑∑[(𝑄𝑖𝑗. 𝑓𝑚) + (
𝐷𝑖�̃�

𝑄𝑖𝑗
. 𝐿𝑗 . 𝑓𝑡) + (𝑄𝑖𝑗. 𝐷𝑖�̃�. 𝑓𝑘)]

𝑚

𝑗

𝑛

𝑖

≤ 𝐶𝑎𝑝𝑗 

∑∑𝐶(𝑥)𝑖. 𝑄𝑖𝑗(1 − 𝛼) ≤ 𝐵(𝑥)𝑗 + (𝐵(𝑥)𝑗
− )

𝑛

𝑖

𝑚

𝑗

 

∑∑(𝑄𝑖𝑗(1 − 𝛼) − 𝑏𝑖𝑗) ≤ 𝐹𝑗

𝑛

𝑖

𝑚

𝑗

 

𝑉𝑖 ≤ 𝑄𝑖𝑗 ≤ 𝑊𝑖 

∑∑𝑄𝑖𝑗 ≤ �̃�

𝑚

𝑗

𝑛

𝑖

 

∑∑
𝐷𝑖�̃�

𝑄𝑖𝑗
≤ 𝑁

𝑚

𝑗

𝑛

𝑖

 

𝑏𝑖𝑗 ≤ 𝑄𝑖𝑗 

𝑄𝑖𝑗 > 0, 𝑖𝑛𝑡𝑒𝑔𝑒𝑟, 𝑖 = 1,2, … , 𝑛 
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𝑏𝑖𝑗 ≥ 0, 𝑖𝑛𝑡𝑒𝑔𝑒𝑟, 𝑗 = 1,2, … ,𝑚 

𝐵(𝑥)𝑗
− ≥ 0,                                                                                                                                   (7.17)  

 

7.4. Solution method  

This section is the same as the chapter 5 with the same methods and metaheuristic 

algorithms. 

7.5. Numerical examples 

This section is the same as the chapter 5 with the same real case study in Iran and all test 

problems. 

 

7.5.1 Solving phases and related results 

To avoid complexity of the chapter, the results of each phase of solving procedure for all 

test problems include Tables and Figures are presented in Appendix 1. 
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Table 7.1. Sensitivity analysis of exergy components under carbon cap and tax policies (Fuzzy total exergy in MJ) 

Country Policy 
Set A(30-60-

10) 

Set B(50-30-

20) 

Set C(20-50-

30) 

Set D(30-20-

50) 

Set E(33-33-

33) 

Minimum 

(MJ) 

Maximum 

(MJ) 

Afghanistan Cap 141,316.53 164,919.79 146,451.08 174,187.82 161,779.26 141,316.53 174,187.82 

 Tax 1,504,757.85 1,533,788.62 1,533,954.88 1,512,552.55 1,540,156.67 1,504,757.85 1,540,156.67 

Canada Cap 3,269,610.51 1,285,976.37 3,268,083.12 666,924.42 1,555,685.52 666,924.42 3,269,610.51 

 Tax 4,606,147.99 2,667,490.61 4,606,446.58 2,055,844.41 3,007,167.24 2,055,844.41 4,606,446.58 

Germany Cap 3,216,971.32 1,192,900.68 3,048,417.64 600,277.13 1,528,691.42 600,277.13 3,216,971.32 

 Tax 4,479,364.93 2,655,420.96 4,492,797.20 2,109,044.72 2,928,353.16 2,109,044.72 4,492,797.20 

Iran Cap 734,828.56 854,814.77 761,440.02 901,519.42 838,931.07 734,828.56 901,519.42 

 Tax 2,110,974.62 2,230,157.59 2,234,708.24 2,274,445.14 2,220,750.94 2,110,974.62 2,274,445.14 

Turkey Cap 2,972,014.13 3,256,774.91 3,032,929.71 3,368,441.83 3,219,102.84 2,972,014.13 3,368,441.83 

 Tax 4,351,316.03 4,654,099.79 4,412,490.90 4,780,003.95 4,602,880.36 4,351,316.03 4,780,003.95 

Min. (MJ) 

Cap 141,316.53 164,919.79 146,451.08 174,187.82 161,779.26   

Country AF AF AF AF AF   

Tax 1,504,757.85 1,533,788.62 1,533,954.88 1,512,552.55 1,540,156.67   

Country AF AF AF AF AF   

Max. (MJ) 

Cap 3,269,610.51 3,256,774.91 3,268,083.12 3,368,441.83 3,219,102.84   

Country CA TR CA TR TR   

Tax 4,606,147.99 4,654,099.79 4,606,446.58 4,780,003.95 4,602,880.36   

Country CA TR CA TR TR   
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7.6 Comparing the carbon cap and tax policies 

All sensitivity analysis results under carbon cap and tax policies are integrated in Table 7.1. 

Considering the results of Chapters 5 and this chapter, comparing the results of coal SCs under 

carbon cap and tax policies in developed and developing countries include Afghanistan, Canada, 

Germany, Iran and Turkey is possible. Generally, if we consider all inventory costs parameter the 

same, the total exergy (MJ) of coal SC under carbon tax policy is higher than carbon cap policy 

since there is an additional tax cost in the objective function of the model (see Chapter 5, Eq. 5.9). 

7.6.1 Analysis of each country-carbon cap and tax policies 

 

Fig. 7.1. Sustainability of coal SC in Afghanistan under the carbon cap and tax policies 

➢ Afghanistan (Fig. 7.1): in this developing country, the best sustainability performance of 

coal SC under both carbon cap and tax policies are with exergy Set A (30-60-10) since 

more exergy weight is assigned for Labor (60%) and less for Environment (10%). It created 

the minimum fuzzy total exergy of 141,316.53 and 1,504,757.85 (MJ) for coal SC by 

carbon cap and tax policies, respectively. Furthermore, exergy Set E (33-33-33) creates the 

worst sustainability performance in Afghanistan under both carbon cap and tax policies 

since the same weights (33%) are assigned to Capital, Labor, and Environment elements.  
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Fig. 7.2. Sustainability of coal SC in Canada under the carbon cap and tax policies 

 

 

 
Fig. 7.3. Sustainability of coal SC in Germany under the carbon cap and tax policies 

 

➢ Canada (Fig. 7.2): in this developed country, the top sustainability performance of coal SC 

under both carbon cap and tax policies are with exergy Set D (30-20-50) when Environment 

has 50% weight, going along with Capital (30%) and Labor (20%), respectively. It created 

the minimum fuzzy total exergy of 666,924.42 & 2,055,844.41 (MJ) for coal SC by carbon 

cap and tax policies, respectively. Moreover, under carbon cap policy, this is exergy Set A 

(30-60-10) which creates the worst sustainability performance whereas only 10% is 

assigned to Environmental element. Under carbon tax policy, exergy Set C (20-50-30) 
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makes the worst sustainability performance in Canada when more exergy weight is 

supposed for Labor (50%). 

➢ Germany (Fig. 7.3): Like Canada, exergy Set D (30-20-50) with 50% Environmental 

weight creates the best sustainability performance under both carbon cap and tax policies. 

It produced the minimum fuzzy total exergy of 600,277.13 & 2,109,044.72 (MJ) for coal 

SC in Germany by carbon cap and tax policies, respectively. Likewise, under carbon cap 

policy, this is exergy Set A (30-60-10) which creates the worst sustainability performance 

whereas only 10% is assigned to Environmental element. Under carbon tax policy, exergy 

Set C (20-50-30) with 50% Labor weight makes the lowest sustainability performance. 

 
Fig. 7.4. Sustainability of coal SC in Iran under the carbon cap and tax policies 

 

➢ Iran (Fig. 7.4): In this developing country, the highest sustainability performance of coal 

SC is by exergy Set A (30-60-10), as Labor has 60% while Environment has only 10%. It 

made the minimum fuzzy total exergy of 734,828.56 & 2,110,974.62 (MJ) under both 

carbon cap and tax policies. The lowest sustainability performance is with exergy Set D 

(30-20-50), when 50% weight is allocated to Environment, which created the maximum 

fuzzy total exergy (MJ) under both carbon policies. 
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Fig. 7.5. Sustainability of coal SC in Turkey under the carbon cap and tax policies 

 

➢ Turkey (Fig. 7.5): This developing country has the same sustainability conditions with 

Iran. the best sustainability performance is with exergy Set A (30-60-10), while more 

exergy percentage is given to Labor (60%). It established the minimum amount of fuzzy 

total exergy with 2,972,014.13 & 4,351,316.03 (MJ) by carbon cap and tax policies, 

respectively. Similarly, the maximum fuzzy total exergy (the lowest sustainability in MJ) 

is with exergy Set D (30-20-50) when more weight is provided to the Environment (50%). 

 

 
Fig. 7.6. The best exergy set for each country under the carbon cap and tax policies 
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Fig. 7.7. The worst exergy set for each country under the carbon cap and tax policies 

 

➢ Respecting Fig. 7.6, the best exergy set in developing countries like Afghanistan, Iran and 

Turkey is exergy Set A (30-60-10) under both carbon cap and tax policies, while more exergy 

percentage is given to Labor (60%). It creates the highest sustainability conditions with the 

lowest fuzzy total exergy in MJ. Moreover, in developed countries like Canada and Germany, 

the best exergy set is Set D (30-20-50) with 50% Environmental weight creates the best 

sustainability performance under both carbon cap and tax policies. 

➢ Among all presented developed and developing countries, the coal SC in Afghanistan has the 

lowest total exergy (the most sustainable conditions) with 141,316.53 & 1,504,757.85 (MJ) 

under carbon cap and tax policies, respectively (see Fig. 7.6). Germany, Canada, Iran, and 

Turkey are followed Afghanistan. 

➢ Respecting Fig. 7.7, the worst exergy set in developing countries like Iran and Turkey is Set D 

(30-20-50) with 50% Environmental weight. It creates the highest fuzzy total exergy (the lowest 

sustainability) under both carbon cap and tax policies. In developed countries such as Canada 

and Germany, the worst exergy set under the carbon cap policy is Set A (30-60-10) and under 

carbon tax policy is Set C (20-50-30) with 50% Labor weight. 

➢ Moreover, coal SC in Turkey has the highest fuzzy total exergy (the lowest sustainability 

conditions) among all presented developed and developing countries with 3,368,441.83 & 

4,780,003.95 (MJ) under carbon cap and tax policies, respectively (see Fig. 7.7). 

 

7.6.2 Analysis of each exergy set-carbon cap and tax policies 

Considering Table 7.1 for each exergy set, we have: 
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Fig. 7.8. The exergy Set A in developed and developing countries under the carbon cap and tax policies. 

 

 
Fig. 7.9. The exergy Set B in developed and developing countries under the carbon cap and tax policies. 

 

➢ Exergy Set A (30%-60%-10%): Considering this exergy set which has 60% weight for 

Labor (60%) and only 10% to Environment, creates the most sustainable performance (the 

lowest fuzzy total exergy in MJ) in Afghanistan under both carbon cap and tax policies. At 

the same time, exergy set A creates the worst sustainability performance with highest fuzzy 

total exergy (MJ) in Canada under both carbon policies (see Fig. 7.8).  

➢ Exergy Set B (50%-30%-20%): Regarding this exergy set which has more emphasis on 

Capital (50%), coal SC in Turkey has the lowest sustainability performance (the highest 

fuzzy total exergy in MJ) under both carbon policies. At the same time, exergy set B works 

well in Afghanistan (see Fig. 7.9). 
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Fig. 7.10. The exergy Set C in developed and developing countries under the carbon cap and tax policies. 

 

 
Fig. 7.11. The exergy Set D in developed and developing countries under the carbon cap and tax policies. 

➢ Exergy Set C (20%-50%-30%): In this exergy set is assigned more weight on Labor 

(50%) which creates the best sustainability conditions for coal SC in Afghanistan under 

both carbon policies. Simultaneously, it creates the lowest sustainability conditions in 

Canada (see Fig. 7.10). 

➢ Exergy Set D (30%-20%-50%): When more emphasis is put on Environment (50%), 

exergy set D creates the worst sustainability conditions in Turkey under both carbon cap 

and tax policies. All at once, it operates well in terms of sustainability in Afghanistan (see 

Fig. 7.11). 
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Fig. 7.12. The exergy Set E in developed and developing countries under the carbon cap and tax policies. 

 

➢ Exergy Set E (33%-33%-33%): In this set, all three exergy components have equal 33% 

weight which creates the highest fuzzy total exergy (the lowest sustainability) in Turkey 

and the lowest in Afghanistan under both carbon cap and tax policies (see Fig. 7.12). 

➢ Moreover, all exergy Sets (A-E) generated the minimum fuzzy total exergy for coal SC in 

Afghanistan among all presented countries. 

 

In this chapter, carbon cap policy is applied to the EOQ model in Chapter 5 to make a 

comparison between using the carbon tax and cap policies in terms of Joules in a coal SC among 

five developed and developing countries such as Afghanistan, Canada, Germany, Iran and Turkey. 

All sensitivity results are presented in Table 7.1 for coal SC in five countries. Moreover, analysis 

of each country (subsection 7.6.1) and analysis of each exergy set (subsection 7.6.2) for both carbon 

tax and cap policies are presented in this chapter. In the next chapter, carbon offset policy will be 

applied to the coal SC. 
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CHAPTER 8. ADDITIONAL RESULTS FOR CHAPTER 6 

 

Forewords 

Previous chapters considered carbon tax, trade, and cap policies for coal SC. Now, this chapter 

follows Chapter 6 while considers carbon offset policy to improve the sustainability of coal SC in 

both developed and developing countries by extended exergy accounting.  

 

Similar to the concept of Chapter 7, in this Chapter carbon offset policy is applied to the 

EPQ model of the coal SC in Chapter 6 (under carbon trade policy) and then the model is converted 

to a sustainable coal SC (in terms of Joules) by using EEA method. To make a comparison between 

the results of the EPQ model under carbon trade and offset policies, the same assumptions, and 

concepts (as Chapter 6) are used here. 

The following subsections will develop a non-exergy EPQ model of the coal SC for carbon 

offset policy. Then the model is converted to an exergy fuzzy model by applying the EEA method. 

 

8.1. A non-exergy Modeling of coal SC with carbon offset policy 

8.1.1. Objective function  

A carbon offset is a product or service that a company buys or invests in in order to cut its 

carbon emissions. Companies regularly pay third-party companies to absorb additional carbon 

emissions by planting trees or developing green environmental protection plans (Fisher et al., 

2018). In the carbon offset plan, companies are given a carbon agreement goal, and carbon further 

than the goal is offset by buying carbon credits (𝑒+, as a decision variable) from qualified emission 

decrease sources (Zhou and Wen 2019). The distinction between carbon offset and carbon trade is 

that companies need to buy the carbon credits with the carbon offset policy. In contrast, the surplus 

carbon credits cannot be sold (Li et al., 2020). Although the price of carbon is considered known 

and fixed in the literature, this study considers it fuzzy. If the company's carbon surpasses the given 

carbon limit, they must pay carbon offset cost for additional carbon credits (𝐶𝑜𝑓𝑓𝑠𝑒𝑡 × 𝑒+), which 

is an objective function for the model. Consequently, the carbon offset cost is  

𝑍1 = ∑𝐶𝑜𝑓𝑓𝑠𝑒𝑡 × (𝑒𝑗
+)

𝑚

𝑗

                                                                                              (8.1) 

The shipping costs accounted for about 40% of the entire delivered cost of coal in 2019 

(U.S. Energy Information Administration (EIA), 2019). Transportation costs are also impacted by 

road distance, accessibility of shipping mode and supply source alternatives, and the competition 

among coal and other goods for shipping. Therefore, the total transportation cost of coal includes 

constant (𝑡𝑓) and variable (𝑡𝑣) costs, along with the cost of loading/unloading coal (𝑡𝐿) in/from 

railcars and cost of equipment (𝑡𝑀) is 
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𝑍2 = ∑∑[(
𝐷𝑖𝑗

𝑄𝑖𝑗
. 𝑡𝑓) + (𝑄𝑖𝑗. 𝑡𝑣) + (

𝐷𝑖𝑗

𝑄𝑖𝑗
. (𝐿𝑜 + 𝑈𝑛). (𝑡𝐿 + 𝑡𝑀))]

𝑚

𝑗

𝑛

𝑖

                       (8.2) 

Where (𝐿𝑜, 𝑈𝑛) are the loading/unloading time of coal in/from a railcar. The vendor-

managed inventory (VMI) strategy is the regular inventory management in SC in which the 

upstream company completely controls the inventory at the downstream company’s location 

(Giovanni, 2021). In the VMI system, the determinations about scheduling and amount of buyer’s 

replenishment are decided by the supplier that is assumed to have comprehensive information 

concerning the customers’ requirements, to prevent stockouts (Çomez-Dolgan et al., 2021, Maio 

and Lagana, 2020). Therefore, it is expected that the supplier gives the ordering, shipping, and 

keeping costs rather than the buyer as a part of the stated contract; the buyer gives no cost (Mateen 

et al., 2014; Yao et al., 2007; Razmi et al., 2010; Pasandideh et al., 2011; Roozbeh Nia et al., 2014, 

2015). Furthermore, in an EPQ model with defective quality items and stockout as a backorder that 

utilizes the VMI strategy, the coal SC’s total inventory cost is established by calculating the 

ordering/setup (𝑇𝐶𝑂𝑖𝑗
), keeping (𝑇𝐶𝐻𝑖𝑗

), stockout (𝑇𝐶𝑆𝑖𝑗
), and purchasing (𝑇𝐶𝑃𝑖𝑗

) costs as 

(Pasandideh et al., 2010, 2011)  

𝑍3 = 𝑇𝐶𝑂𝑖𝑗
+ 𝑇𝐶𝐻𝑖𝑗

+ 𝑇𝐶𝑆𝑖𝑗
+ 𝑇𝐶𝑃𝑖𝑗

                                                 (8.3) 

Where,  

𝑇𝐶𝑂𝑖𝑗
= ∑∑

𝐷𝑖𝑗

𝑄𝑖𝑗
(𝐾𝑖,𝑠 + 𝐾𝑖𝑗,𝑏)

𝑚

𝑗

𝑛

𝑖

                                                                                      (8.4) 

𝑇𝐶𝐻𝑖𝑗
= ∑∑

ℎ𝑖𝑗

2𝑄𝑖𝑗 (1 −
𝐷𝑖𝑗

𝑃𝑖
)

(𝑄𝑖𝑗(1 − 𝛿𝑚) (1 −
𝐷𝑖𝑗

𝑃𝑖
) − 𝑏𝑖𝑗)

2𝑚

𝑗

𝑛

𝑖

                              (8.5) 

𝑇𝐶𝑆𝑖𝑗
= ∑∑(

𝑠1. 𝑏𝑖𝑗
2

2𝑄𝑖𝑗 (1 −
𝐷𝑖𝑗

𝑃𝑖
)

+
𝑠2. 𝑏𝑖𝑗 . 𝐷𝑖𝑗

𝑄𝑖𝑗 (1 −
𝐷𝑖𝑗

𝑃𝑖
)

)

𝑚

𝑗

𝑛

𝑖

                                                      (8.6) 

𝑇𝐶𝑃𝑖𝑗
= ∑∑𝐶𝑖 . 𝐷𝑖𝑗

𝑚

𝑗

𝑛

𝑖

                                                                                                           (8.7) 

Where (𝐷𝑖𝑗 , 𝑄𝑖𝑗, ℎ𝑖𝑗) are the demand rate, order quantity and holding cost per unit of coal i 

for buyer j, respectively. As mentioned previously, the existing budget of each buyer could be 

deposited in a bank account or invested in other projects to get profits. Now, we take into account 

a real-world balanced limitation where the total amount of the existing budget for each buyer is 

restricted (see Eq. 8.8). To the best of the authors' knowledge, this type of objective function and 

limitation, have not been studied yet. On the one hand, each buyer's under-achievement budget (𝑥𝑗
+ 

as a decision variable) is regarded as the benefit. It means this amount of money (𝑥𝑗
+) may be 

invested in a new project with an actual interest rate (𝑖𝑛𝑡+) and make a profit (as a 𝑖𝑛𝑡+ × 𝑥𝑗
+) for 

the buyer. On the other hand, the over-achievement budget (𝑥𝑗
− as a decision variable) is regarded 
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as the cost. It means the buyer must get a loan with the amount of (𝑥𝑗
−) and an interest rate of 

(𝑖𝑛𝑡−). After All, the buyer should pay this loan as well as the interest rate (𝑥𝑗
− + [𝑖𝑛𝑡− × 𝑥𝑗

−]) at 

the end of the period. Therefore, the total cost/benefit associated with the budget of all buyers is  

𝑍4 = ∑[𝑥𝑗
− + (𝑖𝑛𝑡− × 𝑥𝑗

−) − (𝑖𝑛𝑡+ × 𝑥𝑗
+)]

𝑚

𝑗

                                                                 (8.8) 

Wherever in Eq. (8.8), the first two components are linked to the cost functions, and the 

last part with a negative symbol is related to the benefit obtained. Moreover, under and over-

achievement budgets (𝑥𝑗
+, 𝑥𝑗

−) are not known parameters and are considered decision variables. 

Hence, the non-exergy total cost of coal SC under the carbon offset policy is the summation of 

𝑇𝐶𝑜𝑓𝑓𝑠𝑒𝑡 = 𝑍1 + 𝑍2 + 𝑍3 + 𝑍4.  

 

8.1.2. The constraints  

The constraints of this model are as follows: 

∑ ∑ 𝐶0
𝑚
𝑗 . 𝐷𝑖𝑗

𝑛
𝑖

∑ ∑
𝐶0. (𝑄𝑖𝑗(1 − 𝛿𝑚) (1 −

𝐷𝑖𝑗

𝑃𝑖
) − 𝑏𝑖𝑗)

2

2𝑄𝑖𝑗 (1 −
𝐷𝑖𝑗

𝑃𝑖
)

𝑚
𝑗

𝑛
𝑖  

≥ 𝐼𝑇𝑅 𝑗                                                      (8.9) 

∑[(𝑄𝑖𝑗. 𝜃𝑚) + (
𝐷𝑖𝑗

𝑄𝑖𝑗
. 𝐿𝑗 . 𝜃𝑡) + (𝑄𝑖𝑗. 𝐷𝑖𝑗 . 𝜃𝑘)] ≤ 𝐸𝑗 + (𝑒𝑗

+)

𝑛

𝑖

                                    (8.10) 

∑∑[(𝑄𝑖𝑗. 𝛿𝑚) + (𝑄𝑖𝑗. (1 − 𝛿𝑚). 𝛿𝑡) + (𝑄𝑖𝑗(1 − 𝛿𝑚). (1 − 𝛿𝑡). 𝛿𝑘)] ≤ 𝐹

𝑚

𝑗

𝑛

𝑖

           (8.11) 

∑[𝑄𝑖𝑗(1 − 𝛿𝑚) (1 −
𝐷𝑖𝑗

𝑃𝑖
) − 𝑏𝑖𝑗] ≤ 𝑊𝑗

𝑛

𝑖

                                                                         (8.12) 

∑[𝐶𝑖. 𝑄𝑖𝑗(1 − 𝛿𝑚)] + (𝑥𝑗
+ − 𝑥𝑗

−) = 𝑋𝑗

𝑛

𝑖

                                                                          (8.13) 

∑∑
𝐷𝑖𝑗

𝑄𝑖𝑗
≤ 𝑁𝑀𝑎𝑥

𝑚

𝑗

𝑛

𝑖

                                                                                                               (8.14) 

𝑄𝑖𝑗 ≤ 𝑄𝑀𝑎𝑥                                                                                                                             (8.15) 

𝑏𝑖𝑗 ≤ 𝑄𝑖𝑗                                                                                                                                  (8.16) 

Eq. (8.9) is an inventory turnover ratio (𝐼𝑇𝑅 𝑗) limitation. To the best of the authors' 

knowledge, this limitation has not been presented in SC literature before. The inventory turnover 
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ratio is applied as a comparative measure of inventory performance between competitors and is 

crucial to control inventory (Beklari et al., 2018). This proportion is an economic index that merges 

the cost of goods sold with average inventories at cost (Kwak 2019). The inventory turnover ratio 

shows how often inventories are turned over a period. For Eq. (8.10), as mentioned before, with 

the policy of carbon offset, each buyer inside coal SC can only produce within an offered cap (𝐸𝑗) 

of emission. If this actual emission amount goes above the emission limit, the company must 

purchase carbon credits (𝑒+) (Li et al., 2020). Hence, with the emission offset policy, a new 

emission restriction is included in the model where Eq. (8.10) corresponds to the total generated 

carbon in mining, shipping, and steelmaking processes. In Eq. (8.10), (𝜃𝑚, 𝜃𝑡 , 𝜃𝑘) are emissions 

factors in mining, transportation, and steel manufacturer processes, respectively. Additionally, 𝐿𝑗 

is the distance between the coal vendor and buyer j. Eq. (8.11) aims to make the model green since 

it considers a limitation (𝐹) on total defective products (waste) disposal to the environment by all 

processes in coal SC. In this equation, (𝛿𝑚, 𝛿𝑡, 𝛿𝑘) are the proportions of imperfect quality items 

in mining, transportation, and steel manufacturer processes, respectively. Furthermore, Eq. (8.12) 

expresses that the warehouse space of each buyer (𝑊𝑗) is restricted, where (𝑏𝑖𝑗) is the backorder 

amount of coal i for buyer j in a cycle (a decision variable). 

As shown before, a real-world contractual agreement grants balanced constraints (Eq. 8.13) 

for the existing budget of each buyer (𝑋𝑗). To the best of the authors' knowledge, this type of 

limitation has not been given in the SC literature in the past. Where Eq. (8.13) indicates that, on 

the one hand, if the total paid-out money of a buyer is below the existing budget 

(∑ 𝐶𝑖. 𝑄𝑖𝑗(1 − 𝛿𝑚) < 𝑋𝑗
𝑛
𝑖 ), the buyer saves an amount of (𝑥𝑗

+ > 0). It is possible the company 

invests this amount in a new project and makes a profit (see Eq. 6.8). On the other hand, if the total 

paid out money of a buyer is more than the existing budget (∑ 𝐶𝑖. 𝑄𝑖𝑗(1 − 𝛿𝑚) > 𝑋𝑗
𝑛
𝑖 ), so the buyer 

demands to get a loan with the amount of (𝑥𝑗
− > 0). The total cost/benefit linked to this balanced 

limitation is expressed in Eq. (8.8). In addition, Eq. (8.14) is related to the limitation on the total 

number of orders (𝑁𝑀𝑎𝑥) by all buyers. Additionally, there is a constraint for the shipping system 

(railway) while the Max. of shipping capacity (𝑄𝑀𝑎𝑥) for each order quantity is stated in Eq. (8.15). 

Finally, based on Eq. (8.16), the quantity of backorder of product i for
thj buyer (𝑏𝑖𝑗) in a cycle 

should be fewer than or equal to its order amount (𝑄𝑖𝑗). It should be mentioned that intending to 

simplify the mathematical model; we ignore the cost of purchasing (Eq. 8.7) in our model. 

Regarding Eqs. (8.1)-(8.16) and under carbon offset policy, the non-exergy crisp model of “multi-

product” balanced limitations single-vendor multi-buyer (SVMB) EPQ can be easily achieved as 

𝑇𝐶𝑜𝑓𝑓𝑠𝑒𝑡 = ∑∑[
𝐷𝑖𝑗

𝑄𝑖𝑗
(𝐾𝑖,𝑠 + 𝐾𝑖𝑗,𝑏) +

ℎ𝑖𝑗

2𝑄𝑖𝑗 (1 −
𝐷𝑖𝑗

𝑃𝑖
)

(𝑄𝑖𝑗(1 − 𝛿𝑚) (1 −
𝐷𝑖𝑗

𝑃𝑖
) − 𝑏𝑖𝑗)

2𝑚

𝑗

𝑛

𝑖

+ (
𝑠1. 𝑏𝑖𝑗

2

2𝑄𝑖𝑗 (1 −
𝐷𝑖𝑗

𝑃𝑖
)

+
𝑠2. 𝑏𝑖𝑗 . 𝐷𝑖𝑗

𝑄𝑖𝑗 (1 −
𝐷𝑖𝑗

𝑃𝑖
)

)] + ∑𝐶𝑜𝑓𝑓𝑠𝑒𝑡 × (𝑒𝑗
+)

𝑚

𝑗
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              +∑[𝑥𝑗
− + (𝑖𝑛𝑡− × 𝑥𝑗

−) − (𝑖𝑛𝑡+ × 𝑥𝑗
+)]

𝑚

𝑗

+ ∑∑[(
𝐷𝑖𝑗

𝑄𝑖𝑗
. 𝑡𝑓) + (𝑄𝑖𝑗. 𝑡𝑣) + (

𝐷𝑖𝑗

𝑄𝑖𝑗
. (𝐿𝑜 + 𝑈𝑛). (𝑡𝐿 + 𝑡𝑀))]

𝑚

𝑗

𝑛

𝑖

 

𝑠. 𝑡. 

∑ ∑ 𝐶0
𝑚
𝑗 . 𝐷𝑖𝑗

𝑛
𝑖

∑ ∑
𝐶0. (𝑄𝑖𝑗(1 − 𝛿𝑚) (1 −

𝐷𝑖𝑗

𝑃𝑖
) − 𝑏𝑖𝑗)

2

2𝑄𝑖𝑗 (1 −
𝐷𝑖𝑗

𝑃𝑖
)

𝑚
𝑗

𝑛
𝑖  

≥ 𝐼𝑇𝑅𝑗 

∑[(𝑄𝑖𝑗. 𝜃𝑚) + (
𝐷𝑖𝑗

𝑄𝑖𝑗
. 𝐿𝑗 . 𝜃𝑡) + (𝑄𝑖𝑗. 𝐷𝑖𝑗 . 𝜃𝑘)] ≤ 𝐸𝑗 + (𝑒𝑗

+)

𝑛

𝑖

 

∑∑[(𝑄𝑖𝑗. 𝛿𝑚) + (𝑄𝑖𝑗. (1 − 𝛿𝑚). 𝛿𝑡) + (𝑄𝑖𝑗(1 − 𝛿𝑚). (1 − 𝛿𝑡). 𝛿𝑘)] ≤ 𝐹

𝑚

𝑗

𝑛

𝑖

 

∑(𝑄𝑖𝑗(1 − 𝛿𝑚) (1 −
𝐷𝑖𝑗

𝑃𝑖
) − 𝑏𝑖𝑗) ≤ 𝑊𝑗

𝑛

𝑖

 

∑𝐶𝑖. 𝑄𝑖𝑗(1 − 𝛿𝑚) + (𝑥𝑗
+ − 𝑥𝑗

−) = 𝑋𝑗

𝑛

𝑖

 

∑∑
𝐷𝑖𝑗

𝑄𝑖𝑗
≤ 𝑁𝑀𝑎𝑥

𝑚

𝑗

𝑛

𝑖

 

𝑄𝑖𝑗 ≤ 𝑄𝑀𝑎𝑥 

𝑏𝑖𝑗 ≤ 𝑄𝑖𝑗 

𝑄𝑖𝑗 > 0, 𝑖𝑛𝑡𝑒𝑔𝑒𝑟, 𝑖 = 1,2, … , 𝑛 

𝑏𝑖𝑗 ≥ 0, 𝑖𝑛𝑡𝑒𝑔𝑒𝑟, 𝑗 = 1,2, … ,𝑚 

𝑥𝑗
+, 𝑥𝑗

−, 𝑒𝑗
+, 𝑒𝑗

− ≥ 0,                                                                                                                 (8.17)  

In this non-exergy sustainable model, we are looking to optimize four objectives 

simultaneously: (a) the total inventory cost, (b) the entire cost associated with the additional 

required budget of all buyers, (c) the total coal transportation cost among SC members, (d) and the 

cost of produced carbon emission by all processes. Consequently, we have five decision variables, 

for example, the amount of required loan/investment for each buyer (𝑥𝑗
−, 𝑥𝑗

+), the carbon credits 

for each buyer (𝑒𝑗
+), the order quantity of each item for each buyer (𝑄𝑖𝑗), and the amount of 
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backorder of each item for each buyer (𝑏𝑖𝑗). The following subsection considers uncertainty to the 

non-exergy model in Eq. (8.17). 

 

8.2. The inventory model in fuzzy environment 

This subsection is the same as fuzzy environmental issues in chapter 6. 

 

8.3. Exergy modeling of fuzzy optimization of SVMB coal SC under VMI 

This subsection is the same as Exergy Modeling in Chapter 6. 

 

8.3.1 A fuzzy exergy Modeling of coal SC with carbon offset policy 

As a result, by employing the exergy formulas to the objective functions and limitations of 

model in Eq. (8.17), it is converted to fuzzy exergy models under carbon offset as follows:  

𝑇𝐶(𝑥)𝑜𝑓𝑓𝑠𝑒𝑡 = ∑∑

[
 
 
 
 
𝐷𝑖�̃�

𝑄𝑖𝑗
(𝐾(𝑥)𝑖,𝑠 + 𝐾(𝑥)𝑖𝑗,𝑏) +

ℎ(𝑥)𝑖𝑗

2𝑄𝑖𝑗 (1 −
𝐷𝑖�̃�

𝑃𝑖
)

(𝑄𝑖𝑗(1 − 𝛿𝑚) (1 −
𝐷𝑖�̃�

𝑃𝑖
) − 𝑏𝑖𝑗)

2𝑚

𝑗

𝑛

𝑖

+

(

 
 𝑠(𝑥)1. 𝑏𝑖𝑗

2

2𝑄𝑖𝑗 (1 −
𝐷𝑖�̃�

𝑃𝑖
)

+
𝑠(𝑥)2. 𝑏𝑖𝑗 . 𝐷𝑖�̃�

𝑄𝑖𝑗 (1 −
𝐷𝑖�̃�

𝑃𝑖
)
)

 
 

]
 
 
 
 

+ ∑𝐶(𝑥)𝑡𝑟𝑎𝑑𝑒
̃ × (𝑒𝑗

+)

𝑚

𝑗

 

                           +∑[𝑥(𝑥)𝑗
− + (𝑖𝑛𝑡− × 𝑥(𝑥)𝑗

− ) − (𝑖𝑛𝑡+ × 𝑥(𝑥)𝑗
+ )]

𝑚

𝑗

+ ∑∑[(
𝐷𝑖�̃�

𝑄𝑖𝑗
. 𝑡(𝑥)𝑓) + (𝑄𝑖𝑗. 𝑡(𝑥)𝑣) + (

𝐷𝑖�̃�

𝑄𝑖𝑗
. (𝐿𝑜 + 𝑈𝑛). (𝑡(𝑥)𝐿 + 𝑡(𝑥)𝑀))]

𝑚

𝑗

𝑛

𝑖

 

𝑠. 𝑡. 

∑ ∑ 𝐶(𝑥)0
𝑚
𝑗 . 𝐷𝑖�̃�

𝑛
𝑖

∑ ∑

𝐶(𝑥)0. (𝑄𝑖𝑗(1 − 𝛿𝑚) (1 −
𝐷𝑖�̃�

𝑃𝑖
) − 𝑏𝑖𝑗)

2

2𝑄𝑖𝑗 (1 −
𝐷𝑖�̃�

𝑃𝑖
)

𝑚
𝑗

𝑛
𝑖  

≥ 𝐼𝑇𝑅𝑗 

∑[(𝑄𝑖𝑗. 𝜃𝑚) + (
𝐷𝑖�̃�

𝑄𝑖𝑗
. 𝐿𝑗 . 𝜃𝑡) + (𝑄𝑖𝑗. 𝐷𝑖�̃�. 𝜃𝑘)] ≤ 𝐸𝑗 + (𝑒𝑗

+)

𝑛

𝑖
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∑∑[(𝑄𝑖𝑗. 𝛿𝑚) + (𝑄𝑖𝑗. (1 − 𝛿𝑚). 𝛿𝑡) + (𝑄𝑖𝑗(1 − 𝛿𝑚). (1 − 𝛿𝑡). 𝛿𝑘)] ≤ 𝐹

𝑚

𝑗

𝑛

𝑖

 

∑(𝑄𝑖𝑗(1 − 𝛿𝑚) (1 −
𝐷𝑖�̃�

𝑃𝑖
) − 𝑏𝑖𝑗) ≤ 𝑊𝑗

𝑛

𝑖

 

∑(𝐶(𝑥)�̃�. 𝑄𝑖𝑗(1 − 𝛿𝑚)) + (𝑥(𝑥)𝑗
+ − 𝑥(𝑥)𝑗

− ) = 𝑋(𝑥)𝑗

𝑛

𝑖

 

∑∑
𝐷𝑖�̃�

𝑄𝑖𝑗
≤ 𝑁𝑀𝑎𝑥

𝑚

𝑗

𝑛

𝑖

 

𝑄𝑖𝑗 ≤ 𝑄𝑀𝑎𝑥 

𝑏𝑖𝑗 ≤ 𝑄𝑖𝑗 

𝑄𝑖𝑗 > 0, 𝑖𝑛𝑡𝑒𝑔𝑒𝑟, 𝑖 = 1,2, … , 𝑛 

𝑏𝑖𝑗 ≥ 0, 𝑖𝑛𝑡𝑒𝑔𝑒𝑟, 𝑗 = 1,2, … ,𝑚 

𝑥(𝑥)𝑗
+ , 𝑥(𝑥)𝑗

− , 𝑒𝑗
+, 𝑒𝑗

− ≥ 0,                                                                                                          (8.18)  

 

8.4. Solution method  

This section is the same as the chapter 6 with the same methods and metaheuristic 

algorithms. 

8.5. Numerical examples 

This section is the same as the chapter 6 with the same real case study in Iran and all test 

problems. 

8.5.1 Solving phases and related results (carbon offset) 

To avoid complexity of the chapter, the results of each phase of solving procedure for all 

test problems include Tables and Figures are presented in Appendix 2. 

8.6 Comparing the carbon trade and offset policies 

Considering the results of Chapters 6 and this section, comparing the results of coal SCs 

under carbon trade and offset policies in some developed and developing countries include 

Australia, China, India, Iran, Japan, Poland, the USA and Zimbabwe is possible. As mentioned in 

Chapter 6, these are the countries with high consumption of coal in the world. Table 8.1 presented 

all sensitivity analysis results under carbon trade and offset policies. Generally, if we consider all 

inventory costs parameter the same, there is a possibility that total exergy (MJ) of coal SC under 

carbon trade policy be lower than carbon offset policy since under carbon trade, the company could 

sell their carbon credits (𝑍1 = ∑ 𝐶𝑡𝑟𝑎𝑑𝑒 × (𝑒𝑗
+ − 𝑒𝑗

−)𝑚
𝑗 ) and makes profit (see chapter 6, Eq. 6.1). 
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Table 8.1. Sensitivity analysis of exergy components under carbon trade and offset policies (Fuzzy total exergy in MJ) 

Country Policy 
Set A(30-60-

10) 

Set B(60-20-

20) 

Set C(20-50-

30) 

Set D(20-40-

40) 

Set E(20-30-

50) 

Set F(30-10-

60) 

Set G(33-

33-33) 
Minimum Maximum 

Australi

a 
Trade 

37,386,644.5

8 

27,362,603.2

7 

36,172,081.0

5 

30,457,341.8

9 

35,641,776.3

3 

24,251,604.

43 

33,163,723.3

1 

24,251,604

.43 

37,386,644.

58 

 Offset 
58,194,888.9

8 

37,972,201.9

0 

29,582,062.7

7 

50,525,851.3

6 

37,058,048.2

8 

25,381,554.

37 

36,154,500.2

0 

25,381,554

.37 

58,194,888.

98 

China Trade 
121,884,457.

74 

109,229,963.

03 

83,731,242.8

2 

94,201,685.5

2 

111,411,481.

62 

128,734,240

.79 

121,351,102.

11 

83,731,242

.82 

128,734,240

.79 

 Offset 
178,509,576.

98 

166,472,938.

65 

96,953,009.6

8 

156,133,267.

82 

161,309,694.

66 

153,294,716

.80 

136,870,365.

31 

96,953,009

.68 

178,509,576

.98 

India Trade 
32,520,676.9

0 

56,664,303.0

8 

24,826,136.1

3 

32,528,308.0

4 

43,026,717.0

9 

29,354,458.

87 

31,623,790.1

1 

24,826,136

.13 

56,664,303.

08 

 Offset 
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8.6.1 Analysis of each country-carbon trade and offset policies 

 
Fig. 8.1. Sustainability of coal SC in Australia under the carbon trade and offset policies 

➢ Australia (Fig. 8.1): This developed country is one of the key players in the global coal 

trade (5.9%). The best sustainability performance of coal SC under both carbon trade and 

offset policies are with exergy Set F (30-10-60) since more exergy weight is assigned for 

Environment (60%) and less for Labor (10%). It created the minimum fuzzy total exergy 

of 24,251,604.43 & 25,381,554.37 (MJ) for coal SC by carbon trade and offset policies, 

respectively. Furthermore, exergy Set A (30-60-10) creates the worst sustainability 

performance in Australia under both carbon trade and offset policies since more exergy 

weight is assigned for Labor (60%) and less for Environment (10%).  

 
Fig. 8.2. Sustainability of coal SC in China under the carbon trade and offset policies 
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Fig. 8.3. Sustainability of coal SC in India under the carbon trade and offset policies 

 

➢ China (Fig. 8.2): In the biggest coal consumer in the world (54%), the maximum 

sustainability performance of coal SC under both carbon trade and offset policies are with 

exergy Set C (20-50-30) when Labor has 50% weight, going along with Capital (20%) and 

Environment (30%), respectively. It created the minimum fuzzy total exergy of 

83,731,242.82 & 96,953,009.68 (MJ) for coal SC by carbon trade and offset policies, 

respectively. Moreover, under carbon trade policy, this is exergy Set F (30-10-60) which 

creates the worst sustainability performance whereas only 10% is assigned to Labor element 

and 60% for Environment. Under carbon offset policy, exergy Set A (30-60-10) makes the 

worst sustainability performance in China when more exergy weight is supposed for Labor 

(60%) and only 10% for Environment. 

➢ India (Fig. 8.3): In the second biggest coal consumer in the world (18%), like China, exergy 

Set C (20-50-30) with 50% Labor weight and 20% for Capital creates the best sustainability 

performance under both carbon trade and offset policies. It produced the minimum fuzzy 

total exergy of 24,826,136.13 & 25,466,158.69 (MJ) for coal SC in India by carbon trade 

and offset policies, respectively. Likewise, under both carbon trade and offset policies, this 

is exergy Set B (60-20-20) which creates the worst sustainability performance whereas 60% 

is assigned to Capital element. 
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Fig. 8.4. Sustainability of coal SC in Iran under the trade and offset policies 

 

➢ Iran (Fig. 8.4): In this developing country, the highest sustainability performance of coal 

SC is by exergy Set A (30-60-10), as Labor has 60% while Environment has only 10%. It 

made the minimum fuzzy total exergy of 31,537,292.44 & 41,699,351.48 (MJ) under both 

carbon trade and offset policies. Like India, the lowest sustainability performance is with 

exergy Set B (60-20-20), when 60% weight is allocated to Capital, which created the 

maximum fuzzy total exergy (MJ) under both carbon policies. 

 

 

Fig. 8.5. Sustainability of coal SC in Japan under the carbon trade and offset policies 
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➢ Japan (Fig. 8.5): This developed country has the same sustainability conditions with 

Australia. The best sustainability performance under both carbon policies is with exergy 

Set F (30-10-60), while more exergy percentage is given to Environment (60%). It 

established the minimum amount of fuzzy total exergy with 22,873,547.02 & 

27,876,026.26 (MJ) by carbon trade and offset policies, respectively. Moreover, the 

maximum fuzzy total exergy (the lowest sustainability in MJ) under carbon trade policy is 

with exergy Set B (60-20-20) when more weight is provided to the Capital (60%). Under 

carbon offset policy, this is exergy Set A (30-60-10) which creates the lowest sustainable 

condition when Labor and Environment elements have 60% and 10%, respectively. 

 

 
Fig. 8.6. Sustainability of coal SC in Poland under the carbon trade and offset policies 

 

 
Fig. 8.7. Sustainability of coal SC in the USA under the carbon trade and offset policies 
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➢ Poland (Fig. 8.6): Poland ranks 9th in the world in coal consumption to generate 70% of 

electricity, by far the highest figure in Europe. Like India and China, the greatest 

sustainability performance of coal SC under both carbon trade and offset policies in Poland 

are with exergy Set C (20-50-30) when Labor has 50% weight, going along with Capital 

(20%) and Environment (30%), respectively. It created the lowest fuzzy total exergy of 

86,131,627.76 & 95,760,363.89 (MJ) for coal SC by carbon trade and offset policies, 

respectively. Moreover, under carbon trade policy, this is exergy Set F (30-10-60) which 

generates the unhealthiest sustainability performance whereas only 10% is assigned to 

Labor element and 60% for Environment. Under carbon offset policy, exergy Set B (60-20-

20) makes the lowest sustainability performance in Poland when more exergy weight is 

supposed for Capital (60%) and the same (20%) for Labor and Environment aspects. 

➢ The USA (Fig. 8.7): This developed country is the third biggest coal consumers (6%) in 

the world. Like Australia and Japan, the highest sustainability performance of coal SC 

under both carbon trade and offset policies are with exergy Set F (30-10-60) since more 

exergy weight is assigned for Environment (60%) and less for Labor (10%). It created the 

lowest fuzzy total exergy of 19,675,609.14 & 21,032,559.94 (MJ) for coal SC by carbon 

trade and offset policies, respectively. Furthermore, exergy Set A (30-60-10) creates the 

worst sustainability performance in the USA under carbon trade policy since more exergy 

weight is assigned for Labor (60%) and less for Environment (10%). Under carbon offset, 

this is exergy Set D (20-40-40) which generates the lowest sustainability condition since 

only 20% is assigned to Capital and the same weights (40%) for both Labor and 

Environmental aspects. 

 

 
Fig. 8.8. Sustainability of coal SC in Zimbabwe under the carbon trade and offset policies 

➢ Zimbabwe (Fig. 8.8): This African developing country has the same sustainability 

conditions with Australia, Japan, and the USA. The superior sustainability performance 

under both carbon policies is with exergy Set F (30-10-60), while more exergy percentage 

is given to Environment (60%) and only 10% for Labor. It established the least amount of 

fuzzy total exergy with 22,873,547.02 & 24,119,890.07 (MJ) by carbon trade and offset 
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policies, respectively. Moreover, like Australia, the largest fuzzy total exergy (the lowest 

possible sustainability in MJ) under both carbon trade and offset policies in Zimbabwe is 

with exergy Set A (30-60-10) when more weight is provided to the Labor (60%) and only 

10% for Environmental aspect. 

 

 
Fig. 8.9. The best exergy set for each country under the carbon trade and offset policies 

➢ Respecting Fig. 8.9, the best exergy set (with the highest sustainability performance in MJ) 

in developing countries like Iran is exergy Set A (30-60-10) under both carbon trade and 

offset policies, while more exergy percentage is given to Labor (60%) and only 10% to 

Environment. Moreover, it is observed that Zimbabwe as a developing country in Africa 

has the same sustainability condition for coal SC with the developed countries like 

Australia, Japan, and the USA. The best exergy set for mentioned countries is Set F (30-

10-60) when Environmental aspect has 60% weight and Labor only 10%. It creates the best 

sustainability performance (the lowest fuzzy total exergy in MJ) under both carbon trade 

and offset policies. In the two most populated countries like China and India, this is exergy 

Set C (20-50-30) which generates the best sustainable performance for coal SC since 50% 

weight is assigned to Labor. Coal SC in Poland (in the Europe) has the same condition with 

China and India. 

➢ Among all presented developed and developing countries, the coal SC in the USA has the 

lowest total exergy (the most sustainable conditions) with 22,604,564.59 & 23,177,067.92 

(MJ) under carbon trade and offset policies, respectively (see Fig. 8.9). Zimbabwe, Japan, 

Australia, India, China, and Poland are followed the USA. 

 -

 20,000,000

 40,000,000

 60,000,000

 80,000,000

 100,000,000

 120,000,000

FU
ZZ

Y 
TO

TA
L 

EX
ER

G
Y 

(M
J)

The best exergy set in each country (Trade vs. Offset)

 Carbon Trade policy  Carbon Offset policy

F C
A

C

FF

C

FC

A

C
C

F FF F



206 
 

 
Fig. 8.10. The worst exergy set for each country under the carbon trade and offset policies 

➢ Respecting Fig. 8.10, under carbon trade policy the worst exergy set (the lowest sustainability 

with the highest fuzzy total exergy in MJ) in Australia, the USA and Zimbabwe is exergy Set 

A (30-60-10) with 60% Labor weight and only 10% for Environmental aspect. In China and 

Poland, exergy Set F (30-10-60) with 60% Environmental weight and only 10% for Labor 

aspect is the worst exergy set under the carbon trade policy. Moreover, in India and Iran exergy 

Set B (60-20-20) creates the lowest sustainable performance when 60% weight is assigned to 

Capital and the same weights (20%) for Labor and Environmental aspects. 

➢ Concerning Fig. 8.10, under carbon offset policy the worst exergy set (the minimal 

sustainability with the greatest fuzzy total exergy in MJ) in Australia, China, Japan and 

Zimbabwe is exergy Set A (30-60-10) with 60% Labor weight and only 10% for Environmental 

aspect. In India, Iran and Poland, exergy Set B (60-20-20) with 60% Capital weight and the 

same weights (20%) for Labor and Environmental aspects is the worst exergy set under the 

carbon offset policy. Moreover, in the USA exergy Set D (20-40-40) creates the lowest 

sustainable performance when only 20% weight is assigned to Capital and the same weights 

(40%) for Labor and Environmental aspects. 

➢ Moreover, coal SC in China has the highest fuzzy total exergy (the lowest sustainability 

conditions) among all presented developed and developing countries with 121,884,457.74 & 

178,509,576.98 (MJ) under both carbon trade and offset policies, respectively (see Fig. 8.10). 
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8.6.2 Analysis of each exergy set-carbon trade and offset policies 

Considering Table 8.1 for each exergy set, we have: 

 
Fig. 8.11. The exergy Set A in developed and developing countries under the carbon trade and offset policies. 

 

 
Fig. 8.12. The exergy Set B in developed and developing countries under the carbon trade and offset policies. 

➢ Exergy Set A (30%-60%-10%): Considering this exergy set which has 60% weight for 

Labor (60%) and only 10% to Environment, creates the most sustainable performance (the 

lowest fuzzy total exergy in MJ) among all the countries in Iran (31,537,292.44) under 

carbon trade and in Zimbabwe (36,156,127.01) under carbon offset policy. At the same 

time, exergy set A creates the worst sustainability performance with the highest fuzzy total 

exergy (MJ) in China under both carbon policies (see Fig. 8.11).  
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➢ Exergy Set B (60%-20%-20%): Regarding this exergy set which has more emphasis on 

Capital (60%), coal SC in the USA has the lowest sustainability performance (the highest 

fuzzy total exergy in MJ) under both carbon policies. At the same time, exergy set B works 

unhealthy in terms of MJ in Poland (110,155,055.08) and China (166,472,938.65) under 

carbon trade and offset policies, respectively (see Fig. 8.12). 

 
Fig. 8.13. The exergy Set C in developed and developing countries under the carbon trade and offset policies. 

 

➢ Exergy Set C (20%-50%-30%): In this exergy set is assigned more weight on Labor (50%) 

which creates the best sustainability conditions among all the countries for coal SC in India 

under both carbon policies. Simultaneously, it creates the lowest sustainability conditions (in 

MJ) in Poland (86,131,627.76) and China (96,953,009.68) under carbon trade and offset 

policies, respectively (see Fig. 8.13). 

 
Fig. 8.14. The exergy Set D in developed and developing countries under the carbon trade and offset policies. 
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Fig. 8.15. The exergy Set E in developed and developing countries under the carbon trade and offset policies. 

➢ Exergy Set D (20%-40%-40%): When less emphasis is put on Capital (20%) and the same 

weights (40%) for Labor and Environmental aspects, exergy set D creates the worst 

sustainability conditions among all the countries in China under both carbon trade and offset 

policies. All at once, it operates well in terms of sustainability (the lowest fuzzy total exergy) 

in Zimbabwe under both carbon policies (see Fig. 8.14). 

➢ Exergy Set E (20%-30%-50%): In this set, 50% weight is assigned to Environmental aspect 

and only 20% for Capital. It creates the highest fuzzy total exergy (the lowest sustainability) in 

China and the lowest (the highest sustainability) in the USA under both carbon trade and offset 

policies (see Fig. 8.15). 

 

 
Fig. 8.16. The exergy Set F in developed and developing countries under the carbon trade and offset policies. 
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Fig. 8.17. The exergy Set G in developed and developing countries under the carbon trade and offset policies. 

➢ Exergy Set F (30%-10%-60%): With 60% weight for Environmental aspect and only 10% 

for Labor, Set F creates the maximum fuzzy total exergy (the minimal sustainability) in China 

(128,734,240.79 & 153,294,716.80 MJ) and the minimal (the maximum sustainability) in coal 

SC in the USA under both carbon trade and offset policies (see Fig. 8.16). 

➢ Exergy Set G (33%-33%-33%): In this set, the same weights (33%) are given to all 

sustainability aspects. It creates the lowest fuzzy total exergy (the highest the sustainability) in 

Zimbabwe under both carbon trade and offset policies. Moreover, the weakest sustainability 

condition in terms of MJ is belong to China (121,351,102.11) and Poland (146,622,025.05) 

under carbon trade and offset policies, respectively (see Fig. 8.17). 

➢ Moreover, all exergy Sets (A-E) generated the maximum fuzzy total exergy (the lowest 

sustainability) for coal SC in China and Poland among all presented countries under both 

carbon trade and offset policies (see Table 8.1). 

 

In this chapter, carbon offset policy is applied to the EPQ model in Chapter 6 to make a 

comparison between the carbon trade and offset policies in terms of Joules in a coal SC among 

some developed and developing countries such as India, China, Iran, Australia, Japan, Poland, the 

USA, and Zimbabwe. All sensitivity results are presented in Table 8.1 for coal SC in all countries. 

Moreover, analysis of each country (subsection 8.6.1) and analysis of each exergy set (subsection 

8.6.2) for both carbon tax and cap policies are presented in this chapter. In the next chapter, a 

comprehensive conclusion for all four carbon policies and related models will be presented as well 

as the research limitations and future research. 
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CHAPTER 9. CONCLUSIONS AND FUTURE WORK 

 

 

In this manuscript-based thesis, a comprehensive literature review about sustainability 

management in SC and demand forecast in energy SC was done in Chapters 3 and 4, respectively. 

Moreover, research works related to exergy analysis and carbon reduction policies in the past two 

decades were reviewed in Chapters 5 (subsection 5.2) and 6 (subsection 6.2). According to the 

literature review, there is a lack of studies that assess a coal SC under any carbon reduction policies 

such as carbon cap, tax, trade and offset with ambiguous parameters for example, carbon price and 

customer demand. Likewise, little research has been done to assess a SC in terms of Joules (in 

place of traditional monetary measures of performance) and simultaneously evaluates all 

sustainability characteristics (economic, labour, and environmental). Similarly, to the best of the 

authors' knowledge, no exergy analysis method like the extended exergy accounting (EEA) in the 

literature considers carbon reduction policies in SC. Therefore, this dissertation developed the work 

of Jawad et al. (2016) and Naderi et al. (2021a) to a multi-product multi-limitation inventory 

(EOQ/EPQ) model with backorder for a coal SC in Iran under an uncertain environment. By 

applying the EEA technique and Mega-Joules (MJ) as a universal unit of measure, the total exergy 

of the coal SC can be calculated. Moreover, the sustainability performance of coal SC in terms of 

Joules (considering economic, labour, and environmental aspects) in developed and developing 

countries under four well-known carbon reduction strategies such as carbon tax (Chapter 5), carbon 

trade (Chapter 6), carbon cap (Chapter 7) and carbon offset (Chapter 8) are evaluated.  

In Chapter 5, a carbon tax policy was applied to a coal SC in Iran, Afghanistan, Turkey, 

Canada and Germany under EOQ inventory model and then the mathematical model was converted 

to an exergy model (in terms of Joules) by the EEA method. The model was solved by some 

traditional and modern metaheuristic algorithms (WOA, GA, ACO, and SA). The results of 

metaheuristic algorithms were validated by exact method (GAMS software) in small size test 

problems. Finally, a sensitivity analysis for different weights of exergy aspects (Capital, Labor and 

Environment) for all countries was done to find out which exergy weight is creating the most 

sustainable performance for coal SC in each country. In the same way, in Chapter 6, carbon trade 

policy was applied to a coal SC in India, China, Iran, Australia, Japan, Poland, the USA, and 

Zimbabwe. The same solution process was done for this chapter while three recent metaheuristic 

algorithms: ALO, LOA, and WOA were employed to solve the model. Chapter 7 developed the 

model in Chapter 5 by employing carbon cap policy. Similarly, Chapter 8 developed the model in 

Chapter 6 by employing carbon offset policy. Moreover, a comparison between the carbon cap and 

tax policies in Chapter 7 and between carbon trade and offset policies in Chapter 8 was made.  

 

9.1 Research contributions 

In earlier studies, as we saw in Chapters 1 and 2, there were some research gaps that this 

study tried to fill them. Therefore, this PhD thesis contributes to the literature by assess a coal SC 

include one vendor and multi-buyer with multi-product and multi-limitation inventory models 

(EOQ/EPQ) with backorder under four different carbon reduction policies such as carbon tax 

(Chapter 5), carbon cap (Chapter 7), carbon trade (Chapter 6) and carbon offset (Chapter 8) within 

an uncertain environment, for example, carbon price or customer demand. Moreover, this study 
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assessed a SC in terms of Joules instead of dollars (as a traditional performance measures) and 

simultaneously evaluate all sustainability aspects, such as economic, labour, and environmental. 

Furthermore, to the best author’s knowledge, this is the first study that employ the EEA method to 

assess the sustainability of a coal SC under four carbon emission policies. Additionally, this study 

compared the sustainability of coal SCs between developed and developing countries under carbon 

tax and cap policies (in Chapters 5 and 7 among Iran, Afghanistan, Turkey, Germany, and Canada) 

and under carbon trade and offset policies (in Chapters 6 and 8 among Iran, Australia, China, India, 

Japan, Poland, the USA, and Zimbabwe) with the EEA method. Besides, this thesis obtained the 

best percentage of exergy components (social, economic, environmental aspects) in the EEA 

method for a coal SC in both developed and developing countries (please see Tables 7.1 and 8.1) 

that created the highest sustainability performance and the lowest total exergy in MJ. Likewise, 

this study compared the sustainability of coal SC in both developed and developing countries and 

obtained which country has the best sustainability performance (the lowest total exergy) in terms 

of Joules (please see Figs. 7.6 and 8.9). 

In this dissertation, four research questions (in Chapter 1) were presented. We summarize 

the answers to each in this section and highlight the research contributions.  

Q1. Does incorporating a carbon reduction strategy with the EEA method in coal SC 

trigger financial benefits and sustainability advantages? 

In Chapters 5-8, four non-exergy mathematical models of the coal SC under carbon cap, 

tax, trade, and offset policies were developed. Then the models were converted to fuzzy models, 

and finally, a new SC assessment method called the EEA (in terms of Joules) was employed for all 

models. This method contains energy and material's main aggregate exergy subject and costs 

corresponding to economic externalities (labor and capital) and ecological externality 

(environmental remediation). Therefore, employing this method could benefit both the economy 

and the environment. By employing well-known and recent metaheuristic algorithms (GA, ACO, 

SA, ALO, LOA, and WOA) all models were solved, and their results were verified by the exact 

method (GAMS software) in small-size test problems (four products).  

Q2. The coal SC in developing countries is supposed to have the lowest cost overall; however, 

in terms of sustainability (social, economic, and environmental aspects) and considering Joules 

rather than monetary objectives, does this assumption remain accurate? 

Regarding the sensitivity analysis in Chapters 5-8, the sustainability of coal SC under 

carbon cap and tax policies were compared in five developed and developing countries such as 

Afghanistan, Iran, Turkey, Germany, and Canada (see Table 7.1). Moreover, under the carbon trade 

and offset policies, eight developed and developing countries, such as Iran, India, China, Australia, 

Japan, Poland, the USA, and Zimbabwe were assessed (see Table 8.1). They are the world's most 

significant coal-consuming countries (Statista, 2020).  

➢ Under carbon cap and tax policies:  

o It is observed that coal SCs in developing countries such as Iran and Turkey have lower 

sustainability performance in MJ than the developed countries such as Germany and 

Canada under carbon cap and tax policies.  

➢ Under carbon trade and offset policies:  
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o It is observed that coal SCs in the developing countries such as India and China have 

lower sustainability performance in MJ than the developed countries such as the USA, 

Japan and Australia under carbon trade and offset policies.  

The reason behind this issue is that traditional assessment methods consider economic 

measures only. In contrast, the method of EEA considers all three aspects of sustainability (Labour, 

Money, and Ecological remediation) in goods or services. It determines their corresponding exergy 

(in terms of Joules rather than Dollar or Euro) by some elements significantly affected by 

population, normal workload, labor statistics, and local and international wages in each country. 

Therefore, the EEA method results show the total number of Joules that coal SC utilized in Labour, 

Money, and Ecological aspects. 

Q3. Which country has the most sustainable coal SC in terms of Joules? 

➢ Based on Table 7.1 and under carbon cap and tax policies, among all five presented 

countries (developed and developing), the coal SC in Afghanistan has the lowest total 

exergy (the best sustainable conditions) with 141,316.53 & 1,504,757.85 (MJ) under carbon 

cap and tax policies, respectively (see Fig. 7.6). Germany, Canada, Iran, and Turkey 

followed Afghanistan. It is observed that coal mining and related enterprises in the 

developed countries such as Germany and Canada have economic and environmental 

advantages compared to developing countries such as Iran and Turkey in terms of MJ. 

➢ Additionally, based on Table 8.1 and under carbon trade and offset policies, the minimal 

total exergy (the best sustainable performance) of a coal SC among all eight countries 

belongs to the USA with 22,604,564.59 & 23,177,067.92 (MJ) under carbon trade and 

offset policies, respectively (see Fig. 8.9). Zimbabwe, Japan, Australia, India, China, and 

Poland followed the USA. It means coal mining and related businesses in the USA have 

monetary and ecological benefits contrasted to developing countries (like China and India 

or Iran and Zimbabwe) in terms of MJ.  

Q4. What is the best percentage of exergy components (social, economic, environmental 

characteristics) to achieve the greatest saving wherever coal SCs are working? 

➢ Under carbon cap and tax policies:  

o Respecting Fig. 7.6 and Table 7.1, the best exergy set in developing countries like 

Afghanistan, Iran and Turkey is exergy Set A (30-60-10), while more exergy 

percentage is given to Labor (60%) and only 10% to Environmental aspect. It 

creates the best sustainability conditions with the lowest fuzzy total exergy in MJ. 

Moreover, in developed countries like Canada and Germany, the best exergy set is 

Set D (30-20-50) with 50% Environmental weight which creates the best 

sustainability performance under both carbon cap and tax policies. 

➢ Under carbon trade and offset policies:  

o Respecting Fig. 8.9 and Table 8.1, the best exergy set (with the highest sustainability 

performance in MJ) in developing countries like Iran is exergy Set A (30-60-10) 

under both carbon trade and offset policies, while more exergy percentage is given 

to Labor (60%) and only 10% to Environment. Moreover, it is observed that 

Zimbabwe as a developing country in Africa has the same sustainability condition 

for coal SC with the developed countries like Australia, Japan, and the USA. The 

best exergy set for mentioned countries is Set F (30-10-60) when Environmental 

aspect has 60% weight and Labor only 10%. It creates the best sustainability 
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performance (the lowest fuzzy total exergy in MJ) under both carbon trade and 

offset policies. In the two most populated countries like China and India, this is 

exergy Set C (20-50-30) which generates the best sustainable performance for coal 

SC since 50% weight is assigned to Labor. Moreover, Coal SC in Poland (in the 

Europe) has the same condition with China and India. 

 

9.2 Management implications and future research 

There are some observations based on the results for improving the sustainability of coal 

SC in each country are presented in what follows.  

The exergy equations in Chapters 5-6 (for instance, Eqs. 5.20-5.34) showed that the all 

exergy parameters such as capital, labor and environmental aspects (𝑒𝑒𝐶𝑎𝑝,𝑖 , 𝑒𝑒𝐿,𝑖, 𝑒𝑒𝐸𝑛𝑣,𝑖) had 

direct relation to the cost elements of inventory models such as setup/ordering (K), purchasing (C), 

and holding(h). Consequently, these inventory costs affect the total exergy of the coal SC in a 

significant way. It is therefore critical to decrease the cost elements of a coal SC's inventory model 

to improve sustainability. For example, by using stock classification and shorter order cycles, 

reducing the lead time of suppliers, eliminating obsolete inventory, implementing a Just-in-Time 

inventory system, and monitoring key performance indicators. 

Unlike conventional financial and commercial models, the results of our study found that a 

way to improve the sustainability performance of coal SC is tuning of the weights that are assigned 

to the exergy of capital, Labor and Environmental aspects in each country (see Tables 7.1 and 8.1). 

It means that no fixed amount of exergy components (Capital, Labor and Environment) can deliver 

the highest sustainability in all countries. For example, according to the results in Table 8.1, exergy 

Set F (30-10-60) with 60% weight allocated to the environment and only 10% to labor generates 

the best sustainability for coal SC in the USA (19,675,609.14 & 21,032,559.94 MJ) under both 

carbon trade and offset policies. Simultaneously, this exergy Set generates the worst sustainability 

for China (128,734,240.79 & 153,294,716.80 MJ). Hence, finding the best amount of exergy 

elements (capital, labor and environment) for each country and try to tune them is important. 

Another point is that, considering Appendix 3-Table A.9.1 (which is made by integrating 

Tables 5.5-6.5) and Appendix 3-Fig. A.9.1, one can conclude that the exergy parameters of Capital 

(𝑒𝑒𝐶𝑎𝑝 = 1.1 MJ/Euro) and Labor (𝑒𝑒𝐿 = 0.41 MJ/WH) in Afghanistan are less than all presented 

countries. This would be one of the reasons why coal SC in Afghanistan has the most sustainable 

performance in terms of Joules under carbon cap and tax policies, whereas Iran (𝑒𝑒𝐶𝑎𝑝 =

5.68 MJ/Euro) and Turkey (𝑒𝑒𝐶𝑎𝑝 = 20.51 MJ/Euro) have the worst sustainable condition. 

Similarly, for example, under carbon trade and offset policies, the exergy parameter of Capital 

(𝑒𝑒𝐶𝑎𝑝 = 2.85 MJ/Euro) in the USA is less than Japan, Australia, India, China, Poland, and 

Zimbabwe. However, China (𝑒𝑒𝐶𝑎𝑝 = 14.01 MJ/Euro) and Poland (𝑒𝑒𝐶𝑎𝑝 = 14.02 MJ/Euro) are 

the worst sustainable conditions under carbon trade and offset policies. Therefore, a way to increase 

sustainability in each country is to find ways to decrease exergy parameters (𝑒𝑒𝐶𝑎𝑝, 𝑒𝑒𝐿).  

If we look at exergy formulas of Capital (𝑒𝑒𝐶𝑎𝑝 = 𝛼𝑥. 𝛽𝑥 (
𝐸𝑥𝑖𝑛

𝑀2
)) and Labor (𝑒𝑒𝐿 =

𝛼𝑥.𝐸𝑥𝑖𝑛

(𝑁𝑊𝐻)𝑡𝑜𝑡𝑎𝑙
) in Chapters 5-6, both exergy parameters (𝑒𝑒𝐶𝑎𝑝, 𝑒𝑒𝐿) are dependent on two econometric 

coefficients (𝛼𝑥, 𝛽𝑥) as well as (𝐸𝑥𝑖𝑛). Chapters 5-6 explain that these values are influenced by the 
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type of societal organization, the historical period, the technological level, the pro-capital resource 

consumption, and the geographical location of the country (Sciubba, 2011). Therefore, to decrease 

these parameters and consequently improving sustainability of coal SC, all shareholders, 

governments, individuals, societies, business organisations, scientists, etc., need to contribute 

significantly to adjusting the parameters, if possible. An example is controlling the import and 

export of goods from and to the country or extracting ores and minerals. Promoting locally made 

goods can be a way for individuals, societies, and business organizations to support this cause. As 

a result, there would be more jobs available in the country, and increasing the labor force rate 

(Jawad et al., 2018). Additionally, effective productivity growth (output per hour worked) can boost 

a country's income and GDP per capita. For more information, readers are encouraged to consult 

Sciubba (2011).  

In addition, decision-makers should find ways to improve the sustainability of their coal 

SC by reducing waste, labor, material, and pollution, which will reduce the damaging effects of 

coal SC. When calculating energy costs, managers of SC would have more flexibility since they 

could use available resources rather than just capital to calculate the quantity. Furthermore, this 

research will also guide managers of international coal mining companies who wish to decide 

which country has more sustainable conditions for their business and investments.  

Additionally, the EEA method in this thesis is subject to some restrictions, involving the 

following: 

• When EEA is used to a coal SC, the precision of the results is dependent upon the 

assumptions made. 

• It is possible that the EEA method in coal SCs may have restrictions when more than one 

country is included in the SC processes (international companies). 

• Insufficient data regarding a country's total exergy input, the quantity of exergy represented 

in the workforce, the exergy of raw materials and energy consumed to supply a coal.  

Moreover, the following avenues for future research are suggested for consideration: 

a) A coal production system. 

b) A model with multiple objectives (integrating inventory measures). 

c) An international coal SC model that works in more than one country at the same time. 

d) Comparing a global coal SC with a national one. 

e) The strategy of increasing carbon price with increasing the amount of carbon (price 

dependent on amount) by each country. 

f) A sensitivity analysis for different carbon cap limitation by each country under carbon cap 

policy. 

g) The SC of coal power plants. 

h) Quantity discounts in cost per unit of products can be allowed.  

i) Interval type 2 fuzzy parameters can be considered. 

j) Multi-echelon SCs, for example, single-buyer multi-supplier and multi-buyer multi-

supplier SCs, can be investigated. 

k) Lead times can be included. 
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APPENDIX 

 

Appendix 1. The results of carbon cap policy for the model (in chapter 7) 

A.7.5.1.1. Part 1: Find out the “near-optimum” solutions by metaheuristic algorithms. 

In this phase, each individual solution algorithms are performed ten times for each fuzzy 

exergy numerical example in Iran. Correspondingly, the lowest fuzzy total exergy and the CPU 

times (seconds) under emission cap policy (Eq. 7.17) are detailed in Tables A.7.1 and A.7.2. 

The most exemplary metaheuristic algorithm is observed by revealing the proportion 

distinction between their outcomes. In this sustainable model under emission cap policy, we 

optimize three objectives simultaneously: the total inventory cost, the total cost associated with the 

additional required budget of all buyers, and the penalty cost of coal waste disposal to the 

environment. We converted all model economic parameters (Euro) to equivalent exergy values 

(MJ) using the EEA method. Therefore, considering this model's three fuzzy exergy objective 

functions, GA is the best individual algorithm with the lowest fuzzy total exergy for numerical 

examples for 4-, 8-, 32- and 64-item (734,740.68 to 12,173,554.77 MJ). For 16-, 128-, 256- and 

512-item test problems, this is WOA that has better performance (from 2,949,449.28 to 

98,415,908.27 MJ) in terms of fuzzy total exergy (see Table A.7.1). Moreover, for the large size 

numerical test 1024-item, ACO has the lowest fuzzy total exergy (190,647,152.57 MJ).  

A comparison of algorithms in terms of the fuzzy total exergy under emission cap for large 

size numerical examples (256-, 521- & 1024-items) is presented in Fig. A.7.1 It should be 

mentioned that the enhancement percentages between results of the algorithms in all test problems 

are on average 0.25%. It means the results of the algorithms are remarkably close (see Fig. A.7.2).  

Moreover, considering the CPU time (sec.), SA has the lower computational time than 

WOA in all examples (Table A.7.2 and Fig. A.7.3). Additionally, improvement percentage of 

computational time of SA against WOA is on average 1956% (see Fig. A.7.4).  
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Table A.7.1: The fuzzy total exergy cost found by the algorithms (Eq. 7.17) in Iran-Carbon cap 

No. of items 

Fuzzy total exergy (MJ)  

The best algorithm Difference  Improvement %   
WOA GA ACO SA 

4 735,481.42 734,740.68 739,490.90 802,698.43 GA-WOA-ACO-SA  740.74  0.10 

8 1,472,746.99 1,469,178.46 1,478,807.46 1,560,189.65 GA-WOA-ACO-SA  3,568.53  0.24 

16 2,949,449.28 2,967,396.49 2,961,160.37 3,285,578.02 WOA-ACO-GA-SA  11,711.09  0.40 

32 6,061,754.97 6,047,430.96 6,228,661.83 6,551,751.76 GA-WOA-ACO-SA  14,324.01  0.24 

64 12,251,820.41 12,173,554.77 12,477,013.36 13,062,097.03 GA-WOA-ACO-SA  78,265.64  0.64 

128 24,424,801.87 24,526,297.92 24,544,711.78 26,387,790.72 WOA-GA-ACO-SA  1,496.05  0.01 

256 48,967,341.60 49,287,027.51 49,347,197.38 52,900,955.14 WOA-GA-ACO-SA  119,685.91  0.24 

512 98,415,908.27 99,459,675.15 98,917,404.26 105,911,477.76 WOA-GA-ACO-SA  43,766.88  0.04 

1024 191,349,070.21 196,899,307.13 190,647,152.57 211,717,247.50 ACO-WOA-GA-SA  701,917.64  0.37 

Exact method’s result (4 items) = 715,249.78 (MJ); Difference with GA=19,490.90; % Error=2.72 

 

 

Table A.7.2: The CPU times of solving test problems by the algorithms (Eq. 7.17) in Iran-Carbon cap 

No. of items 

CPU time (second) 

The best algorithm Difference  Improvement %  
WOA GA ACO SA 

4 0.180 0.246  0.397   0.025  SA-WOA-GA-ACO  0.155  620.00 

8 0.232 0.260  0.564   0.026  SA-WOA-GA-ACO  0.206  792.31 

16 0.303 0.363  0.908   0.027  SA-WOA-GA-ACO  0.276  1022.22 

32 0.456 0.559  1.763   0.029  SA-WOA-GA-ACO  0.427  1472.41 

64 0.640 0.777  3.531   0.033  SA-WOA-GA-ACO  0.607  1839.39 

128 1.196 1.337  6.246   0.047  SA-WOA-GA-ACO  1.149  2444.68 

256 2.345 2.633  12.833   0.077  SA-WOA-GA-ACO  2.268  2945.45 

512 4.245 4.914  24.854   0.125  SA-WOA-GA-ACO  4.120  3296.00 

1024  7.991   8.872   48.196   0.244  SA-WOA-GA-ACO  7.747  3175.00 

Exact method’s result (4 items) = 4.29 Sec.; Difference with GA=4.04 Sec.; % Error=1643.90 
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Fig.A.7.1. The fuzzy total exergy comparisons of all algorithms - carbon cap (Phase 2) 

 
 
 
 

 
Fig.A.7.2. The fuzzy total exergy comparisons of two algorithms by percentage (Phase 2) 
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Fig.A.7.3. The CPU time comparisons of algorithms (Phase 2) 

 
 

 

 
 

Fig.A.7.4. The improvement (%) of CPU time comparisons of the algorithms (Phase 2) 
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can be achieved through an exact optimizer software such as “GAMS” or optimization library in 

“Python.” Considering emission cap policy and Eq. (7.17) for a 4-item numerical example, the 
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best metaheuristic algorithm (GA) for this example is 734,740.68 (MJ). Consequently, the 

difference between them is 19,490.90 (MJ), and the percentage penalty or error is 2.72%. Since the 

percentage penalty is minor, this signals the good superiority of the solutions found through the 

best-suggested algorithm (Cárdenas-Barrón et al. 2012), as it is very close to the exact method (see 

Table A.7.1, and Fig. A.7.5). Regarding CPU running time, the difference between exact method 

time and GA is 4.046 (Sec.), while the percentage penalty is 1641.671%. It means the metaheuristic 

algorithm (GA) solved the cap policy model more quickly (see Table A.7.2 and Fig. A.7.6). 

Moreover, the example diagrams of fuzzy total exergy by the suggested algorithms are presented 

in Fig. (A.7.7). 

 
Fig.A.7.5. Comparison of the total fuzzy exergy between exact method and the best metaheuristic algorithm 

(Phase 3) 

 
 

Fig.A.7.6. Compare CPU time between exact method and the best metaheuristic algorithm (Phase 3) 
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WOA 512-item  ACO 1024-item cap policy 

 
Fig.A.7.7. The diagrams of fuzzy total exergy by the suggested algorithms (Phases 2 & 3) 

A.7.5.1.3. Part 3: A sensitivity analysis of different percentages for exergy costs in five countries. 

In the previous subsections, we looked to optimize a sustainable inventory model of coal 

SC in Iran by considering different objectives simultaneously: the total inventory cost, the total 

cost associated with the additional required budget of all buyers, penalty cost of coal wastes 

disposal to the environment, and the whole carbon produced by coal SC. All goals in the model 

and related limitations under emission cap policy are in MJ instead of monetary values. In this 

phase, we go further and balance financial and sustainable benefits for coal SC enterprises. As our 

proposed models are sustainable, we are looking to adjust the exergy percentage for capital, labor, 

and environmental remediation by a sensitivity analysis to decrease the fuzzy total exergy more 

than before. Moreover, to get more insight into this issue, we compare the sensitivity analysis of a 

coal SC in Iran with two neighboring countries (Turkey and Afghanistan) in the Middle East and 

two developed countries in Europe and North America (Germany and Canada). We assume the 

same coal SC and items for all five countries. It was assumed that each cost 𝐴𝑖,𝑆, 𝐴𝑖𝑗,𝑏 , ℎ𝑖𝑗  𝑎𝑛𝑑 𝐶𝑖 

could be allocated to Cap=30% for money, L=60% for labor, and Env.=10% for ecological 

remediation. Now, in this section, these percentages are changed into five different sets (A-E) in 

Table A.7.3, and the fuzzy total exergy is obtained for a 4-item test problem under emission cap 

policy using the best-suggested algorithms. Moreover, the exergetic parameters used for five 

countries are the same as in Chapter 5. 
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Table A.7.3: Sensitivity analysis of different percentages for exergy costs (example with four items)-Carbon cap 

%(Cap-L-Env) 

Fuzzy total exergy (MJ)  

Min. 
Country 

min. 
Max. 

Country 

max. AF* CA GE IR TR 

Set A 30-60-10 141,316.53 3,269,610.51 3,216,971.32 734,828.56 2,972,014.13 141,316.53 AF 3,269,610.51 CA 

Set B 50-30-20 164,919.79 1,285,976.37 1,192,900.68 854,814.77 3,256,774.91 164,919.79 AF 3,256,774.91 TR 

Set C 20-50-30 146,451.08 3,268,083.12 3,048,417.64 761,440.02 3,032,929.71 146,451.08 AF 3,268,083.12 CA 

Set D 30-20-50 174,187.82 666,924.42 600,277.13 901,519.42 3,368,441.83 174,187.82 AF 3,368,441.83 TR 

Set E 33-33-33 161,779.26 1,555,685.52 1,528,691.42 838,931.07 3,219,102.84 161,779.26 AF 3,219,102.84 TR 

Balanced 

point 

Min. 141,316.53 666,924.42 600,277.13 734,828.56 2,972,014.13 Min. Min.  Max. Max.  

Set min. A D D A A 141,316.53 AF 3,368,441.83 TR 

 Max. 174,187.82 3,269,610.51 3,216,971.32 901,519.42 3,368,441.83 Set A  Set D  

 Set max. D A A D D     

*AF: Afghanistan, CA: Canada, GE: Germany, IR: Iran, TR: Turkey     
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A.7.5.1.3.1 Analysis of each country-Carbon cap 

Considering Table 7.3 and Fig. 7.8, for coal supply chain in each country, we have: 

➢ Afghanistan: As a developing country in the Middle East, the top exergy set are Set A 

(30-60-10), as Labor takes 60% while Environment holds only 10%. It generated the least 

fuzzy total exergy of 141,316.53 (MJ). The worst exergy set in Afghanistan is Set D (30-

20-50), whilst 50% weight is assigned to Environment, which presented the maximum 

fuzzy total exergy of 174,187.82 (MJ). 

➢ Canada: As a developed country in North America, the top exergy set in Canada is Set D 

(30-20-50), whereas more exergy percentage is offered to Environment (50%). It created 

the minimum amount of fuzzy total exergy with 666,924.42 (MJ) for coal supply chain. In 

the same way, the weakest exergy components are Set A (30-60-10) once more weight is 

given to the Labor (50%), which generated the greatest fuzzy total exergy of 3,269,610.51 

(MJ). 

➢ Iran: Like Afghanistan, the best exergy components ae Set A (30-60-10), as Labor gets 

60% while Environment gets only 10%. It created the smallest fuzzy total exergy of 

734,828.56 (MJ). The worst exergy elements in Iran are Set D (30-20-50), whilst 50% 

weight is assigned to Environment, which stated the maximum fuzzy total exergy of 

901,519.42 (MJ). 

➢ Turkey: Similar to Iran and Afghanistan, the top exergy elements in Turkey are Set A (30-

60-10), whereas more exergy percentage is offered to Labor (60%). It created the minimum 

amount of fuzzy total exergy with 2,972,014.13 (MJ) for coal supply chain. Equally, the 

weakest exergy components are Set D (30-20-50) once more weight is given to the 

Environment (50%), which generated the greatest fuzzy total exergy of 3,368,441.83 (MJ). 

➢ Germany: Different from the previous countries in the middle east, the most excellent 

exergy elements in Germany are Set D (30-20-50), after 50% of weight is allocated to 

Environment. It delivered the minimum fuzzy total exergy of 600,277.13 (MJ) for coal 

supply chain. Furthermore, the unhealthiest exergy components are Set A (30-60-10) when 

60% weight is appointed to Labor, which composed the highest fuzzy total exergy of 

3,216,971.32 (MJ). 

➢ Concerning Table 7.3 and Fig. 7.8, the lowest amount of total exergy (MJ) in coal supply 

chain of each country is as follow Afghanistan (141,316.53), Canada (666,924.42), Iran 

(734,828.56), Turkey (2,972,014.13), and Germany (600,277.13). 

➢ Among all given countries, the coal supply chain in Afghanistan has the lowest total exergy 

(141,316.53 MJ), followed by Canada, Germany, Iran, and Turkey, respectively (see Fig. 

7.8). It is observed that coal SC in developed countries like Canada and Germany are more 

sustainable (less total exergy in MJ) than developing countries like Iran and Turkey. 

Sustainability performance of Coal SC in Afghanistan are an exceptional example among 

all presented countries. 

➢ Moreover, coal supply chain in Turkey generates the maximum total exergy under exergy 

Sets of B (50-30-20), D (30-20-50) and E (33-33-33), among other countries. Likewise, 

Canada, under exergy Sets of A (30-60-10) and C (20-50-30), establishes the highest total 

exergy in coal supply chain (see Table 7.3).  

 

A.7.5.1.3.2 Analysis of each exergy set-Carbon cap 
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Respecting Table 7.3 and Fig. 7.9, for each exergy set, we have: 

➢ Exergy Set A (30%-60%-10%): In this set, more weight is assigned to Labor (60%) and 

only 10% to Environment. Although this set works well for coal supply chain in 

Afghanistan, Iran and Turkey, with the minimum total exergy of 141,316.53, 734,828.56 

and 2,972,014.13 (MJ), respectively, Canada and Germany have a huge total exergy with 

3,269,610.51 and 3,216,971.32 (MJ), respectively. 

➢ Exergy Set B (50%-30%-20%): In this set, more weight is assumed for Capital (50%) 

along with Labor (30%) and Environment (20%), respectively. Regardless of coal supply 

chain in Turkey (3,256,774.91 MJ), exergy set B operates well in Afghanistan with 

164,919.79 (MJ). 

➢ Exergy Set C (20%-50%-30%): In this set, Labor has 50% weight, followed by 

Environment (30%) and Capital (20%), respectively. Exergy set C performs well in coal 

supply chain in Afghanistan (146,451.08 MJ), even though in Canada, the total exergy is a 

huge amount of 3,268,083.12 (MJ). 

➢ Exergy Set D (30%-20%-50%): In this set, Labor has only 20% while 50% is for 

Environment. Despite the high result in Afghanistan (174,187.82 MJ), Iran (901,519.42 

MJ) and Turkey (3,368,441.83 MJ), exergy set D runs well in Canada and Germany with 

666,924.42 and 600,277.13 (MJ), respectively. 

➢ Exergy Set E (33%-33%-33%): In this set, all three exergy components have equal 33% 

weight. Although exergy set E does not perform well in Turkey (3,219,102.84 MJ), it runs 

well in Afghanistan with 161,779.26 (MJ). 

➢ Moreover, all exergy Sets (A-E) generated the minimum total exergy for coal supply chain 

in Afghanistan (see Fig. 7.9). 

 

 

 

 

Fig.7.8. Sensitivity analysis - Min. and Max. of countries (Phase 4) -Carbon cap 
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Fig.7.9. Sensitivity analysis of different exergy set vs. countries (Phase 4) -Carbon cap 
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Appendix 2. The results of carbon offset policy for the model (in chapter 8) 

A.8.5.1.2 Step one - Metaheuristic algorithms (carbon offset) 

Based on the solution procedure, in the first step, all suggested metaheuristic algorithms 

are executed 15 times for the fuzzy exergy model with carbon offset policy (Eq. 8.18). The outputs 

of algorithms include the lowest fuzzy total exergy (MJ), and the CPU times (seconds) are 

presented in Tables A.8.1 and A.8.2, respectively. Based on the results, the superior metaheuristic 

algorithm for the smallest fuzzy total exergy (MJ) and running times (seconds) could be found for 

the model (Eq. 8.18). 

Concerning the fuzzy total exergy and in line with the fallouts shown in Table A.8.1, ALO 

is the best algorithm for 4-item (case study in Iran) and 10-item test problems with 41,699,351.48 

and 192,815,840.24 (MJ), respectively. In contrast, for test problems from 20 to 2560 products, 

WOA is the best algorithm. For our large size test problems (640, 1280 & 2560 products), WOA 

gets the lowest fuzzy total exergy cost (8,738,009,828.86; 11,473,398,840.59 & 26,834,597,657.96 

MJ) followed by LOA, and ALO, respectively (see Fig. A.8.1). Regarding Fig. A.8.2, performance 

improvement between top two algorithms from 20p to 80p test problems, are less since the results 

of them are very close together. But in large-size test problems the average performance 

enhancement between the results of WOA and LOA is about 67%, which means the results of 

WOA are outstanding. In opposition, ALO has the highest fuzzy total exergy (MJ) results in our 

medium and large-size test problems.  

Considering the CPU time (Sec.), WOA is absolutely the best algorithm with the lowest 

running time in all test problems (see Fig. A.8.3). For example, in our large-size test problems 

(640, 1280 & 2560 products), the WOA CPU times were 46.86, 87.58, and 145.32 (Sec.), 

respectively (see Table A.8.2). Moreover, in large-size test problems, the average of WOA’s 

performance improvement (%) with the second-best algorithm is about 794% which means WOA 

solves the models fast (see Fig. A.8.4). Conversely, ALO has the highest CPU time among other 

algorithms in all test problems except for 1285 products, where LOA (with 854.21 Sec.) is the 

worse algorithm (see Table A.8.2). 
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Table A.8.1: The fuzzy total exergy (MJ) observed by the algorithms under carbon offset policy in Iran (Eq. 8.18) 

Test ALO LOA WOA Min. (MJ) The bests 
Performance 

improvement (%) 

4p 41,699,351.48 65,557,736.94 57,974,289.79 41,699,351.48 ALO-WOA-LOA 39.03 

10p 192,815,840.24 330,407,965.03 814,048,679.77 192,815,840.24 ALO-WOA-LOA 322.19 

20p 1,329,753,409.64 943,464,336.09 916,902,967.07 916,902,967.07 WOA-LOA-ALO 2.90 

40p 1,315,513,174.28 689,596,253.44 644,157,568.30 644,157,568.30 WOA-LOA-ALO 7.05 

80p 2,862,253,819.39 1,015,340,034.70 1,002,634,912.33 1,002,634,912.33 WOA-LOA-ALO 1.27 

160p 6,686,750,749.21 2,697,200,811.93 1,279,681,958.47 1,279,681,958.47 WOA-LOA-ALO 110.77 

320p 12,886,852,130.10 7,374,089,405.06 4,002,255,616.45 4,002,255,616.45 WOA-LOA-ALO 84.25 

640p 28,115,754,736.98 10,802,130,855.90 8,738,009,828.86 8,738,009,828.86 WOA-LOA-ALO 23.62 

1280p 58,806,441,385.80 18,589,816,709.61 11,473,398,840.59 11,473,398,840.59 WOA-LOA-ALO 62.03 

2560p 112,359,058,231.92 57,909,352,141.47 26,834,597,657.96 26,834,597,657.96 WOA-LOA-ALO 115.80 

 

 

Table A.8.2: The CPU times (Sec.) of solving numerical examples by the algorithms under carbon offset policy in Iran (Eq. 8.18) 

Test ALO LOA WOA Min. (Sec.) The bests 
Performance 

improvement (%) 

4p 2.92 3.28 1.11 1.11 WOA-ALO-LOA 162.51 

10p 8.43 7.21 1.44 1.44 WOA-LOA-ALO 400.22 

20p 14.36 12.62 2.62 2.62 WOA-LOA-ALO 381.56 

40p 27.76 26.46 4.26 4.26 WOA-LOA-ALO 520.74 

80p 52.69 51.54 4.72 4.72 WOA-LOA-ALO 991.21 

160p 104.94 85.52 7.84 7.84 WOA-LOA-ALO 990.08 

320p 195.52 174.55 20.75 20.75 WOA-LOA-ALO 741.26 

640p 397.71 370.71 46.86 46.86 WOA-LOA-ALO 691.05 

1280p 841.25 854.21 87.58 87.58 WOA-ALO-LOA 860.60 

2560p 1,595.56 1,353.21 145.32 145.32 WOA-LOA-ALO 831.16 

 



272 
 

 
Fig.A.8.1. The total fuzzy exergy comparisons of algorithms in large size test problems (step 1) 

 
 

 
Fig.A.8.2. Performance improvement of top two algorithms for fuzzy total exergy (step 1) 
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Fig.A.8.3. The CPU time comparisons of all algorithms (step 1) 

 
 

Fig.A.8.4. Performance improvement of top two algorithms for CPU time (step 1) 
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best-suggested algorithm (Cárdenas-Barrón et al., 2012) since it is remarkably close to the exact 

method (see Fig. A.8.5). Concerning CPU running time, the distinction between exact method and 

ALO is 0.92 (Sec.), but the percentage penalty is 31.53%. It shows that the metaheuristic algorithm 

(ALO) solved the carbon offset model more rapidly (see Fig. A.8.6). 

Table A.8.3: Comparing the results of the exact method (GAMS) with the best algorithm (ALO)  

 ALO Exact Difference Penalty (%) 

Fuzzy total exergy: 41,699,351.48 40,615,168.34 1,084,183.14 2.67 

CPU time: 2.92 3.84 0.92 31.53 

 

 
Fig.A.8.5. Comparison of the total fuzzy exergy between exact method and the best metaheuristic algorithm 

for test problem with four products (step 2) 
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A.8.5.1.4 Step three- Sensitivity analysis (carbon offset) 

In the earlier subsections, we studied the optimization of a sustainable fuzzy EPQ model of 

coal SC in Iran by taking into account different objectives simultaneously: the costs of the inventory 

system, an additional required budget of each buyer, coal transportation cost among SC members, 

and carbon emission cost. All goals in the models and related limitations under the emission offset 

strategy are in MJ in place of monetary values. This step tries to balance economic and sustainable 

advantages for coal SC companies. Considering that our proposed model is sustainable, we modify 

the exergy percentage for capital, labor, and environmental remediation by a sensitivity analysis to 

find the best values of exergy components that improve the sustainability of coal SC more than 

before. Additionally, to gain further insight into this adjustment, we evaluate sustainable coal SC 

in Iran as well as seven selected developing and developed countries with the world's most 

significant coal consumption. They are India, China, Australia, Japan, Poland, the USA, and 

Zimbabwe (Statista, 2020). We assumed the same coal SC and products for all these countries to 

make a comparative analysis. In the previous section, we mentioned that in our numerical 

examples, it was assumed that each cost of  𝐾𝑖,𝑆, 𝐾𝑖𝑗,𝑏 , ℎ𝑖𝑗  𝑎𝑛𝑑 𝐶𝑖 can be allocated to Cap=30% for 

capital, L=60% for labor, and Env=10% for ecological remediation (consider it as exergy Set A). 

In this section, to get more insight, we have changed these percentages to make seven different 

exergy sets (see Table A.8.4), including A (30-60-10), B (60-20-20), C (20-50-30), D (20-40-40), 

E (20-30-50), F (30-10-60) and G (33-33-33). Considering each exergy set, we computed the fuzzy 

total exergy for a 4-item test problem under carbon offset policy for all countries by GAMS (see 

Table A.8.4). For example, we consider coal SC in the USA and exergy Set C (Cap=20%, L=50%, 

and Env=30%), then employing extended exergy accounting method to convert all monetary costs 

of  𝐾𝑖,𝑆, 𝐾𝑖𝑗,𝑏 , ℎ𝑖𝑗  𝑎𝑛𝑑 𝐶𝑖 to equivalent (MJ). After that, we run model Eq. (8.18) with four product 

test problems using the Exact method (GAMS). Likewise, the same process was done for other 

exergy Sets (A-G) and considering other countries' coal SC. Finally, all results are presented in 

Table A.8.4. In the following section, we explain the results in detail. 
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Table A.8.4: Sensitivity analysis of different percentages for exergy elements (example with four products) -Carbon offset 

Sets (%) 

* 

Fuzzy total exergy (Emission offset) MJ 
Min. 

(MJ) 

Country 

min. 
Max. (MJ) 

Country 

max. 
AU** CH IN IR JA PO US ZI 

A (30-60-

10) 

58,194,88

8.98 

178,509,57

6.98 

41,297,64

2.73 

41,699,35

1.48 

60,286,06

9.45 

135,055,72

2.76 

38,278,77

2.24 

36,156,12

7.01 

36,156,12

7.01 
ZI 

178,509,57

6.98 
CH 

B (60-20-

20) 

37,972,20

1.90 

166,472,93

8.65 

58,836,36

8.81 

76,861,89

0.52 

40,887,17

5.47 

156,214,94

8.54 

23,177,06

7.92 

25,972,29

5.09 

23,177,06

7.92 
US 

166,472,93

8.65 
CH 

C (20-50-

30) 

29,582,06

2.77 

96,953,009

.68 

25,466,15

8.69 

51,091,65

5.92 

35,269,22

1.20 

95,760,363

.89 

35,476,60

0.22 

29,749,29

8.68 

25,466,15

8.69 
IN 

96,953,009

.68 
CH 

D (20-40-

40) 

50,525,85

1.36 

156,133,26

7.82 

47,301,83

1.54 

50,771,81

2.85 

40,123,71

5.86 

124,452,99

6.38 

39,435,13

7.75 

25,914,51

3.09 

25,914,51

3.09 
ZI 

156,133,26

7.82 
CH 

E (20-30-

50) 

37,058,04

8.28 

161,309,69

4.66 

45,946,88

5.83 

48,215,18

3.84 

38,498,45

9.38 

135,883,31

1.16 

26,724,52

2.66 

33,867,99

7.48 

26,724,52

2.66 
US 

161,309,69

4.66 
CH 

F (30-10-

60) 

25,381,55

4.37 

153,294,71

6.80 

49,637,34

9.70 

66,584,73

5.15 

27,876,02

6.26 

147,446,02

0.63 

21,032,55

9.94 

24,119,89

0.07 

21,032,55

9.94 
US 

153,294,71

6.80 
CH 

G (33-

33-33) 

36,154,50

0.20 

136,870,36

5.31 

38,479,37

1.31 

71,932,76

2.38 

35,790,11

1.54 

146,622,02

5.05 

33,876,38

0.99 

31,260,60

9.82 

31,260,60

9.82 
ZI 

146,622,02

5.05 
PO 

Min. 
25,381,55

4.37 

96,953,009

.68 

25,466,15

8.69 

41,699,35

1.48 

27,876,02

6.26 

95,760,363

.89 

21,032,55

9.94 

24,119,89

0.07 
Min. Min. (MJ) Max. Max.  (MJ) 

Set Min. F C C A F C F F 
21,032,55

9.94 
USA 

178,509,57

6.98 
China 

Max. 
58,194,88

8.98 

178,509,57

6.98 

58,836,36

8.81 

76,861,89

0.52 

60,286,06

9.45 

156,214,94

8.54 

39,435,13

7.75 

36,156,12

7.01 
    

Set Max. A A B B A B D A     

*Set (Cap%-L%-Environment%); **AU: Australia, CH: China, IN: India, IR: Iran, JA: Japan, PO: Poland, US: the USA, ZI: Zimbabwe 
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A.8.5.1.4.1 Analysis of each country-Carbon offset 

Considering Table A.8.4 and Fig. A.8.7, for coal SC in each country, we have: 

➢ Australia: The best sustainability condition for coal SC under the carbon offset policy in 

this country is with exergy Set F (30-10-60) since more exergy percentage is assumed for 

Environment (60%) and only 10% for Labor. It created the minimum fuzzy total exergy of 

25,381,554.37 (MJ) for coal SC. Besides, the worst sustainability condition is by exergy 

Set A (30-60-10) since Labor has 60% while Environment has only 10%, which created 

the highest fuzzy total exergy with 58,194,888.98 (MJ). 

➢ China: The exergy Set C (20-50-30) creates the top sustainability conditions for China 

when Labor has 50% weight, followed by Environment (30%) and Capital (20%), 

respectively. It created the minimum fuzzy total exergy of 96,953,009.68 (MJ) for coal SC. 

Like Australia, the weakest sustainability conditions are by exergy Set A (30-60-10) since 

Labor has 60% while Environment has only 10%. It generated the highest fuzzy total 

exergy of 178,509,576.98 (MJ). 

➢ India: Like China, the finest sustainability condition is by exergy Set C (20-50-30), when 

Labor has 50% weight, while Environment and Capital are 30% and 20%, respectively. It 

produced the minimum fuzzy total exergy of 25,466,158.69 (MJ) for coal SC. Moreover, 

the unpleasant exergy components are Set B (60-20-20) when more weight is expected for 

Capital (60%) and the same weights (20%) for Labor and Environment, which formed the 

maximum fuzzy total exergy of 58,836,368.81 (MJ). 

➢ Iran: For coal SC in this country, the top sustainability condition is by exergy Set A (30-

60-10) as Labor has 60% while Environment has only 10%. It made the minimum fuzzy 

total exergy of 41,699,351.48 (MJ). Like India, the unhealthiest exergy components in Iran 

are Set B (60-20-20) when more weight is assigned to Capital (60%) and the same weights 

for Labor and Environment (20%), which generated the worst sustainability with maximum 

fuzzy total exergy of 76,861,890.52 (MJ). 

➢ Japan: Like Australia, the best sustainability condition for coal SC in Japan is by exergy 

Set F (30-10-60), while more exergy percentage is given to Environment (60%) and less to 

Labor (10%). It established the least amount of fuzzy total exergy with 27,876,026.26 (MJ) 

for coal SC. Furthermore, like Australia and China, the unhealthiest sustainability 

condition is by exergy Set A (30-60-10) since Labor has 60% while Environment has only 

10%, which generated the highest fuzzy total exergy of 60,286,069.45 (MJ). 

➢ Poland: Like India and China, the excellent sustainability condition in Poland is by exergy 

Set C (20-50-30), when Labor has 50% weight, followed by Environment (30%) and 

Capital (20%), respectively. It created the least possible fuzzy total exergy of 

95,760,363.89 (MJ) for coal SC. Besides, like India and Iran, the worst sustainability 

condition is by exergy Set B (60-20-20) when more weight is assigned to Capital (60%) 

and the same weights for Labor and Environment (20%), which created the maximum 

fuzzy total exergy of 156,214,948.54 (MJ). 

➢ The USA: Like Australia and Japan, the superior sustainability condition in the USA is by 

exergy Set F (30-10-60) as more exergy percentage is assumed to Environment (60%) and 

less on Labor (10%). It generated the minimum fuzzy total exergy of 21,032,559.94 (MJ) 

for coal SC. Additionally, the harmful exergy components are Set D (20-40-40) since Labor 

and Environment have the same weights (40%) while Capital has only 20%, which 

established the highest fuzzy total exergy of 39,435,137.75 (MJ). 
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➢ Zimbabwe: Like Australia, Japan and the USA, the first-rate sustainability condition of 

coal SC in Zimbabwe is by exergy Set F (30-10-60) because more exergy percentage is 

assumed to Environment (60%) and less on Labor (10%). It crafted the minimum fuzzy 

total exergy of 24,119,890.07 (MJ). Additionally, like Australia, China and Japan, the 

worst weakest sustainability condition is by exergy Set A (30-60-10) since Labor has 60% 

while Environment has only 10%, which generated the greatest fuzzy total exergy of 

36,156,127.01 (MJ). 

➢ Considering Table A.8.4, the best total exergy (MJ) in each country is as follow: Australia 

(25,381,554.37), China (96,953,009.68), India (25,466,158.69), Iran (41,699,351.48), 

Japan (27,876,026.26), Poland (95,760,363.89), the USA (21,032,559.94) and Zimbabwe 

(24,119,890.07).  

➢ Among all presented countries, the coal SC in the USA has the best sustainability condition 

(the smallest total exergy) with 21,032,559.94 MJ, followed by Zimbabwe, Australia, 

India, Japan, Iran, Poland, and China, respectively (see Fig. A.8.7).  

➢ Moreover, coal SC in China creates the highest total exergy (the worst sustainability in MJ) 

for all exergy sets except for exergy Set G (33-33-33) related to Poland (see Fig. A.8.8).  

 

 
Fig.A.8.7. Sensitivity analysis for each country – Min. & Max. of the total fuzzy exergy (step 3) 
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Fig.A.8.8. Sensitivity analysis for each set - Min. & Max. of the total fuzzy exergy (step 3) 

A.8.5.1.4.2 Analysis of each exergy set-Carbon offset 

Considering Table A.8.4, and Fig. A.8.8, for each exergy set, we have: 

➢ Exergy Set A (30%-60%-10%): This exergy set has 60% weight for Labor, while for 

Environment, it is only 10%. Although this exergy set works well for coal SC in Zimbabwe 

with the most sustainable condition (the minimum total exergy) with 36,156,127.01 (MJ), 

in China, it creates the worst sustainable condition with 178,509,576.98 (MJ). 

➢ Exergy Set B (60%-20%-20%): In this set, more weight is assumed for Capital (60%) 

and the same for Labor and Environment (20%). Despite the low sustainability condition 

in coal SC in China (166,472,938.65 MJ), exergy set B operates well in the USA with 

23,177,067.92 (MJ). 

➢ Exergy Set C (20%-50%-30%): In this set, Labor has 50% weight, followed by 

Environment (30%) and Capital (20%), respectively. Exergy set C performs well in terms 

of sustainability in coal SC in India (25,466,158.69 MJ), even though in China, the total 

exergy is a huge amount of 96,953,009.68 (MJ). 

➢ Exergy Set D (20%-40%-40%): In this set, Capital has only 20% while 40% is for both 

Labor and Environment. Despite the high result (low sustainability) in China with 

156,133,267.82 (MJ), exergy set D runs well in Zimbabwe with 25,914,513.09 (MJ). 

➢ Exergy Set E (20%-30%-50%): In this set, 50% is assigned to Environment and 20% and 

30% to Capital and Labor, respectively. Exergy set E operates well (with high 

sustainability) in the USA with 26,724,522.66 (MJ), although the result is worst coal SC 

in China (161,309,694.66 MJ). 

➢ Exergy Set F (30%-10%-60%): In this set, 60% is allocated to Environment and only 

10% Labor. Exergy set F creates top sustainability condition in the USA (21,032,559.94 

MJ), even though the result is not healthy in China (153,294,716.80 MJ). 

➢ Exergy Set G (33%-33%-33%): In this set, all three exergy components have equal 33% 

weight. Even though exergy set G does not perform well (with low sustainability condition) 

in Poland with 146,622,025.05 (MJ), it runs well in Zimbabwe with 31,260,609.82 (MJ). 
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➢ Moreover, exergy Sets B (30-60-10), E (20-30-50) and F (30-10-60) created the minimum 

total exergy for coal SC in the USA, while all exergy sets except Set G (33-33-33) created 

the highest total exergy (the lowest sustainability condition) in China (see Fig. A.8.8). 

 

Appendix 3. The exergy parameters for all countries (Chapter 9) 

 

Table A.9.1: The exergy parameters used in the inventory analysis of each country (Sciubba, 2011) 

Country 𝜶𝒙 𝜷𝒙 𝒆𝒆𝑪𝒂𝒑(MJ/€) 𝒆𝒆𝑳(MJ/WH) 

Afghanistan 0.0017 0.07 1.1 0.41 

The USA 0.145 1.43 2.85 72.82 

Canada 0.021 1.95 3.13 68.61 

Germany 0.557 1.31 3.16 68.25 

Zimbabwe 0.0026 3.9 3.35 70.18 

Japan 0.773 1.9 3.35 70.18 

Australia 0.018 1.69 3.56 71.21 

India 0.0419 1.32 4.34 1.64 

Iran 0.0121 2.94 5.68 3.56 

China 0.0015 0.477 14.01 48.66 

Poland 0.55 0.57 14.02 76.55 

Turkey 0.411 1.35 20.51 91.36 

Min. 0.0015 0.07 1.1 0.41 

Country China Afghanistan Afghanistan Afghanistan 

Max. 0.773 3.9 20.51 91.36 

Country Japan Zimbabwe Turkey Turkey 

 

 

 

 

Fig. A.9.1. The exergy of Capital (ee_Cap) in developed and developing countries. 
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