10,791 research outputs found

    Temporal similarity metrics for latent network reconstruction: The role of time-lag decay

    Full text link
    When investigating the spreading of a piece of information or the diffusion of an innovation, we often lack information on the underlying propagation network. Reconstructing the hidden propagation paths based on the observed diffusion process is a challenging problem which has recently attracted attention from diverse research fields. To address this reconstruction problem, based on static similarity metrics commonly used in the link prediction literature, we introduce new node-node temporal similarity metrics. The new metrics take as input the time-series of multiple independent spreading processes, based on the hypothesis that two nodes are more likely to be connected if they were often infected at similar points in time. This hypothesis is implemented by introducing a time-lag function which penalizes distant infection times. We find that the choice of this time-lag strongly affects the metrics' reconstruction accuracy, depending on the network's clustering coefficient and we provide an extensive comparative analysis of static and temporal similarity metrics for network reconstruction. Our findings shed new light on the notion of similarity between pairs of nodes in complex networks

    Fourteenth Biennial Status Report: März 2017 - February 2019

    No full text

    Language in Our Time: An Empirical Analysis of Hashtags

    Get PDF
    Hashtags in online social networks have gained tremendous popularity during the past five years. The resulting large quantity of data has provided a new lens into modern society. Previously, researchers mainly rely on data collected from Twitter to study either a certain type of hashtags or a certain property of hashtags. In this paper, we perform the first large-scale empirical analysis of hashtags shared on Instagram, the major platform for hashtag-sharing. We study hashtags from three different dimensions including the temporal-spatial dimension, the semantic dimension, and the social dimension. Extensive experiments performed on three large-scale datasets with more than 7 million hashtags in total provide a series of interesting observations. First, we show that the temporal patterns of hashtags can be categorized into four different clusters, and people tend to share fewer hashtags at certain places and more hashtags at others. Second, we observe that a non-negligible proportion of hashtags exhibit large semantic displacement. We demonstrate hashtags that are more uniformly shared among users, as quantified by the proposed hashtag entropy, are less prone to semantic displacement. In the end, we propose a bipartite graph embedding model to summarize users' hashtag profiles, and rely on these profiles to perform friendship prediction. Evaluation results show that our approach achieves an effective prediction with AUC (area under the ROC curve) above 0.8 which demonstrates the strong social signals possessed in hashtags.Comment: WWW 201
    • …
    corecore