2,793 research outputs found

    Towards Continual Reinforcement Learning: A Review and Perspectives

    Full text link
    In this article, we aim to provide a literature review of different formulations and approaches to continual reinforcement learning (RL), also known as lifelong or non-stationary RL. We begin by discussing our perspective on why RL is a natural fit for studying continual learning. We then provide a taxonomy of different continual RL formulations and mathematically characterize the non-stationary dynamics of each setting. We go on to discuss evaluation of continual RL agents, providing an overview of benchmarks used in the literature and important metrics for understanding agent performance. Finally, we highlight open problems and challenges in bridging the gap between the current state of continual RL and findings in neuroscience. While still in its early days, the study of continual RL has the promise to develop better incremental reinforcement learners that can function in increasingly realistic applications where non-stationarity plays a vital role. These include applications such as those in the fields of healthcare, education, logistics, and robotics.Comment: Preprint, 52 pages, 8 figure

    Options of Interest: Temporal Abstraction with Interest Functions

    Full text link
    Temporal abstraction refers to the ability of an agent to use behaviours of controllers which act for a limited, variable amount of time. The options framework describes such behaviours as consisting of a subset of states in which they can initiate, an internal policy and a stochastic termination condition. However, much of the subsequent work on option discovery has ignored the initiation set, because of difficulty in learning it from data. We provide a generalization of initiation sets suitable for general function approximation, by defining an interest function associated with an option. We derive a gradient-based learning algorithm for interest functions, leading to a new interest-option-critic architecture. We investigate how interest functions can be leveraged to learn interpretable and reusable temporal abstractions. We demonstrate the efficacy of the proposed approach through quantitative and qualitative results, in both discrete and continuous environments.Comment: To appear in Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20

    Sample efficiency, transfer learning and interpretability for deep reinforcement learning

    Get PDF
    Deep learning has revolutionised artificial intelligence, where the application of increased compute to train neural networks on large datasets has resulted in improvements in real-world applications such as object detection, text-to-speech synthesis and machine translation. Deep reinforcement learning (DRL) has similarly shown impressive results in board and video games, but less so in real-world applications such as robotic control. To address this, I have investigated three factors prohibiting further deployment of DRL: sample efficiency, transfer learning, and interpretability. To decrease the amount of data needed to train DRL systems, I have explored various storage strategies and exploration policies for episodic control (EC) algorithms, resulting in the application of online clustering to improve the memory efficiency of EC algorithms, and the maximum entropy mellowmax policy for improving the sample efficiency and final performance of the same EC algorithms. To improve performance during transfer learning, I have shown that a multi-headed neural network architecture trained using hierarchical reinforcement learning can retain the benefits of positive transfer between tasks while mitigating the interference effects of negative transfer. I additionally investigated the use of multi-headed architectures to reduce catastrophic forgetting under the continual learning setting. While the use of multiple heads worked well within a simple environment, it was of limited use within a more complex domain, indicating that this strategy does not scale well. Finally, I applied a wide range of quantitative and qualitative techniques to better interpret trained DRL agents. In particular, I compared the effects of training DRL agents both with and without visual domain randomisation (DR), a popular technique to achieve simulation-to-real transfer, providing a series of tests that can be applied before real-world deployment. One of the major findings is that DR produces more entangled representations within trained DRL agents, indicating quantitatively that they are invariant to nuisance factors associated with the DR process. Additionally, while my environment allowed agents trained without DR to succeed without requiring complex recurrent processing, all agents trained with DR appear to integrate information over time, as evidenced through ablations on the recurrent state.Open Acces
    • …
    corecore