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Abstract
We present algorithms to effectively represent a set of Markov decision processes (MDPs), whose

optimal policies have already been learned, by a smaller source subset for lifelong, policy-reuse-
based transfer learning in reinforcement learning. This is necessary when the number of previous
tasks is large and the cost of measuring similarity counteracts the benefit of transfer. The source
subset forms an ‘ε-net’ over the original set of MDPs, in the sense that for each previous MDP
Mp, there is a source Ms whose optimal policy has < ε regret in Mp. Our contributions are
as follows. We present EXP-3-Transfer, a principled policy-reuse algorithm that optimally reuses
a given source policy set when learning for a new MDP. We present a framework to cluster the
previous MDPs to extract a source subset. The framework consists of (i) a distance dV over MDPs
to measure policy-based similarity between MDPs; (ii) a cost function g(·) that uses dV to mea-
sure how good a particular clustering is for generating useful source tasks for EXP-3-Transfer and
(iii) a provably convergent algorithm, MHAV, for finding the optimal clustering. We validate our
algorithms through experiments in a surveillance domain.
Keywords: Reinforcement learning, transfer learning, Markov decision process, MDP abstrac-
tions, policy reuse, Markov chain Monte Carlo, discrete optimisation.

1. Introduction

Reinforcement learning (RL) in Markov decision processes (MDPs) is a well known framework in
machine learning for modelling artificial agents (Puterman, 1994; Sutton and Barto, 1998), where
the agent’s task is one of sequential decision making. While problems such as policy learning in
these MDPs are well posed in terms of an objective such as maximising the expected reward, they
are often based on a specific instance of an underlying Markov Decision Process model which may
or may not be explicitly known to the learning agent.
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Realistic agents must cope with environments with variability, wherein a process generates
many instances of MDPs within which the agent must now solve the optimisation problem. Finding
optimal policies with respect to an unrestricted family of possible MDPs is not only intractable, but
often leads to highly conservative and not practicable solutions. However, many realistic environ-
ments actually occupy a middle ground.

In many reinforcement learning problems, that are of great interest in practice, the main source
of complexity is partial variability in task description rather than a complete change in the domain.
Stated in the language of MDPs, these domains involve a family of possible reward and transition
functions over a shared state-action space. This is typically the result of non-stationary behavior of
some component that describes the problem. One class of problems is where the human-machine
interaction setting remains the same, while the participants change. A recent, highly successful
example of such a problem is that of website morphing (Hauser et al., 2009). In this problem, the
goal is to present to the user of a website a view/interface adapted to the needs and skill level (savvy,
newbie etc.) of that particular user. The interface to present to a user is determined adaptively based
on the sequence of her choice of links. So, even though the setting (i.e. the website) remains the
same , the dynamics defining the problem (the links the user might choose) changes with each user –
i.e. each user corresponds to a new task and corresponding change in problem dynamics. Given the
change in dynamics, the algorithm has to determine the best policy/sequence of actions (sequence
of interfaces to present). Note that since the algorithm knows that a new user has arrived at the
homepage, it always knows if the dynamics may have changed – but not how it has changed. In
the MDP formalism, each task corresponds to a particular reward and transition function, while the
state and action space remain the same across tasks. Additionally, the reinforcement learning agent
is always told when the dynamics/task have changed.

In this paper, we present an approach to dealing with such problems that is based on the notion
of transfer learning. We view the new task instance as being similar to previously experienced ones,
although we have no explicit measurement of how similar the new task instance is to any previously
seen one. Our objective then is to devise an efficient transfer learning method for reinforcement
learning in MDPs (Taylor and Stone, 2009) , that enables learning agents to learn efficiently enough
to be useful in domains as the one mentioned above.

As a motivating example that we develop further in our experiments, consider a surveillance
agent that is monitoring a large geographical region (this is a variant of the kinds of problems
that are considered, for instance, in (An et al., 2012)). The agent faces a sequence of monitoring
problems where each problem corresponds to the pattern in which infiltrators appear in different
locations. If two tasks have similar infiltration patterns, then the same surveillance policy may
be good for both of them. During each task, the goal of the agent is to learn the regions where
infiltrators appear and choose the appropriate surveillance policy. We do not expect the patterns to
be completely different every time, but at the same time we cannot completely rule out a new pattern
emerging. In the former case, we should recognize this repetition and take advantage of this fact by
reusing old surveillance policies. In the latter case, we should also determine that the new scenario
is novel and learn an appropriate policy for that scenario. Furthermore, if the number of previous
patterns becomes too large, we also need to compactly re-represent them so that the procedure for
determining the correct way to act is more sample efficient.

Our setting of MDPs with changing transition and reward functions are typically referred to as
non-stationary MDPs and has been considered before (Nilim and Ghaoui, 2005), (Yu et al., 2009)
(Yu and Mannor, 2009). In these problems, the goal of the learner is to take actions in such a way
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so as to perform as well as the stationary policy which is optimal in hindsight with respect to all the
transition and reward function pair the MDP attained. Note that for a specific pair, this policy may
be substantially worse than the optimal policy for that pair. Our approach in this paper represents
an orthogonal setting, wherein we consider the case where the learner tries to track the optimal
policy – i.e., always perform as well as the best policy for the current set of transition and reward
function – with the proviso that the learner is told when the dynamics have changed. We also require
the learner to, if possible, perform better than ‘pure’ reinforcement learning algorithms applied to
specific transition and reward functions by transferring information from the transition and reward
functions for which the optimal policy was learned previously.

More formally, in this paper we consider TLRL for the case of a ‘lifelong’ learning agent that
learns a (possibly never-ending) sequence of MDPs which are defined on the same discrete state
and action space but differ in terms of the transition and reward distributions. We assume the
distribution generating the sequence is unknown and unlearnable (for instance, in the motivating
surveillance problem described above, the infiltration pattern may depend on the internal variables
of the infiltrators that are not known to us). In this setting, the goal of the agent is to, if possible,
reuse the optimal policies in the previous MDPs in order to learn the new MDP more efficiently.
In this continual setting, we assume that the agent operates in the new MDP for a fixed number of
episodes, and hence we measure efficiency by the total reward accumulated while learning the new
task during these fixed number of episodes. Reusing a policy means that we should try the optimal
policies of the previous MDPs in the new MDP and if one results in efficient behavior we should
keep using it. However, as we described above, a problem in this setting is that, when the number
of previous tasks become too large, transfer becomes ineffective as the agent spends too much time
testing the old policies. In this instance, one possible solution to this problem is to find a subset of
the N previous policies, which we call source policies, that are, in a well-defined and useful sense,
representative of all the N previous policies (see Section 1.1 for alternative encodings). In other
words, the source policies should form the analogue of an ε-net in a metric space (Kolmogorov and
Fomin, 1970) over the space of previous MDPs with respect to an appropriate distance over MDPs.
In this paper we present a clustering based approach to finding this smaller subset of source policies.

Our overall approach is illustrated in figure 1. The main idea is to cluster the N previous MDPs
into c clusters, where the number c and the clusters themselves are to be determined via discrete
optimization, and then choose the representative element of each cluster to obtain the source MDPs.
The optimal policies of the source MDPs then become the source policies. In our approach to
choosing the clustering and the corresponding source policies, we attempt to ensure a-priori that the
chosen source policies are a good representative of the previous tasks for the purposes of transferring
to the unknown target task.

In particular, we define a transfer learning algorithm, EXP-3-Transfer, with performance bound
g(c) that depends on the number c of source policies. Hence this explicitly measures how good
the size of the clustering c is. We are now left with the task of choosing the clustering and the
corresponding source policies. To that end, we define a distance function dV between two MDPs
that takes the distance between two MDPs to be how well the optimal policy of one MDP performs
in the other (this in turn is measured as the difference between the value of the optimal policy of the
former and the value of the optimal policy of the latter at the start states of the latter). Hence, given
that our goal is to reuse optimal policies of one MDP in another, we choose our clustering so that
within each cluster the pairwise dV distances between the elements of the cluster are low. Similarly,
we choose the source policy for each cluster to be the optimal policy of the MDP in that cluster
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Choose one MDP per cluster 
as a representative

MDP Repository

Clustering 
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Optimal policies of representatives
are source policies for policy reuse

Episode 1

Policy Reuse Transfer 
using source policies
ρ
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ρ
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ρ
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ρ
4 For T Episodes 

Episode 2

Episode 3

Episode T

EXP-3-Transfer chooses one policy from
                    and executes it for K  steps.ρ
1
ρ
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ρ
3
ρ
4 1

EXP-3-Transfer chooses one policy from
                    and executes it for K  steps.ρ
1
ρ
2
ρ
3
ρ
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EXP-3-Transfer chooses one policy from
                    and executes it for K  steps.ρ
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ρ
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ρ
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EXP-3-Transfer chooses one policy from
                    and executes it for K  steps.ρ
1
ρ
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ρ
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4 T

Find a good clustering of the MDPS
using Search-Clusterings Algorithm

Figure 1: This figure illustrates our overall algorithmic approach. Our method consists of two parts.
In the first part (left pane) we use the Search-Clusterings algorithm to find a good clustering of the
MDPs in our repository, which are then used to generate a source set of policies. In the second part
(right pane) these policies are used by EXP-3-Transfer to perform transfer using policy reuse in a
new MDP. Reducing the number of policies input to EXP-3-Transfer helps it choose the best policy
quickly. On the other hand, reducing policies risks leaving out a policy with good performance in
the new MDP. The bulk of the paper is dedicated to deriving a principled way to trade off these two
contradictory goals .
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which has low dV distance with respect to all the other elements. Hence, the cost of a clustering
with c clusters is, roughly speaking, g(c) + ε where ε is a measure of the inter-element dV distances
in the clusters.

Given the cost function, we show that it is NP-hard to find the optimal clustering. So, we
introduce a Markov chain Monte Carlo based discrete optimization algorithm to find it. The al-
gorithm is an extension of the Metropolis-Hastings algorithm, which we call Metropolis-Hastings
with Auxiliary Variables (MHAV in short), and can also be thought of as an extension to simulated
annealing (Kirkpatrick et al., 1983) with stochastic temperature changes. Simulated annealing is
a well known algorithm for discrete optimization, but requires carefully setting up an infinite se-
quence of parameters known as the temperature schedule. Determining this schedule in practice to
ensure convergence is acknowledged to be very difficult, and practically an art form. In our version
of the algorithm, we search over both the temperature and the optimal point simultaneously, thereby
handling the problem of setting the schedule automatically.

To summarize, our overall continual transfer algorithm is as follows. The agent continually
learns optimal policies for MDPs presented in sequence. When learning the optimal policy for a
particular MDP, the learning agent uses the optimal policies of the previously solved MDPs in a
policy reuse transfer learning algorithm. To make transfer more effective, at fixed intervals, the
agent clusters the previous MDPs to derive a small subset as the set of source MDPs, whose optimal
policies are then used as input to the policy reuse algorithm. The clustering is chosen so as to opti-
mize the regret of the transfer algorithm, and is found by using a convergent discrete optimization
algorithm.

We conclude this brief introduction to our method by noting that our transfer algorithm EXP-
3-Transfer is in fact an extension of the well known EXP-3 algorithm (Auer et al., 2002b) for
non-stochastic multi-armed bandits, and our performance bound g(c) is in fact a regret bound of
the type well known in bandit algorithm literature. Our strategy is to cast the policy reuse transfer
learning problem as a bandit problem, with ‘pure reinforcement learning algorithm’ as one arm, and
the c source policies as the remaining arms. The regret bound for EXP-3 ensures that we minimize
negative transfer by never performing much worse than pure reinforcement learning. We will now
discuss related work.

1.1 Related Work

As evidenced by the survey paper (Taylor and Stone, 2009), a significant amount of work has been
done on transfer learning in reinforcement learning. As mentioned previously, lifelong learning
in reinforcement learning was first explicitly considered in (Mitchell and Thrun, 1993; Thrun and
Mitchell, 1995; Thrun, 1996) in the context of learning in robots. In these works, the main aim was
to learn the dynamics of robot motion in one circumstance using a function approximator (such as
neural networks) and then use these learnt dynamics as an initial bias in a new situation using an
explanation based learning framework.

In terms of recent work on TLRL, two different strands are related to our work. The first is
work on policy reuse and the second on task encoding. The first and, to the best of our knowledge,
the only authors to have considered policy reuse are (Fernandez et al., 2006, 2010). The algorithms
presented there, at the beginning of every episode, choose between different source policies by using
a softmax criteria on accumulated reward and then use the chosen policy as an initial exploration
policy before switching to Q-learning exclusively. In contrast, we extend the EXP-3 algorithm for
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multi-armed bandits to choose between source policies and Q-learning, and as a result inherit its
theoretical guarantees. Additionally, they do not consider the problem of source task selection,
whereas in our work this is a major focus.

Two closely related works are (Talvitie and Singh, 2007) and (Azar et al., 2013) where the
authors consider the best way to choose between a set of stationary policies. The main distinction
between policy reuse and these is the requirement in the former to not perform much worse than a
base RL algorithm (which is also our requirement).

We now look at previous work that uses a smaller set of source tasks to represent the complete
set of previous tasks. The problem of source task selection through clustering seems to have been
considered only by Carroll and Seppi (2005). They introduce several measures for task similarity
and then consider clustering tasks according to those measures. The distance functions introduced
were heuristic, and the clustering algorithm used was a simple greedy approach. The evaluation of
their method was on several toy problems. In contrast, we derive a cost function for clustering in a
principled way to optimize the regret of our EXP-3-Transfer policy reuse algorithm. Additionally,
instead of constructing the cluster in a greedy fashion, we search through clustering space using a
convergent discrete optimization algorithm.

Recent work that also chooses selectively from previous tasks is (Lazaric et al., 2008), (Lazaric
and Restilli, 2011). The setting for this paper is a collection of tasks defined on the same state-
action space with the tasks and the state-action-state triples for the different tasks generated i.i.d.
(similar to the multi-task transfer in classification setting considered in (Baxter, 2000)) rather than
sequentially as is typical in RL. Under this setting the authors are able to bound the error when
samples from one task are used to learn the new task. This is quite a different setting from us as it is
‘batch’ RL rather than the typical online and sequential RL and measures similarity in terms of the
actual transition and reward functions rather than policies or values. Additionally, the analysis and
algorithms are derived under the assumption of a fixed set of prior tasks rather than the continual
lifelong learning setting we consider.

Source task selection is not the only possible way to represent previous tasks, and the overall
goal of finding abstractions for exploiting commonality has received considerable attention in the
transfer learning community. Most of the work done in deriving abstractions for the purposes of
transfer has been for MDP homomorphisms (Ravindran and Barto, 2003; Ferns et al., 2004; Ravin-
dran, 2013; Konidaris and Barto, 2007; Sorg and Singh, 2009; Castro and Precup, 2010). In these
works, similarity between MDPs is defined in terms of bisimulation between states of different
MDPs. Bisimulation is a concept borrowed from process algebra. In the context of transfer learning
in MDPs, at its most general formulation, a bisimulation is an isomorphism f, g between the state
and action spaces that is preserved under the transition distribution – that is for every state-action-
state triple s, a, s′, T1(s′|s, a) = T2(f(s′)|f(s), g(a)) where Ti are the transition distribution of the
two MDPs. Unfortunately, in this pure form, bisimulation is absolute (two MDPs are either bisim-
ilar or not) and does not take into account the reward function. And so, in the papers mentioned
above, this basic notion was extended in various ways to address both these issues. However, one
of the main issues with bisimulation is computational cost, and this remains so in the extensions as
well. Another issue with these approaches is that, as observed by Castro and Precup (2010), bisim-
ulation is a worst case metric (two states may have identical optimal actions but still be completely
different according to the metric) and as a result requires heuristic modifications.

Technically, the main difference between our approach and bisimulation based methods is that
the similarity between different MDPs are ultimately determined by distance between value func-
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tions. In our case, however, we are interested in distance in terms of policy. As a result, even though
two tasks might be quite different in terms of the value function they might be identical in terms of
the optimal policy, and our approach will capture this (as noted earlier, failing to do this was one of
the issues with bisimulation based approaches).

Another interesting line of work that uses a different approach to abstracting MDPs is the proto-
value function based approach of (Ferrante et al., 2008). Proto-value functions were introduced
in (Mahadevan, 2005) as an efficient way to represent the value function for large state spaces as a
linear combination of functions, which are called proto-value functions. The main innovation in this
approach is that, in representing the value function as a real function over state space, the state-space
is treated as a manifold where the distance between points/states is determined by the reachability
graph of the MDP. This idea of a spectral-decomposition of the value function naturally lends itself
to transfer learning, as, given a new task, we can imagine using the proto-value functions learned
in a previous task to initialize the new value function in the new task. It has been noted that proto-
value function based transfer has issues in terms of scalability and tractability. The main difference
between this and our work is that, as with the homomorphism based approach, our similarity notion
is based on policy similarity, while theirs is based on similarity between value functions. Identifying
policy similarity is more desirable because tasks similar in terms of value function will be similar
in terms of policy, but not necessarily the other way round.

A somewhat different approach to finding MDP abstractions was adopted in (Ammar et al.,
2012), where MDPs were related by mapping state action state triples to a lower dimensional space,
and consider triples to be equivalent if their representations were found to be close. The authors were
able to transfer between tasks such as inverted pendulum, cart pole and mountain car, showing that
in these cases their approach was able to discover the fact that the differential equations describing
these domains have similar/identical forms.

Finally, our work can also be related to the notion of equivalence between probabilistic models,
which has been influential in early work on Bayesian network learning. For instance, Chickering
and collaborators wrote a series of papers in which the notion of event equivalence and score equiv-
alence is used to render the problem of searching over network structures somewhat tractable. In
(Heckerman and Chickering, 1995), it is shown that the notion of event equivalence, i.e., that two
Bayesian networks should be treated as similar if they agree on the independence and dependence
relationships between random variables, can be used to define local structure edit operations that
enable learning of network structures. Subsequently, in (Chickering and Boutilier, 2002), (Chick-
ering, 2003) this idea is developed further to show that by considering this notion of equivalence it
is possible to achieve optimal structure identification with an essentially greedy procedure. We take
inspiration from such work, but also note that our task of comparing two sequential decision making
problems differs from that of making predictions with a probabilistic model, calling for new notions
of process similarity and corresponding algorithms for transfer.

1.2 Paper Organization

In the following we proceed as follows. We present the notation and some fundamental notions in
Section 2. Then we define our transfer learning algorithm and framework for measuring distance
in Section 4 respectively. Sections 5 and 6 presents our clustering algorithm and the full continual
transfer algorithm. We then present our experiments in Section 7 and then end with a conclusion in
Section 8.
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2. Preliminaries

We use , for definitions, Pr to denote probability and IE for expectation. A finite MDP M is
defined by the tuple (S,A,R, P,R, γ) where S is a finite set of states, A is a finite set of actions
andR = [l, u] ⊂ IR is the set of rewards. P (s′|s, a) is a the state transition distribution for s, s′ ∈ S
and a ∈ A while R(s, a), the reward function, is a random variable taking values in R. Finally,
γ ∈ [0, 1) is the discount rate.

A (stationary) policy π forM is a map π : S → A. For a policy π, the Q functionQπ : S×A →
IR is given by Qπ(s, a) = IE[R(s, a)] + γ

∑
s′ P (s′|s, a)Q(s, π(s′)). The value function for π is

defined as V π(s) = Qπ(s, π(s)). An optimal policy π∗ satisfies V π∗(s) ≥ V π(s) for all policy π
and state s – it can be shown that every finite MDP has an optimal policy. V π∗ is written V ∗, and
the corresponding Q function is given by Q∗(s, a) = IE[R(s, a)] + γ

∑
s′ P (s′|s, a)Q∗(s′, π∗(s′)).

When the agent acts in the MDP, at each step it takes an action a at a state s, and moves to the
next state s′ and the reward r. The goal of the agent is to learn π∗ from these observations and then
choose the action π∗(s) at each state. If there are multiple optimal policies, we will designate the
first policy in a lexicographical order as the canonical policy. We will assume that Rmax is a known
upper bound on the reward function. Without loss of generality, in the sequel we assume that there
is a single initial state s◦. We call a policy π ε-optimal if V ∗(s◦)− V π(s◦) ≤ ε

The transfer learning setting. In the transfer learning setting, we are given previous MDPs
Mi, 1 ≤ i ≤ N and we transfer from these tasks to learn the N + 1st MDPMN+1. The learning
ofMN+1 runs for T episodes. We denote the optimal policy of the ith previous MDP by π∗i , and
the value of a policy π in MDP i as V π

i . Similarly, we denote the reward and transition functions of
the ith MDP by Pi and Ri respectively. We will assume that the rewards of all MDPs fall within the
range [Rmin, Rmax] and we define ∆R , Rmax −Rmin.

3. The Policy Reuse Problem

In this section we first concretely define the problem of policy-reuse for transfer learning and then
define our algorithm for solving this problem. We define the goal of policy reuse to be to design an
algorithm that runs for T episodes on the target taskMN+1 and, given a collection of source policies
ρ1, ρ2, · · · , ρc and the Q-learning algorithm/policy, performs nearly as well as the best policy (in
hindsight) in this collection over the T episodes. This requirement has two important implications.
First, since the set of policies contain Q-learning, and as Q-learning converges to the optimal policy,
it means the algorithm is required to perform nearly as well as a policy that converges to the optimal
policy – in other words, the algorithm should avoid negative transfer. Second, if there is a source
policy that is near-optimal, then the algorithm is also required to perform nearly as well as that
near-optimal policy – in other words, the algorithm should transfer from the new to the old task if
possible.

To derive our algorithm we show that policy reuse may be cast as an instance of the non-
stochastic multi-armed bandits problem, and hence the classic EXP-3 algorithm (Auer et al., 2002b)
may be extended to solve policy reuse. We call our extension EXP-3-Transfer and we derive regret
bounds for this algorithm (which is similar to the bounds for EXP-3). In particular we show that
EXP-3-Transfer performs nearly as well as the best policy in the collection described above, in ex-
pectation with respect to the randomness in the algorithm and the reward and transition function of
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MN+1. Hence, this algorithm satisfies the requirements we laid out for a policy reuse algorithm.
We now expand these ideas.

3.1 Defining The Policy Reuse Problem

In the policy reuse transfer problem, we have the target taskMN+1 and a set of c source policies
ρ1, ρ2, · · · , ρc (in general, ρis are arbitrary – but in this paper, each ρi is the optimal policy π∗j of
someMj our repository, and Section 4 shows how to choose the ρis in a principled way). It seems
that policy reuse as a method for transfer was first introduced in (Fernandez et al., 2006, 2010). The
algorithm introduced was called Probabilistic Policy Reuse (PPR), and the goal of the algorithm
was to balance using the c source policies and pure reinforcement learning policy (ε-greedy Q-
learning) so that the learning algorithm converges faster than running pure RL by itself. The basic
idea in PPR is as follows. At the beginning of each episode, PPR chooses a policy from among the
source policies and the ε-greedy Q-learning policy using a softmax criterion on the observed returns
of the policies in previous episodes. It then initiates a policy-reuse episode, where at each step it
probabilistically chooses between ε-greedy Q-learning and the chosen policy, with probability of
choosing ε-greedy Q-learning going to 1 during the episode. In essence, the c source policies serve
as an initial exploration policy, so that if they to take the agent through paths of the optimal policy,
it would result in faster learning of the optimal policy.

There are several aspects of the above algorithm that are noteworthy. First, even if the c source
policies contain the optimal policy, the algorithm would deterministically switch to Q-learning after
the initial phase. Another aspect is that, while there is an intuitive connection between the soft-max
criterion and the benefit of using a policy, the actual connection is not made rigorous. Both these
issues arise from the fact that the goal of policy reuse was not defined concretely in (Fernandez et al.,
2006). So, taking cue from the definition of online learning algorithms (Vovk, 1990; Littlestone and
Warmuth, 1994; Cesa-Bianchi and Lugosi, 2006), we define the policy reuse problem concretely as
designing an algorithm that chooses policies at every episode in such a way that it does not perform
much worse than any of the c policies or Q-learning over the T episodes. As discussed above, this
requirement implies both that (i) the algorithm avoids negative transfer and (ii) transfers from/reuses
a good policy (if one exists). Formally,

Definition 1 (The policy reuse problem) Let transfer learning for the target task MN+1 be run
for T episodes, and let x̄i(t) ,

∑Kt
n=1 γ

nrn be the discounted return accumulated by running ρi
(with ρc+1 being the non-stationary Q-learning policy) at episode t, with rn the reward at step n and
Kt the length of the episode. Let the total discounted reward for policy ρi be Ri(T ) =

∑T
t=1 x̄i(t).

Let RA(T ) be the total discounted reward accumulated by a policy-reuse algorithm A. Then we
require that for each i

IERN+1,PN+1
[IEA[Ri(T )−RA(T )]] = o(T )

where IERN+1,PN+1
is the expectation is with respect the dynamics ofMN+1 and IEA is the expec-

tation with respect to randomization in the algorithm.

In the following subsections we present the EXP-3-Transfer algorithm for solving this problem and
then analyze its performance.
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3.2 EXP-3-Transfer For Policy Reuse

In this section, we introduce the non-stochastic multi-armed bandits problem (Auer et al., 2002b)
and show that the policy reuse problem may be cast as in instance of this problem. We then present
EXP-3-Transfer to solve this problem, which is an extension/modification of the classic EXP-3
algorithm (Auer et al., 2002b) for non-stochastic multi-armed bandits. We discuss the difference
between EXP-3 and EXP-3-Transfer in Section 3.3.

NON-STOCHASTIC MULTI-ARMED BANDITS

The non-stochastic multi-armed bandits problem is defined as follows.

• There are c + 1 arms where each arm i has a payoff process xi(t) associated with it. No
assumptions are made on the payoff process xi(t) and they may in fact be adversarial (this is
the reason the problem is called non-stochastic).

• A learner operates for T steps and at each step t it pulls/selects one of the arms it.

• At step t, the learner obtains payoff xit(t) and only observes the payoff of the arm it it has
selected.

The goal of the learner is to minimize its regret with respect to the best arm, that is choose arms
i1, i2, · · · , iT to minimize the quantity

Reg(i1, i2, · · · , iT ) , max
i

T∑
t=1

xi(t)−
T∑
t=1

xit(t)

A randomized algorithm, called EXP-3, was developed in (Auer et al., 2002b) which minimizes the
expected regret, where the expectation is taken with respect to the randomization in the algorithm.
It turns out that the regret of EXP-3 satisfies the requirements for the regret RA in Definition 1
(we expand on this in the next subsection). This implies that the non-stochastic bandits approach,
extended to our setting, solves the problem of policy reuse.

POLICY REUSE AS NON-STOCASTIC MULTI-ARMED BANDITS

We may cast the policy reuse problem as a non-stochastic bandit problem as follows.

• Each source policy ρi and the the Q-learning policy corresponds to an arm, giving a total of
c+ 1 arms.

• At each step t in the bandit problem, we (the learner) select a policy/arm ρit , and execute it
for an episode in the targetMN+1 (so a step in the multi-armed bandit problem corresponds
to an episode in the policy reuse problem).

• The payoff we receive for executing policy ρit (i.e. choosing arm it) is the (normalized) total
discounted reward by executing ρit for that episode: xit(t) = [∆R(1− γ)−1][

∑Kt
n=1 γ

nrn −
Rmin(1 − γ)−1], with rn the reward at step n and Kt the length of the episode (the normal-
ization is required as EXP-3 expects arm payoffs to lie in [0, 1]).

10
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EXP-3-TRANSFER

Given the above transformation, our algorithm EXP-3-Transfer for choosing the policy it at step
t is given in pseudocode form in Algorithm 1. The basic idea is straightforward – at each step it
chooses a policy with probability proportional to an adjusted cumulative observed reward of the
policy and a term to encourage exploring the policy if it has not been selected recently. The rewards
are adjusted to compensate for the fact that, at each step t, the algorithm observes the payoff of only
ρit , the policy chosen at that step (see Section 3.3 for details on the adjustment). In addition, if the
algorithm determines that with high probability a particular source policy (i.e. all but the Q-learning
policy) is worse than some other source policy, then it eliminates it from further consideration. The
idea is that if we remove an arm we know to be sub-optimal, then we save the episodes that would
have been wasted trying that policy.

In detail, the main loop of EXP-3-Transfer runs from line 3 to line 18. Ct contains all the
policies not yet eliminated by EXP-3-Transfer. Line 4 computes the probability of choosing a
policy, which is proportional to the adjusted observed payoff of each policy, plus the exploration
term (β/|Ct|). In the next two steps, a policy is chosen probabilistically, executed and its payoff
observed and normalized (normalized because EXP-3 expects payoffs to lie in [0, 1]). In line 7 we
record the payoff of the executed policy for use in the elimination step. In lines 8 and 9, the adjusted
payoffs of the policies are computed, and their weights updated, respectively. Finally, steps 11 to
17 looks at each stationary policy in Ct, and checks to see if average non-adjusted payoff so far
satisfies the elimination condition. If so, the policy is removed from Ct. The elimination condition
is justified/obtained from the theorems below which derive the regret bound of the algorithm.

3.3 Analysis of EXP-3-Transfer

To begin analysis of EXP-3-Transfer, we first note that the payoffs/discounted cumulative reward
x̄i(t) of a source policy ρi is i.i.d., while the payoff of the Q-learning arm has an unknown non-
stationary distribution (because the choice of actions in Q-learning is non-stationary). Our strategy
for analyzing the performance despite the non-stationarity, is to assume that there is an unknown ad-
versary that is generating the payoffs for Q-learning and then bound the expected worst-case regret
of EXP-3-Transfer with respect to this adversary (this is exactly the strategy used to analyze EXP-
3). In particular, in our adversarial/worst-case analysis we assume that there are three participants
Nature, Adversary and Player, who make the following choices, in that order.

1. Player chooses the number of episodes T and the source policies ρ1, ρ2, · · · , ρc, and all the
other parameters for EXP-3-Transfer

2. Adversary chooses the payoffs for T episodes of Q-learning

3. Nature chooses the episodic payoffs x̄i(t) for each of the policies ρi for 1 ≤ t ≤ T , according
the i.i.d. distribution that governs the payoffs (the distribution is determined by PN+1, RN+1,
the transition and reward functions respectively ofMN+1, and ρi).

4. Player now runs EXP-3-Transfer for T episodes, and observed payoffs xit are the ones chosen
by Nature and Adversary as above.

The important thing to note is that in the above framework, there are two sources of random-
ness/stochasticity – first in step 3 due to the randomization due to the transition and reward functions

11
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Algorithm 1 EXP-3-Transfer(M, {ρ1, ρ2, · · · , ρc}, β, T, l,∆R, δ)
1: Input: MDPM, policies 1 to c: the source policies ρ1, · · · , ρc and EXP-3 parameters β and
T ; l the interval at which to eliminate policies; ∆R, upper bound on the range of the per step
rewards; δ, confidence parameter for eliminating source policies.

2: Initialize:

• Set Q-learning policy as the c+ 1th policy.

• Set wi(1) = 1, let xi(t) be the payoff of the policy i at step t; let C1 ,
{ρ1, ρ2, · · · , ρc,Q-learning policy}.

• Set ni ← 0, where 1 ≤ i ≤ c, and ni is the number of times ρi has been used; set zi ← 0,
where 1 ≤ i ≤ c, and zi is the total normalized discounted reward observed for ρi when
it was executed.

3: for t = 1 to T do
4: If ρi ∈ Ct then set pi(t) = (1− β) wi(t)∑

ρi∈Ct
wi(t)

+ β
|Ct| ; else set pi(t) = 0.

5: Select policy ρit for step t to be i with probability pi(t), increment nit ← nit + 1.
6: Execute policy ρit for one-episode, and observe discounted payoff x̄it(t); normalize xit(t)←

[x̄it(t)−Rmin(1− γ)−1]/[∆R(1− γ)−1].
7: if ρit is not the Q-learning policy then set zit ← zit + xit(t).
8: For each ρi ∈ Ct, set

x̂i(t)←

{
xi(t)/pi(t) if i = it

0 otherwise
(1)

9: For each ρi ∈ Ct, set wi(t+ 1)← wi(t) exp[βx̂i(t)/(c+ 1)].
10: Set Ct+1 ← Ct.
11: if t mod l = 0 then
12: for k = 1 to c, ρk ∈ Ct do
13: if ∃ρj ∈ Ct, j ≤ c, such that, for ε = zj/nj − zk/nk, we have

ε/2 >
√
− ln(δ/2c)(2nj)−1 and ε/2 >

√
− ln(δ/2c)(2nk)−1 then

14: Set Ct+1 ← Ct − {ρk}.
15: end if
16: end for
17: end if
18: end for

ofMN+1 and second in step 4 due to choices made by EXP-3-Transfer. As such, our regret bound
holds in expectation with respect to these two sources, which we denote by IER,P and IEE3T , re-
spectively. The former is expectation with respect to the transition and reward function inMN+1,
while the latter is expectation with respect to EXP-3-Transfer. It is crucial to note that in taking
these expectations, we assume that the choices made by the adversary in step 2 are taken to be fixed
(this is identical to what was done in the analysis of EXP-3 in Auer et al. (2002a)). Our main result
for this section is as follows:

12
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Theorem 2 For any source policy ρj ∈ CT ,

V
ρj
N+1 −

1

T
IERN+1,PN+1

[
IEE3T

[
T∑
t=1

x̄it(t)

∣∣∣∣ρj ∈ CT
]]
≤ ∆R

1− γ

(
|CT |√
c+ 1

+
√
c+ 1

)
× (2)√

(e− 1) ln(c+ 1)/T

≤ ∆R

1− γ
2
√
e− 1

√
(c+ 1) ln(c+ 1)/T

=
∆R

1− γ
2.63

√
(c+ 1) ln(c+ 1)/T (3)

when the algorithm is run with β = min{1,
√

(c+ 1) ln(c+ 1)/[T (e− 1)]}. Here IERN+1,PN+1
is

expectation with respect to the distributions RN+1 and PN+1 ofMN+1, while IEE3T [·|ρj ∈ CT ]
is the expectation with respect to randomization of EXP-3-Transfer, conditional on the event that
ρj ∈ CT .

Additionally, with probability 1 − δ, with respect to randomization due to the target MDPM,
for all source policy ρi 6∈ CT , there is at least one ρi′ ∈ CT such that

V ρi
N+1 < V

ρi′
N+1

The proof is given in Appendix A, but in the following we discuss the bound itself. For the sequel,
we define the following function:

g(c, T ) , ∆R(1− γ)−12.63
√

(c+ 1) ln(c+ 1)/T (4)

This is the right side of the bound above (we will also use it in Section 4 to quantify how good a
particular set of source policies is for the purpose of transfer).

The first issue we need to check is whether the bound satisfies the requirements we set out in
Definition 1. The definition requires that IERN+1,PN+1

IEA[Ri(T ) − RA(T )] = o(T ) where Ri(T )
and RA(T ) are the total discounted reward over T episodes and the expectations are with respect
the randomization due to reward and transition function of MN+1 and the randomization in the
algorithm (i.e. IEA ≡ IEE3T ).

We consider the edge case when δ = 0, and so no arms are ever eliminated and all ρj ∈ CT . In
this case, for any ρj ,

IERN+1,PN+1
[IEA[Rj(T )]] = IERN+1,PN+1

[Rj(T )] = T × V ρj
N+1, (5)

which is T times the first term in the left hand side of the bound. Now, for any ρj

IERN+1,PN+1
IEA[RA(T )] = IERN+1,PN+1

(
PE3T (ρj ∈ CT )IEE3T

[
T∑
t=1

x̄it(t)

∣∣∣∣ρj ∈ CT
]

+ PE3T (ρj 6∈ CT )IEE3T

[
T∑
t=1

x̄it(t)

∣∣∣∣ρj 6∈ CT
])

= IERN+1,PN+1
IEE3T

[
T∑
t=1

x̄it(t)

∣∣∣∣ρj ∈ CT
]

(6)
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By the first part of Theorem 2,

V
ρj
N+1 − IERN+1,PN+1

IEA[RA(T )] ≤ g(c, T ) = o(T )

which is what is required. Now recall from discussion of Definition 1 above that satisfying the
regret requirements imply that the algorithm avoids negative transfer and transfers when possible.
Hence, the theorem shows that EXP-3-Transfer does indeed avoid negative transfer and transfers
when possible.

When we move δ away from 0, we trade off adherence to the requirement in Definition 1 for
practical performance. Indeed, while conducting the experiments reported in Section 7, we ob-
served that setting δ to a suitably low but non-zero value greatly improves performance. However
theoretical guarantees are not completely lost in this instance, because for the source policies that
are eliminated, part 2 of the theorem says that there is at least one source policy which is, with high
probability strictly better than the other policy.

We end this section with a brief discussion of the difference between EXP-3 and EXP-3-
Transfer. The primary difference is that we eliminate policies/arms to improve practical perfor-
mance of the algorithm. This is not possible in EXP-3 because, unlike in our case, it is not assumed
that some of the arms have i.i.d. payoffs and so their means cannot be estimated from observations.
This leads to a slightly different analysis and improved constant |CT |√

c+1
+
√
c+ 1 for EXP-3-Transfer

and 2 for EXP-3. The practical difference we observe was actually considerable, and without it we
were not able to outperform PPR in our experiments (see below).

4. The Clustering Approach To Task Encoding

Recall from Section 1 that in our problem, we assume that we have a repository of MDPs and their
optimal policies and we wish to use the optimal policies as the source policies for EXP-3-Transfer.
Now we have the following dilemma. As the number of source policies increase, we spend more
time evaluating them and accruing sub-optimal reward in the process. On the other hand, if we
choose a subset of policies from the repository, then we risk leaving out policies that may have been
very useful in the new task. So, essentially we are faced with the problem trading off the size and
diversity of the set of source policies.

In this section, we concretely define this tradeoff problem as optimizing a cost function, and
in Section 5 we describe an algorithm to optimize it. The cost function is defined over the set of
clusterings/partitions of the repository, where each clustering is used to choose a particular subset
of policies in the repository as the source policy set. We first show how to choose this source set
given a clustering, and then define the cost function that measures how well the source set achieves
the tradeoff mentioned above. This cost function then helps us choose the optimal clustering and
hence the optimal source policies.

4.1 Constructing Source Policies Given Clustering

Given theN MDPsM1,M2 · · · ,MN in our repository, let {A1, A2, · · · , Ac} , A be a particular
clustering – that is ∪iAi = {M1,M2 · · · ,MN} and Ai ∩Aj = ∅. The set of clusterings may vary
both by elements of each Ai, and the number c of cells Ai. Given a particular clustering A, we
will obtain the c source policies by choosing one policy per Ai. To choose this policy, we define a
distance function that measures how similar two MDPs are in terms of their optimal policies.
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Let Mi and Mj be any two MDPs in our repository (the distance definition generalizes to
any two MDPs defined on the same state and action space, but with different transition and reward
functions). Recall that V π

i and V π
j denotes the value of policy π when executed, respectively, in

Mi andMj at the initial state (this can be generalized to different initial states and/or distribution
over initial states very easily – but we consider the same initial state setting to keep the presentation
simple). Letting the optimal policies for the two MDPs be π∗i , π∗j , we define the optimal policy
similarity between two MDPs as follows.

dV (Mi,Mj) , max{V ∗i − V
π∗j
i , V ∗j − V

π∗i
j } (7)

So this distance upper bounds how much we lose if we use the optimal policy of one MDP in the
other – in particular we have the following lemma by construction.

Lemma 3 If dV (Mi,Mj) ≤ ε, then the optimal policy ofMi is at least ε-optimal inMj and vice
versa.

The definition of dV is motivated by the fact that the goal of policy reuse is to use the optimal policy
of one MDP in another. We now define the source policies given a clustering A:

Definition 4 Given a clustering A = {A1, A2, · · · , Ac}, define for each Ai the MDPMi as fol-
lows:

Mi , arg min
M∈Ai

max
M′∈Ai

dV (M,M′) (8)

(ties broken in terms of order in the sequenceM1,M2, · · · ,MN ). Then the source policies corre-
sponding to A are {ρ1, ρ2, · · · , ρc} where ρi corresponds to Ai and is the optimal policy ofMi.

The definition is illustrated in Figure 2 and it means the following. Mi is the element of Ai that
minimizes the maximum dV distance to the other elements of the cluster, and hence, by Lemma 3,
is in a worst case sense the best representative of the MDPs in cluster Ai. By choosing the optimal
policy ofMi as a source policy ρi, we ensure have the best worst-case representation of the MDPs
in each cluster Ai. We make this final statement exact in the next section, in particular in Lemma
5 when we bound the regret of EXP-3-Transfer with respect to optimal policy of any MDP in the
repository (rather than just the source policies as done in Section 3).

4.2 Cost Function of a Clustering

Let A = {A1, A2, · · · , Ac} be a clustering with the c source policies ρ1, ρ2, · · · , ρc chosen as
defined in the previous subsection. Our goal in this section will be to quantify the regret of EXP-3-
Transfer with respect to any π∗k when executed on the new taskMN+1 for T episodes, where π∗k is
the optimal policy ofMk in the repositoryM1,M2, · · · ,MN . We will consider the case where
EXP-3-Transfer is run with source policies ρ1, ρ2, · · · , ρc, and hence this regret will quantify how
good the clustering A is for transfer – in particular, the lower the regret, the more preferable the
clustering. As a result, the regret will serve as the cost function for choosing a clustering to derive
the source policies. Before proceeding, note that in Theorem 2, we computed the regret between
EXP-3-Transfer and ρi – in this section we extend those results to derive the regret with respect to
π∗k.
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Each+green+circle+is+a+cluster,+

analogous+to+an+∊-ball.

Red+circles+show+the+MDPs+
chosen+as+source+MDPs.

Together+they+are+analogue+of+an+∊-net+
over+the+set+of+all+previous+MDPs.

=+MDPs+in+reward+
++++transition+function+space

=+MDPs+are+epsilon+close+
++++in+terms+of+distance+dV

Figure 2: This figure sketches our basic approach to deriving the source policies. The black circles
represent our repository ofN MDPs. The goal is to put them into c clusters and then derive c source
policies from the c source tasks. The figure illustrates the idea for c = 3. Each cluster is an analogue
of an ε-ball in a metric space according to dV (7). The source MDPs form an analogue of an ε-net
over the set of previous MDPs with respect to dV . The function dV measures how well the policy
of one MDP performs in the other – and hence the source policies being an ε-net implies that, given
any MDP in the repository, there is at least one source policy which has performance that is ‘ε-close’
to the performance of the optimal policy of the previous MDP.

To begin, let the diameter of a cluster Ai, and the mean diameter of the clustering A be:

εi , max
M∈Ai

dV (Mi,M), ε̄ ,
1

N

c∑
i=1

|Ai|εi (9)

So ε̄ is the average diameter of the clusters, weighted by the size of the clusters. Therefore, ε̄ gives
the average distance from a cluster centerMi to an element of the cluster. As such, ε̄ measures how
much of the diversity in the repository is captured by the chosen clusters. The smaller ε̄, the smaller
the average dV distance between the cluster centers ρi and the MDPs in Ai, and hence more of the
diversity of policies in the repository is captured by the ρi.

Using these, we can give an average case quantification1of the performance of a clustering
A when used to generate the source policies and used in EXP-3-Transfer. Let the new MDP
MN+1 have transition and reward functions RN+1 and PN+1. Define Kk = maxs,a |Rk(s, a) −
RN+1(s, a)| and K ′k = maxs,a |Pk(.|s, a) − PN+1(.|s, a)| where Rk and Pk are the reward and
transition functions for MDPMk. Additionally let

K(k) ,
Kk + γK ′kRmax

(1− γ)2
(10)

We have the following result which derives from Theorem 2.

2. A worst case quantification is also possible. However, the assumptions underlying the worst case seems too weak,
and the cost function correspondingly not sufficiently discriminating – i.e. it identifies MDPs that are intuitively
dissimilar as being similar. In particular in our experiments, we found this cost function to not give us the intuitive
clusters. We discuss this function further in appendix B.
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Lemma 5 If EXP-3-Transfer is run with source policies derived from A using definition 4 with β
set as in Theorem 2, then for π∗k ∈ Ai, such that EXP-3-Transfer did not eliminate ρi by step T , the
following is true:

V
π∗k
N+1 − IER,P

[
IEE3T

[
T∑
t=1

x̄it(t)

∣∣∣∣ρi ∈ CT
]]
≤ g(c) + εi + 2K(k) (11)

Additionally, with probability 1 − δ, with respect to randomization due to the target MDPMN+1,
for each π∗k ∈ Ai such that ρi was eliminated, there exist ρi′ such that

V
π∗k
N+1 ≤ V

ρi′
N+1 + εi + 2K(k)

The proof is in Appendix A.
We now use the lemma to derive the cost function. First, in the limiting case of δ = 1, none

of the policies ρi are eliminated and in this case the bound (11) applies to all the MDPs in the
repository. In the lemma we assume that each MDPMk in the repository is equally likely to be the
one with the minimumK(k). Hence, taking the average of (11) over all the MDPs, we get the upper
bound of the average regret with respect to all the optimal policies π∗k of MDPs in the repository:

g(c) + ε̄+ 2
1

N

∑
i

K(k) (12)

K(k) depends on the repository ofMks which we do not control or make any assumptions about.
Hence, we associate with each cluster A the parameters (c, ε̄), defined at the beginning of this
section, and use (12) to define the following cost:

Definition 6 The cost of a clustering A with parameters (c, ε̄) is defined to be:

cost(A) , g(c) + ε̄ (13)

4.3 Hardness of finding the Optimal Clustering

In this section we introduce the problem of finding the clustering that minimizes cost(). We argue
that optimizing the cost function is hard, which sets the stage for developing our discrete optimiza-
tion algorithm in the next section. Specifically we will show that it is hard to optimize an upper
bound costm() of cost() where cost() was defined in Definition 6. To that end, define the average
max-diameter of a clustering A to be:

ε̄m =
1

N

∑
i

∑
M∈Ai

max
M′∈Ai

dV (M,M′) (14)

Now define,

Definition 7 Define costm(A) , g(c) + ε̄m.

We have the following relationships.

Lemma 8 The parameter ε̄m of A is an upper bound on the parameter ε̄ of A defined in (9).
Furthermore, costm(A) ≥ cost(A) for all clusterings A.
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Proof This follows directly from the definition of ε̄ – in particular, ε̄m upper bounds ε̄ because
for eachMj ∈ Ai, maxM′∈Ai dV (Mj ,M′) ≥ minMmaxM′ dV (M,M′) = dV (Mi,M). The
second part of the lemma now follows by the definitions of cost() and costm().

We reduce the minimum clique-cover problem (Karp, 1972) to the problem of finding the clus-
tering that minimizes costm and hence establish that it is NP-complete. We start by describing the
clique cover problem. Let G = (V,E) be a graph where V is the set of vertices and E is the set of
edges. A subset V ′ ⊂ V is a clique if for any v, v′ ∈ V , there is an edge (v, v′) ∈ E. The minimum
clique cover problem is finding a partition V1, V2, · · · , Vn of V such that each Vi is a clique and n
is minimum – that is there exists no other partition with V ′1 , V

′
2 , · · · , V ′m of V such that each V ′i is a

clique and m < n. We have the following theorem for costm.

Theorem 9 Given a graph G = (V,E), in time polynomial in |V | and |E|, we can reduce the
minimum clique cover problem for G to finding the clustering A∗ of some set of MDPsM1,M2,
· · · , M|V |, with all Mi defined on the same state and action spaces, where A∗ , arg minA∈C
costm(A).

The proof is given in Appendix A. Since the clique cover problem is NP-complete, we immediately
have the following corollary.

Corollary 10 Finding the clustering minimizing the upper bound costm() of cost() is NP-complete.

Unfortunately, we do not yet have a proof that minimizing cost() is hard – but the fact that minimiz-
ing the upper bound costm() is hard, leads us to conjecture that minimizing cost() is hard as well.
For this reason, to optimize the cost() function we need a discrete optimization function, which we
will develop in the next section.

We end this section by contrasting our approach to previous approaches to clustering MDPs
in TLRL (for instance (Wilson et al., 2007)). In prior work, MDPs are typically characterized by a
finite number of real valued parameters, and the distance between parameters determine how similar
the MDPs are. These MDPs can then be clustered by, for instance, putting the non-parametric
Dirichlet process prior over the parameters of all MDPs, and then using Monte Carlo inference
methods to find the clustering that maximizes the posterior probability.

Since our notion of similarity between MDPs is based on policies, to apply this approach to
our case, we need (1) a relatively compact parametric representation of optimal policies, and (2) a
metric that relates the policy-parameters to values of policies and (3) that optimal policies uniquely
characterize MDPs. (1) seems difficult for interesting policies, and (2) seems reasonable only for
‘linear’ domains – i.e. domains where a small change in policy results in a corresponding small
change in its value. (3) runs completely counter to one of our main motivations for using policy
based clustering, which is that different MDPs might have identical or near-identical optimal poli-
cies. So given all these, we were motivated to construct a clustering algorithm adapted to our policy
based clustering of MDPS. We also compare our method and the method of Wilson et al. (2007) in
Section 7.1, where in a simplified version of their domain, our approach recovers better clusterings.

5. Finding the Optimal Clustering

In Section 4 we defined a cost function that measures how well a particular clustering of the repos-
itory of MDPs trades off size and diversity of the set of source policies that are obtained from the
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clustering. In Section 4.3 we argued that optimizing cost() is hard. This implies that we need a
discrete global optimization algorithm for finding the optimal clustering. So in Section 5.1, we in-
troduce the problem of discrete optimization and our approach to solving it. Then in Sections 5.2 to
5.6 we derive and analyze our general optimization algorithm. Finally, in Section 5.7, we apply the
algorithm to the problem of finding the optimal clustering.

5.1 Global Optimization With Stochastic Search

Our goal is to solve the discrete global optimization problem of computing arg minA∈C cost(A),
where C is the set of all possible clusterings ofMis. Algorithms for discrete optimization problems
tend to fall into specific classes, appropriate for the problem at hand. We present a stochastic search
algorithm for our problem (see Figure 3).

Minimum point

Objective Function

Starting 
point

Find the minimum through stochastic exploration

Figure 3: This figure illustrates how stochastic search may be used solve function optimization (min-
imization in this case). The thick black curve is the objective function to be optimized/minimized
and the goal is the find the point x at which the curve the attains the minimum value (the blue circle).
A stochastic search algorithm starts at a particular point (the cyan circle in this figure) and each time
step the it jumps (shown by thin green arrows) to a new candidate point, chosen according to some
stochastic strategy. The arrows shown are one possible run of the stochastic search algorithm, with
different runs likely going through different sets of points. The candidate may move towards and
away from the minimum point. This kind of optimization is necessary when the objective function
does not have nice properties (like convexity) and standard algorithms (like gradient descent) are
not applicable.

Our basic strategy is to construct a distribution over C, that concentrates around the optimum and
around clusterings with low cost. The concentration property implies that if we repeatedly sample
from this distribution, we will find the optimum or a good/low cost clustering with high probability.
However, in general, exact sampling from such distributions is difficult, and so our algorithm sam-
ples approximately from this distribution using a Markov chain Monte Carlo approach – see (Robert
and Casella, 2005) for a comprehensive introduction to MCMC and Metropolis Hastings Markov
chains (MH chain in short) that we use. The use of MCMC turns our algorithm into a stochastic
search algorithm.

The resulting algorithm can be understood as simulated annealing (Kirkpatrick et al., 1983) but
with stochastic temperature changes. Figure 4 describes simulated annealing qualitatively and also
contrasts it with our algorithm, MHAV. Simulated annealing is a stochastic search algorithm for
optimizing an objective function f , where the search rule at step t jumps from point y to y′ with
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Higher 
Temperatures

Medium 
Temperatures

Lower
Temperatures

The temperature
becomes lower
the longer the

search goes on.

Initial steps 
in simulated 
annealing.

Final steps
in simulated 
annealing.

Search Trapped
In Local Minima

Because Temperature
Schedule Was Inappropriate

Simulated Annealing

Jump to a medium
temperature.

Jump to a higher 
temperature.

MHAV

Figure 4: This figure compares simulated annealing and our MHAV algorithm for finding mini-
mum of an objective function f . The green arrows show the search steps taken by the algorithms.
Simulated annealing decreases a temperature parameter over time, which effectively results in the
function surface becoming effectively less and less flat. The figure illustrates a search that has failed
due to incorrect temperature decrease schedule. Unlike simulated annealing, MHAV jumps between
temperature values stochastically. The green arrows are search steps for a fixed temperature, while
the red arrows are jumps between temperatures. See beginning of Section 5.1 for a full description.

probability Pt(y, y′) = qy,y′ exp[− 1
z(t) max(0, f(y′)−f(y)]. qy,y′ is a candidate distribution (prob-

ability with which y′ is proposed as the next point given current point x) and the remaining term
depends on the improvement f(y′) − f(y) and the temperature z(t) (see below). Because of the
max in the improvement term, jumps to lower f -valued (i.e. better) points y′ succeed with proba-
bility 1, while jumps to higher f -valued (i.e. worse) points y′ succeed with probability depending
on how much higher (worse) the point is.

The temperature z(t) is a chief feature of simulated annealing, it is user defined and determines
practical success of the algorithm. It is a sequence decreasing in t and in essence changes how easy
it is to explore the objective function surface – with higher temperature allowing the search to travel
over longer distances and in effect making the objective function flatter, and lower temperature
restricting the search to points local to the current point, in effect making the objective function
steeper (Figure 4 illustrates three qualitatively different temperatures). The temperature sequence
z(t) needs to be set very carefully so that during the higher temperature phase the search travels
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longer distances to the places where the minimum point is, and then during the lower temperature
phases, the search moves in a ‘local neighborhood’ of the minimum point and and finds the point
itself or a point close to it. Clearly, this is a fairly difficult problem and requires some understanding
of the objective function.

Figure 4 illustrates our algorithm, MHAV. The algorithm is similar to simulated annealing in that
the search rule is such that jumps to better points succeed with probability 1, while jumps to worse
points succeed with probability depending on how much worse the point is. It also uses temperatures
to modify the flatness of the function (in the algorithm description in Section 5.2 the temperature
parameter is represented by λ, with high temperature corresponding to low λ). However, unlike
simulated annealing, MHAV does not use a fixed temperature schedule but moves between different
temperatures stochastically (Figure 4 illustrates the algorithm jumping between three qualitatively
different temperatures). In essence MHAV searches through the augmented space (λ, y) and the
search rule has the form Pt[(λ, y), (λ′, y′)]] ≈ q(λ,y),(λ′,y′) exp{max[0,−(f(y′) lnλ′ − f(y) lnλ]}.
That is, MHAV searches over both the temperature and the solution space simultaneously and so
avoids the very difficult problem of needing to set the temperature schedule. Convergence is still
guaranteed by convergence of the Metropolis-Hastings algorithm (see Section 5.3). Our proof of
the convergence, and the speed of convergence of the algorithm is simple compared to simulated
annealing (see, for instance, (Locatelli, 2000) for contrast).

We present our algorithm in steps. We first cast the discrete optimization problem as the prob-
lem of sampling from a specific distribution derived from the objective function (Section 5.2), then
we present the general Metropolis-Hastings scheme for approximate sampling from a distribution
(Section 5.3), and after that we present and analyze our adaptation of Metropolis-Hastings for dis-
crete optimization (Sections 5.4, 5.5 and 5.6), which we call MHAV (Metropolis-Hastings with a
auxiliary variable). The MHAV algorithm is a general optimization algorithm, which we then adapt
to the problem of searching for the optimal clustering (Section 5.7).

5.2 Optimization as Sampling

In this section, we show how to convert the problem of global optimization to the problem of sam-
pling from a distribution. The method we discuss was inspired by the basic idea behind simulated
annealing (Kirkpatrick et al., 1983). Assume that our goal is to minimize a cost function f defined
over some finite set Y . In particular assume that there is a subset Ŷ ⊂ Y for which y ∈ Ŷ has
acceptable cost f(y). Let Λ = {λ1, λ2, · · · , λn}, λi < λi+1 such that ∃Λ̂ ⊂ Λ which satisfies∑

λ∈Λ̂,y∈Ŷ

λ−f(y) ≥ θ > 0 (15)

We now define the distribution
Π̄(λ, y) , λ−f(y)Z−1 (16)

where Z ,
∑

y,λ λ
−f(y) is the normalization term. Given the existence of Λ̂, if we draw repeatedly

from Π̄, then after t draws, with probability at least

1− (1− θ)t (17)

we will draw an element (λ, y) where y ∈ Ŷ . Since 1 − θ < 1, the probability that we draw an
element from y ∈ Ŷ goes to 1 at rate (1− θ)t (hence, the closer θ is to 1, the faster the convergence
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rate will be). So this solves the solves the discrete global optimization problem of optimizing the
function f .

The reason we introduce the parameter λ rather than just sampling from Pr(y) , f(y)∑
y′ f(y′) is

because this distribution is typically intractable to sample from. Indeed, for our MDP clustering
problem, the function f is cost() and the set Y is the set of clusterings C. By the the hardness result
for cost() in Appendix A, we conjecture that sampling from Pr(y) is in fact intractable. Hence, we
need to use approximate sampling methods.

Use of approximate sampling turns sampling from Pr(y) into a stochastic search over the ob-
jective function f() to find the global minima. As detailed in the previous subsection, one powerful
way to augment such search methods is to modify the objective function by introducing tempera-
tures to change the flatness of the function, and the λ parameter serves precisely this purpose. In
particular, when λ is high (corresponding to ‘low temperature’), the modified objective function
λ−f(y) is ‘steep’, and when λ is low (corresponding to ’high temperature’) λ−f(y) is ‘flat’.

Given this motivation, in Section 5.3, we present the Metropolis-Hastings (MH) algorithm that
may be used to approximately sample from arbitrary distributions, and then in Section 5.4 we adapt
the MH algorithm to sample from Π̄.

5.3 Sampling Using Metropolis-Hastings Chains

In this subsection we describe a standard method to approximately sample from a distribution Π over
a large finite space X . In the next section we will use this method to sample from Π̄ and complete
our global optimization method. We use upper-case Roman letters for random variables and lower-
case letters to refer to their realized values. In the following, we use the theory of Markov chains as
found in (for instance) (Levin et al., 2009). A Markov chain over a (finite) state-spaceX is stochastic
process Xn taking values in X such that Pr(Xn = x|x0, x1, x2, · · · , xn−1) = Pn(x|xn−1). The
distribution Pn(·|·) is called the transition kernel for the chain, and can be represented by a |X |×|X |
matrix, also denoted by Pn, such that the entry (x, y) is Pn(y|x) (here we have identified each
element of X with an integer in {1, 2, · · · , |X |} in some order). A Markov chain is said to be
time-homogeneous if Pn(x′|x) = P (x′|x), i.e. Pn is independent of time n. We will only consider
time-homogeneous chains. A distribution Π over X is said to be stationary for the chain with kernel
P if it satisfies:

Π(x′) =
∑
x

Π(x)P (x′|x) (18)

That is if P is stationary for Π, then, if we draw x according to Π(x), then choose x′ according to
P (x′|x), then the distribution over x′ will also be Π(x′).

Let Pn(x′|x) be the probability that Xn = x′ given that X0 = x, that is

Pn(x′|x) =
∑

x1,x2,···xn−1

n−1∏
i=0

P (xi+1|xi), where x0 = x, xn = x′

Then the chain Xn (equivalently, the kernel P (·|·)) is said to be irreducible if for each x, x′ ∈ X ,
∃n with Pn(x′|x) > 0. It is called aperiodic if the set {n : Pn(x|x) > 0} has greatest common
divisor 1 – that is there is no period to the set of time steps at which the chain returns to some state
x, starting from x itself.
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Theorem 11 The following are true for any aperiodic and irreducible Markov chain with kernel
P :

1. P has a stationary distribution Π and for any y ∈ X ,

lim
n→∞

||Pn(·|y)−Π(·)||TV = 0 (19)

where ||P − P ′||TV = supA⊂X |P (A) − P ′(A)| is the total variation distance between any
two distributions P, P ′ over X .

2. If Π is stationary for P and ||Pn(·|y) − Π(·)||TV ≤ k then ||Pn′(·|y) − Π(·)||TV ≤ k for all
n′ > n.

Proof For the first part and second part, see (for instance), respectively, Theorem 4.9 and Lemma
4.12 in (Levin et al., 2009)).

This result is important because it can be used to approximately sample from a distribution Π that is
hard to sample from directly. The idea is to construct a Markov chainXn with stationary distribution
Π. Theorem 11 implies that if we simulate Xn long enough, then eventually we will start sampling
from Π. To that end, the Metropolis-Hastings chain (MH chain in short) gives a standard way to
define such a chain given Π as input (see Robert and Casella (2005) for an in-depth introduction).

A MH chain is defined via an irreducible kernel φ(x′|x) over X and an acceptance probability
Accx(x′). φ is problem dependent while Acc is defined as follows:

Accx(x′) , min

{
1,
φ(x|x′)Π(x′)

φ(x′|x)Π(x)

}
(20)

Given this, the MH chain has transition

PMH(x′|x) =

{
φ(x′|x)Accx(x′), if x 6= x′

1−
∑

x′ 6=x φ(x′|x)Accx(x′), otherwise ,
(21)

It can be easily checked that PMH satisfies the detailed balance equation Π(x)PMH(x′|x) =
Π(x′)PMH(x|x′) which in turn is equivalent to (18) (which can be seen by summing both sides
over x′). So PMH is a chain which if simulated long enough will sample from the target distribu-
tion Π. We will now derive a version of this chain to sample approximately from Π̄

5.4 Optimization using Metropolis Hastings With Auxiliary Variables (MHAV)

In this section, we show how we may use the MH algorithm to sample from the distribution Π̄
defined in Section 5.2 and hence perform optimization. We call this algorithm MH with auxiliary
variables (MHAV) because we introduced the auxiliary variable λ to enable us to perform global
optimization. As we discussed above, MHAV may be thought of as simulated annealing without a
temperature schedule.

To adapt MH for our global optimization problem, we set X , Y × Λ and set our target to be
Π = Π̄. We briefly note here that if we plug Π̄ into (20), then the normalization term cancels out,
and in our algorithms there will never be any need to compute Z. Let φY be any irreducible kernel
over Y (this will depend on the nature of Y and will be an input to the optimization algorithm – we
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discuss this below). Define the following transition kernel over Λ = {λ1, λ2, · · · , λn}, parametrized
by α′ ∈ (0, 1):

φΛ(λ′|λ) ,


α′ if λ = λi, λ

′ = λi+1 and i < n

1− α′ if λ = λi, λ
′ = λi−1 and i > 1

1 if λ = λ0, λ
′ = λ1 or λ = λn, λ

′ = λn−1

0 otherwise

Since α′ > 0, it is easy to see that for any λi, λj , there is a sequence λi, λi1 , · · · , λinλj with positive
probability under φΛ. That is,

Lemma 12 φΛ is irreducible.

Given the above, the proposal distribution φ̄[(λ′, y′)|(λ, y)] for P̄MH is defined using the param-
eters α, β ∈ (0, 1), α+ β < 1, as follows.

φ̄[λ′, y′|λ, y] ,


αφΛ(λ′|λ) if λ 6= λ′, y = y′

βφY (y′|y) if λ = λ′, y 6= y′

(1− α− β) + βφY (y′|y) otherwise

(22)

The transition kernel P̄MH is now defined as in (21) using φ̄ as the proposal distribution and (16) as
the target distribution:

P̄MH(x′|x) =

{
φ̄(x′|x)Āccx(x′), if x 6= x′

1−
∑

x′ 6=x φ̄(x′|x)Āccx(x′), otherwise ,
(23)

Given the above, the overall discrete global optimization algorithm MHAV (Metropolis-Hastings
with Auxiliary Variable) is listed in Algorithm 2. Note that lines 5-6 are sampling from the transition
kernel P̄MH.

Algorithm 2 MHAV(Λ, Y, Π̄, φ̄, TM )

1: Input: The set of auxiliary variables Λ, the search space Y , the target distribution Π̄, and
proposal distribution φ̄, TM number of iterations to run algorithm.

2: Output: An element y ∈ Y .
3: Initialize: Initial, λ(0) = λ0, y(0) = arbitrary element of Y .
4: for t = 1 to TM do
5: Sample (λ′, y′) ∼ φ̄[·|λ(t), y(t)]
6: With probability Āccλ(t),y(t)[λ

′, y′], set λ(t + 1) = λ′, y(t + 1) = y′, and with probability
1− Āccλ(t),y(t)[λ

′, y′], set λ(t+ 1) = λ(t), y(t+ 1) = y(t).
7: end for
8: return arg miny(t) f(y(t)).
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5.5 Analysis of the MHAV Algorithm

The reader may prefer to skip this and the next section and move directly to Section 5.7, which
details how the MHAV algorithm is adapted to search for the optimal cluster. We begin analysis
of our algorithm by showing that the kernel P̄MH for the φ̄ defined above is indeed irreducible and
aperiodic.

Lemma 13 If Π̄ and φY satisfy minx,x′
Π̄(x′)φY (x|x′)
Π̄(x)φY (x′|x)

> b > 0, the kernel P̄MH is irreducible and
aperiodic.

The proof is given in Appendix A – additionally note that by finiteness of f and λis, and irreducibil-
ity of φY , such a b always exists. The following theorem establishes the probability with which we
draw an element from the acceptable set Ŷ when using P̄MH to sample.

Theorem 14 P̄MH has Π̄ as its stationary distribution, and hence for any initial state x0 of the
chain P̄MH,

lim
n→∞

||P̄nMH(·|x0)− Π̄(·)||TV = 0 (24)

In particular if at step t ||P̄ tMH(·|x0) − Π(·)||TV ≤ k, then P̄ t
′

MH(x ∈ λ̂ × Ŷ |x0) ≥ θ − k for all
t′ > t.

The proof is given in Appendix A. Combining the above with (17) (and the discussion following
the equation) shows that the probability that MHAV samples from the acceptable set goes to 1 at
rate > 1− θ + k from step tk onwards, where tk is the step such that t > tk implies ||P̄ tMH(·|x0)−
Π(·)||TV ≤ k.

We can also derive a convergence rate which establishes that for every k such a tk exists and the
rate of convergence of MHAV goes arbitrarily close to 1 − θ. Define the diameter of X given the
Markov chain P̄MH to be

D , min{l|∀x, x′, P̄ lMH(x′|x) > 0} (25)

Now define the ratio

δ , min
x,x′

P̄DMH(x′|x)

Π̄(x′)
(26)

D is finite and δ non-zero by the irreducibility of P̄MH and finiteness of f . We have the following:

Theorem 15 The convergence rate of P̄MH to Π̄ satisfies:

||P̄nMH(·|x0)− Π̄(·)||TV ≤ (1− δ)n/D

for any initial state x0.

This derives directly from the proof of Theorem 4.9 (Levin et al., 2009) and is given in Appendix
A. This implies that for each k, we have tk = D ln k/(1− δ).
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5.6 Setting the Optimization Parameters

We now discuss heuristics to set the parameters α′ in φΛ and α, β in P̄MH so as to optimize the
convergence rate derived above, by minimizing δ (defined in (26)). In setting these parameters, we
are given the proposal distribution φY , which was required to be an irreducible kernel on Y , and the
target distribution Π̄ over Λ × Y . We start with the following result which simplifies deriving our
result

Lemma 16 D (defined in (25)) is independent of α′, α, β.

The proof is given in Appendix A.

Corollary 17 Given f, φY , the set of paths of positive probability under P̄MH is invariant with
respect to α′, α, β.

Proof Follows directly from the proof of Lemma 16.

So, we need to set α′, α, β to maximize δ. However, δ also depends on f and φY , both of which
are unknown and so it is difficult to specify optimal values for these a-priori. However, we can
give heuristic arguments for setting these parameters in terms of increasing the ‘flow’ of the search
process through the search space Y . First, α′ is used to choose whether we should increase or
decrease the λ value. We set α′ to 1/2 to ensure a neutral value and that we do not favor either
direction and ensure maximum flow through the search space.

Now note that at each step the chain P̄MH moves either in Λ space or Y space. α and β de-
termine, respectively, how often we move in the Λ and how often in Y . To make the search more
effective (based on analysis of simulated annealing type algorithms), it seems we need to make sure
that initially we need to explore the Y quite a bit and only settle down after we have explored suf-
ficiently, by increasing the λi value. Hence, our recommendation is to set the α to be significantly
smaller than β, ideally the ratio α/β should reflect how difficult we expect it to be to get close to
the best y∗ (with smaller ratio for greater difficulty). Even though our parameter settings are heuris-
tic, we again stress that this only affects the convergence speed, but not the ultimate convergence.
This is in contrast to simulated annealing where convergence itself is guaranteed only if we set the
parameters carefully.

5.7 Searching for the Optimal Cluster

Searching for the optimal cluster can now be be solved using the MHAV algorithm. The algorithm
for searching through the space of clusterings is given in Algorithm 3. In this case, Y = C, and the
objective function is f(A) = cost(A). To complete the specification of MHAV for our problem, we
define the distribution φMY (A′|A) to be the probability with which a randomized procedure converts
A to A′. The randomized procedure is as follows.

Given A = {A1, · · · , An}, choose Ai uniformly at random, and Aj uniformly at random from
(A− {Ai}) ∪ {B}, where B is place-holder/empty set representing a new cluster. Now choose ki
points from Ai, uniformly at random (without replacement), and put them in Aj . The clustering
resulting from this transfer is A′.

Note that if Aj = B, then A′ has one more cluster than A. Additionally, if ki = |Ai|, and
Aj 6= B, then A′ has one less cluster than A. Otherwise, they both have the same number of
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clusters, but differing atAi andAj . The number ki is chosen using the exponential distribution over
{1, 2, · · · , |Ai|}:

PE(k; θ1) , e−kθ1(eθ1 − 1)/(1− e|Ai|θ1), where θ1 > 0

This ensures that ki is small with higher probability and so we are less likely that A and A′ are very
different due to moving large number of points from Ai to Aj . The parameter θ1 is user dependent
and in our experiments we set it to 1.

The following Lemma shows that φMY (A′|A) is irreducible and hence satisfies the condition in
Lemma 13 and hence ensures the convergence results in Section 5.5.

Lemma 18 φMY defined above is irreducible.

The proof is in Appendix A.

Algorithm 3 Search-Clusterings(M, d,Λ, TM )

1: Input: A set of MDPs M = {M1,M2, · · · ,MN}, the set of auxiliary variables Λ, a cost
function cost, input condition term.

2: Initialize: φMY defined with respect to M; φ̄ defined using φMY using (22); define Π̄(λ,M) =
λ−cost(M).

3: return MHAV(Λ,M, Π̄, φ̄, TM )

Algorithm 4 Continual-Transfer(d,Λ, cost, TM , l,∆R, β, T )

1: Input: A metric d, which is either a dM or dV ; cost function cost, which is either cost1 or
cost2; Search-Clustering parameters TM , l,∆R, EXP-3-Transfer parameters β, T .

2: Initialize: Initial clustering A = ∅, collection of previous MDPs M.
3: for h = 1 to∞ do
4: Get unknown MDP Mh from the environment and run EXP-3-

Transfer(Mh, sourcePol(A, d, cost), β, TM , l).
5: Set M← M ∪ {Mh}
6: if h mod J = 0 then A = Search-Clusterings(M,Λ, cost, TM ).
7: end for

6. The Continual Transfer Algorithm

In this brief section we combine all the algorithms presented so far into the full continual transfer
algorithm, which is listed as Algorithm 4. The algorithm runs in phases and in each phase it solves
a MDP using the EXP-3-Transfer algorithm and the current set of source policies as input. In line 4,
the function sourcePol(A, d, cost) generates the c source policies ρ1, ρ2, · · · , ρc from clustering
A such that ρj is the optimal policy forMj whereMj is chosen from Aj according to (8). If the
current phase h satisfies h mod J = 0, then it runs the Search-Clustering algorithm to find a new
set of source tasks from the h tasks solved so far.
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7. Experiments

We performed three sets of experiments to illustrate various aspects and the efficacy of our algo-
rithm2. The baseline algorithm for comparison in the first domain was a multi-task hierarchical
Bayesian reinforcement learning algorithm proposed by Wilson et al. (2007), and hence compares
our approach to an alternative approach to clustering tasks. In the latter two domains we com-
pare against Probabilistic Policy Reuse (PPR) as introduced by Fernandez et al. (2006) which, as
mentioned in Section 1.1, is the main prior work on policy reuse algorithms.

In the larger second and third experiments, we report results for our proposed EXP-3-Transfer
algorithm, PPR, and standard Q-learning. Additionally, we experiment using different forms of
clustering, including no clustering, our Search-Clustering algorithm, clusters chosen manually by
hand, and a greedy clustering procedure. The greedy clustering algorithm is to choose a threshold
for the dV distance, then construct clusters by selecting an MDP arbitrarily to seed a cluster, and
finally adding all the MDPs with distance less than that threshold to that cluster. In our graphs, we
present the results for the best/lowest cost clustering found by using various threshold values.

A summary of the algorithm combinations used are shown in Table 1.

Algorithm FULL SANS HAND-PICKED GREEDY

EXP-3-TRANSFER X X X X
PROBABILISTIC POLICY REUSE X X X X
Q-LEARNING N/A N/A N/A N/A

Table 1: EXPERIMENT SETUP MATRIX. This table shows the combinations of the algorithms and
clustering methods used in the experiments. ‘Full’ refers to the use of Search-Clustering, ‘sans’
means without any kind of clustering, ‘hand-picked’ means using a set of source policies that we
selected believing to be optimal, and ‘greedy’ refers to the heuristic threshold-based method (see
text for details).

For each graph presented in experiments 2 and 3, the results are averaged over 10 different target
tasks with 10 trials per task. The various parameters used for the clustering and transfer algorithms
are given in Table 2.

We present results from experiments run on three different domains. In Section 7.1 we use the
coloured grid world domain, commonly used in Bayesian reinforcement learning, to compare the
clusters found by our proposed algorithm with those of a hierarchical Bayesian method, in order to
motivate our clustering approach. In Section 7.2 we present results from a simple windy corridor
domain to demonstrate the clusters produced by our Search-Clustering algorithm. The results show
that the clusters found are intuitive in nature. In Section 7.3.2, we present results on the more
complex surveillance domain (described briefly in the Section 1) which is a variant of the kinds of
problems that are considered, for instance, by An et al. (2012). In this experiment we show the
performance for the algorithm combinations given in Table 1 under various numbers of previous
tasks and task lengths.

2. The code used in both of the experiments, as well as all of the generated data, can be found here:
http://wcms.inf.ed.ac.uk/ipab/autonomy/code/MDP Clustering code.zip
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EXP-3-TRANSFER SEARCH-CLUSTERINGS RL
T δ α β α′ θ TM γ

1000, 5000 and 104 0.1 0.1 0.8 0.5 1 105 (for each of 20 random restarts) 0.9

Table 2: VALUES OF ALGORITHM PARAMETERS. This table gives the values for the different
parameters used in our various algorithms. RL refers to common parameters for reinforcement
learning algorithms. The T parameter was chosen to illustrate effect of this parameter on algorithm
performance. The δ parameter was chosen to allow for a high degree of confidence in the perfor-
mance of EXP-3-Transfer. The α, α′ and β parameters where chosen according to Section 5.6, and
θ was chosen heuristically. The value of TM was selected because we found that restarting gave
better results. γ was chosen as appropriate for these domains.

7.1 Coloured Grid World Domain

Wilson et al. (2007) introduced a method for modelling the unknown distribution of tasks in a multi-
task reinforcement learning problem using a hierarchical infinite mixture model. Their two-layer
model is capable of representing a previously unknown number of classes of MDPs, as well as
finding the latent distribution of parameters in each class. For any new task, the model acts as
a prior over the parameter space, which enables the generation of a faster initial solution, to be
subsequently optimised with additional task-specific learning.

This model describes latent structure in the parameter space of the observed tasks. Instead, our
proposed clustering algorithm seeks to identify similarities in policies across different tasks.

To compare this infinite mixture model approach with ours, we consider a simplified version
of the coloured maze domain of Wilson et al. (2007), where each cell of a grid world is coloured
with one of two possible colours. Each colour is assigned a weight w ∈ [0, 1], the values of which
differ between tasks. The agent navigates the grid world from one corner to the diagonally opposite
corner. This is done using four actions, each of which moves the agent to an adjacent cell in the
corresponding cardinal direction, deterministically. After every movement, the agent receives a
reward equal to the sum of the colour weights of the current cell and the adjacent four cells. The
goal of the agent is to maximise the received rewards. Each task is completely described by two
parameters (the colour weights) in the unit square. This is intended to simplify visualisation of the
resulting clusterings.

We sample 50 tasks uniformly at random from the unit square and cluster them using both
the hierarchical infinite mixture model and our framework. Figure 5a shows the clustering results
of Wilson et al. (2007), and Figure 5b shows the clusters obtained by our method. Note that all
the tasks that lie on the same line that goes through the origin are equivalent as they have the same
colour weight ratio, and thus have the same optimal policy with scaled values. As a result, our
method is able to model this fact and summarise the complete set of MDPs into a reduced set of
landmark MDPs with equivalent policies. On the other hand, modelling the similarities between
tasks based on task parameters will fail to realise this equivalence, and subsequently result in many
clusters with similar policies because they share a local neighbourhood in parameter space.
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(a) Clustering of Wilson et al. (2007) (b) Clustering of our proposed framework

Figure 5: The tasks in parameter space (the weights of the two colours) of the coloured maze do-
main. Each dot corresponds to a randomly sampled task. (a) Clusters obtained using a hierarchical
infinite mixture model. The asterisks are the means of recovered clusters and the circles show three
standard deviations. (b) Clusters obtained using our clustering algorithm. Each colour represents
a different class. Note how our method captures the similarity in policy much more closely than
methods that cluster directly in parameter space.

7.2 Windy Corridor Domain

The windy corridor domain is illustrated in Figure 6. The domain consists of a row of 10 parallel
corridors with a ‘wind’ blowing from the South to the North along two columns of cells near the
entrance to the corridors.

The agent has one action for each possible cardinal direction which moves it in that direction
deterministically. In a windy cell, the motion of the agent becomes probabilistic with the probability
of moving North being p, and moving in the desired direction being 1 − p. p depends on the
probability of wind in that cell, which is a task parameter ranging from 0 to 0.9.

The MDPs in the domain are distinguished by two values: the location of the goal state and the
probability of wind. There are 10 possible wind probabilities, which together with the 10 possible
goal locations, results in a total of 100 possible MDPs.

For this domain, we learned the optimal value function for each of the MDPs, and from that
computed the distance between every pair of MDPs. This was then used to cluster the MDPs using
the Search-Clusterings algorithm. Figure 7 presents the final clusters we found for this domain.
This figure shows that the best clustering found by the algorithm placed tasks with the same goal
state in the same cluster. This follows intuition because, despite the wind probability, the policies
required for MDPs with identical goal states will be identical, yet be different for tasks with different
goal states. This demonstrates that the Search-Clusterings algorithm is capable of recovering the
expected clusters, thereby providing a sanity check for our algorithm, although we note that the
results are stochastic and vary between runs.

30



CLUSTERING MDPS FOR CONTINUAL TRANSFER

Figure 6: THE WINDY CORRIDOR DOMAIN. This shows the 10 corridors, the location of the goal
states (G1-G10) and the direction of the wind (the small arrows). The start state is marked by s.

In order to illustrate the effects of the clustering, we incrementally built up the full set of MDPs,
by presenting them in a random order to the Search-Clustering algorithm, and having it cluster them
after the addition of each new MDP. These results are shown in Figure 8. Note that the allocation of
MDPs to clusters remains largely consistent across the presentation of 100 MDPs. In this case, the
algorithm recovers 12 main clusters.

7.3 Surveillance Domain

The surveillance domain is illustrated in Figure 9. In this domain, the goal of the agent is to catch
infiltrators who wish to break into a target region. There are L different vulnerable locations (ab-
breviated v-locations) in the domain, and the infiltrators only choose a subset of those v-locations
to infiltrate – we call these target v-locations. The type of the infiltrators is defined by the sequence
in which they visit the target v-locations and the goal of the agent is to find out where the target
locations are and surveil them in the right sequence to find the infiltrators.

The actions available to the agent are the motion actions in the cardinal directions as well as a
surveillance action, each of which is deterministic in its outcome. Every action taken results in a
reward of −1, an unsuccessful surveillance action (i.e. inspecting the target v-location in the wrong
order) results in a reward of −10, while a successful surveillance action (i.e. inspecting the correct
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Figure 7: CLUSTERING FOR THE WINDY CORRIDOR DOMAIN. The clustering was obtained by
running Search-Clustering on the full set of 100 MDPs for this domain. Each point in the 2D grid
is a MDP with the goal location and wind probability given by the x and y axis respectively. The
colours indicate the cluster to which the MDP was found to belong, and shows that all the MDPs
with the same goal state are assigned to the same cluster. Additionally, the cluster centresMi are
each marked with a ∗.

v-location at the right time) results in a reward of 200. If instead of surveilling the correct v-location,
the agent surveils a location adjacent to it, then it receives a reward of 190. Each v-location has 3
other v-locations that are adjacent (see Figure 9). Hence two MDPsM, M′, each corresponding
to different v-location sequences (v1, v2, v3) and (v′1, v

′
2, v
′
3), are similar in terms of their optimal

policy/dV distance, and belong to the same cluster, if each pair of v-locations vi and v′i are adjacent
– because in this case, the optimal policy ofM will yield near-optimal sequence of rewards of 190s
when applied inM′ and vice versa.

We present the following results for experiments run with a combination of different numbers
of previous MDPs (referring to the surveillance tasks which have been encountered before, and
possibly subsequently clustered) and numbers of target locations. The results show that the more
complex the transfer task is, the better EXP-3-Transfer with clustering performs compared to Prob-
abilistic Policy Reuse, where complexity is measured in terms of the number of previous MDPs and
the difficulty of the target task.

• We compare the performance of EXP-3-Transfer, Probabilistic Policy Reuse and Q-learning
as the complexity of the transfer problem increases. Here, the complexity of the transfer
problem is both the number of previous tasks, and the complexity of the MDP itself (i.e. the
number of target v-locations). These results are referred to as clustering gains.
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Figure 8: INCREMENTAL CLUSTERING FOR THE WINDY CORRIDOR DOMAIN. The incremental
clustering on the left was obtained by running Search-Clustering on an increasing number of MDPs.
The 100 MDPs (represented by a value on the x axis) in this domain are presented in a random order
to the algorithm, with the y axis showing time of first presentation to the algorithm. All points of
the same colour have been assigned to the same cluster. On the right are three zoomed-in time slices
from the incremental clustering (at t = 20, t = 50 and t = 100 respectively). Each time slice shows
the intuitive interpretation of MDPs in the representation of Figure 7.

• We compare the effect of different types of clusterings (in Table 1) for EXP-3-Transfer with
T = 10, 000. These results are called clustering comparisons.

• We compare the effect of having different T ∈ {1000, 5000, 10000} for EXP-3-Transfer with
clustering for various number of previous tasks. These results are the time comparisons.

7.3.1 CLUSTERING GAINS

We first study the effects of clustering, by comparing the performance of both EXP-3-Transfer
and Probabilistic Policy Reuse with and without clustering. The results presented in this section
summarise those of the complete experiment set, the results of which are provided in Appendix D.

Figure 11 demonstrates the performance of the two algorithms on two different task variants in
the surveillance domain: having either a sequence of two or three v-locations. The figure measures
the clustering gain, being the difference in performance with and without clustering. This figure
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Figure 9: THE SURVEILLANCE DOMAIN. This caricature of the surveillance domain shows 16
surveillance locations (v-locations) marked in blue. The start location is marked S. The full domain
used in our experiments is a 48 × 48 gridworld with 64 v-locations. Each MDP in the domain
requires the agent to surveil i different locations, i ∈ {1, 2, 3, 4} in a particular sequence to receive
a positive reward of 200 for each location surveilled. Surveilling at a wrong location results a
negative reward of −10 (the infiltrators have escaped). Each action taken gives a reward of −1.
The target v-locations are clustered spatially into groups of 4 (as shown by the connections in the
figure), such that surveilling one location in the cluster instead of the other results in a reward of
190 (a penalty of 200− 190 = 10) but does not end the episode (see Figure 10 for further details).

does not show a comparison with Q-learning. In the full results given in Appendix D, we show that
EXP-3 consistently outperforms Q-learning by a large margin, indicating that our algorithm escapes
negative transfer.

As can be seen, EXP-3-Transfer always benefits from using clustering. Furthermore, the more
complex the task, the better the performance. This is observed in the general upwards trend in
the curves with an increasing number of previous MDPs, and the fact that the curve for the 3 v-
locations lies above the curve for the 2 v-locations. This result is in complete agreement with our
expectations, that in a bandit-like algorithm lowering the number of arms will result in lower regret.
In addition, this result indicates that our clustering algorithm retains the correct arms so that with
the removal of arms, the performance of EXP-3-Transfer is not affected adversely.

Interestingly, for Probabilistic Policy Reuse the trend is reversed. It appears that clustering
does not help this algorithm, and the clustering additionally becomes more detrimental as the task
complexity increases. Our conjecture regarding the reason for this is that Probabilistic Policy Reuse
uses the source policies not as potential optimal policies, but rather as exploration devices. By
clustering the MDPs, we remove arms and hence reduce the number of exploration policies, which
lowers the scope for exploration. This in turn results in negative performance gain for Probabilistic
Policy Reuse.
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Figure 10: TRAJECTORY EXAMPLES. Example of four different types of trajectories for the surveil-
lance domain, showing three groups of four v-locations. The task MDP requires visiting two v-
locations, identified as numbers 30 and 50 in sequence. A green line represents moving to the
correct v-location in sequence, yielding a reward of 200. A black line represents moving to an in-
correct v-location, which is in the same group as the correct one, for a reward of 190. A red line
depicts movement to the incorrect group, for a reward of −10 when the surveillance action is taken.

It is also interesting to note that in Figure 11b, which shows the gain in terms of the final reward
obtained, the initial gain for EXP-3-Transfer and PPR are both negative, and the gain for PPR is
higher. However, as the transfer complexity increases (both in terms of previous MDPs and task
complexity) the cumulative reward gain becomes positive for EXP-3-Transfer, while for PPR it
continues to decrease.

Given that the above figures show that PPR does not benefit from clustering, we compare the
cumulative reward obtained by EXP-3-Transfer with clustering and PPR without clustering for the
complex 3-target-v-locations problem in Figure 12. This result shows that EXP-3-Transfer com-
pletely dominates PPR, with the difference becoming particularly stark when the number of previ-
ous tasks increases to 300.

7.3.2 CLUSTERING COMPARISON

We now compare the performance of EXP-3-Transfer when using the different types of clustering
methods reported in Table 1. As in the previous section, we examine the change in performance
with increasing complexity of the transfer tasks. The summary of these results is given in Figure
13, and again, the full results are provided in Appendix D.

As can be seen, EXP-3-Transfer using Search-Clustering to obtain the source policies outper-
forms the case when we do not cluster the previous tasks. This confirms the result reported in the
previous section. However, in addition we also observe that transfer after using the greedy cluster-
ing scheme performs about as well as using Search-Clustering for the 100 and 260 previous MDPs,

35



MAHMUD, HAWASLY, ROSMAN AND RAMAMOORTHY

(a) CUMULATIVE CLUSTERING GAINS. (b) FINAL CLUSTERING GAINS.

Figure 11: CLUSTERING GAINS. The above figures show the clustering gain for EXP-3-Transfer
and Probabilistic Policy Reuse. For each (x, y) data-point in each curve, the y-value is the difference
in performance with and without clustering when there are x previous MDPs. The performance
measured in cumulative clustering gains (Figure 11a) is the total cumulative discounted reward over
10, 000 episodes. The performance measure in final clustering gains (Figure 11b) is the discounted
reward in the final episode. We again note that each (x, y) point is averaged over 10 different target
tasks with 10 trials per task.

but for the 125 previous MDPs, Search-Clusterings is significantly better. Search-Clustering and
Greedy Clustering are comparable for those two numbers of previous MDPs largely due to the
structure of the domain, where every element of each group of tasks is similar to every other task
in the same group. That is, when the agent surveils any v-location in the same group as the true
v-location required by the task it receives near-optimal rewards (see Figure 10).

However, greedy clustering would fail on a more complex variant of the surveillance domain. To
understand this issue, recall from the beginning of Section that two MDPsM,M′, corresponding
to v-location sequences (v1, v2, v3) and (v′1, v

′
2, v
′
3), are similar in terms of their optimal policy,

and hence belong to the same cluster, if each pair of v-locations vi and v′i are adjacent. In this
case surveiling vi instead of v′i yeilds a reward of 190 in M′i and vice versa. Hence within each
correct cluster of MDPs we have a symmetry: the dV distance between each pair of MDPs is very
similar. At the same time the dV distance to MDPs not in the same cluster is quite different. So if
in greedy clustering if we start with any MDP in a given cluster, we will find the other MDPs in the
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Figure 12: CUMULATIVE REWARD SUMMARY. This figure shows the final cumulative rewards
after 10, 000 episodes for EXP-3-Transfer with clustering and Probabilistic Policy Reuse without
clustering for the surveillance domain with 3-target-v-locations. The x-axis shows the number of
previous MDPs.

cluster. Greedy clustering will no longer work if we break this symmetry by explicitly modifying
the domain definition.

One simple way to do this is as follows. In the complex domain, for each correct cluster we
have a single MDP (the centroidMi) that has low dV distance to all other elements of the cluster,
while every other MDP of the cluster has a high dV distance to the other non-centroid elements. To
get this effect, we have 5 v-locations per group of adjacent locations. We then change the reward
function so that in each group of adjacent locations {v1, v2, v3, v4, v5} (see figure 14), the reward is
asymmetric - we designate a single v-location, say v1 which yields a reward of 190 if it is surveilled
instead of vi and vice-versa, but for all the other v-locations, surveilling vj instead of vi, i, j 6= 1,
yields a reward of −10. Hence theMi would be the MDP with v-location sequence (v1

1, v
1
2, v

1
3). In

this case, greedy clustering will fail to learn every cluster for which it does not start with the centroid
MDPMi because the for the non-centroid MDPs, the dV distance to the other MDPs would be too
large. The result for the complex domain is given in table 3. We see that, transfer using the clusters
produced by Search-Clustering outperforms transfer using clusters discovered by greedy clustering
approach by a factor of 2 as we increase the number of previous MDPs. Recall that each point is
obtained from averaging over 10 different target tasks.

7.3.3 TIME COMPARISONS

Finally we examine the effect of the T parameter on performance on the original surveillance do-
main. Recall that the T parameter affects both the clustering algorithm Search-Clustering and EXP-
3-Transfer, and is the time duration in terms of the number of episodes over which the transfer
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Figure 13: EFFECT OF CLUSTERING METHODS. This figure compares the performance of EXP-
3-Transfer run with no clustering, the greedy clustering procedure and Search-Clustering. The
performance is measured in terms of the total cumulative discounted rewards over 10, 000 episodes.

No. of Previous MDPs Search Clustering Greedy Clustering
100 8.7102× 106 8.3667× 106

200 8.3667× 106 3.809× 106

Table 3: This table gives the performance of EXP-3-Transfer in the complex surveillance domain
when using greedy clustering vs Search-Clusterings for tasks with 2 target v-locations. The perfor-
mance is measured in terms of the total cumulative discounted rewards over 10, 000 episodes and
averaging over 10 different target tasks. The table shows that the performance of Search-Clusterings
remains steady while the performance of greedy clustering falters when we have more previous tasks
to draw from.

procedure is run. We performed experiments with 7 different combinations of numbers of previous
MDPs and MDP complexity. The results of these are all qualitatively similar, and so we present
only two graphs in Figure 15 for the most complex and the least complex transfer problem we have
considered. We relegate the remaining graphs for the rest of the experiments to Appendix D.2.

As these results show, the performance curve for EXP-3-Transfer with parameter T lies above
the curves of EXP-3-Transfer with parameter T ′ > T , for any t ≤ T . This illustrates the effect of
optimising transfer performance for a set time duration.
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Figure 14: THE COMPLEX GRAPH DOMAIN. The complex graph domain consists of groups of
5 adjacent v-locations. In our experiments we used 16 groups but for simplicity we only show
two groups here. Surveilling the central v-location v1 instead of any of the others has reward
190 and vice-versa, while survelling vi instead of vj , i, j 6= 1, has reward −10. As before, each
MDP consists of surveilling the correct sequence of target v-locations, depicted here as ‘1’ followed
by ‘2’. As in Figure 10, a green line shows correct movement (reward 200), a black line shows
movement to the wrong v-location in the right group (reward 190), and a red line corresponds to
moving to the wrong group before surveilling (reward −10).

8. Conclusion

In this paper we developed a framework to concisely represent a large number of previous MDPs by
a smaller number of source MDPs for transfer learning. We presented a principled online transfer
learning algorithm, a principled way to evaluate source sets for use in this algorithm and way to
find the source set. The key idea was to cluster the previous MDPs and then use the representative
element of each cluster as the source tasks. We also presented extensive experiments to show the
efficacy of our method. We now discuss several interesting directions for future work.

In this paper we only considered discrete domains. However, it is possible to translate the overall
approach to the continuous setting. In particular, to apply our approach to continuous space problem,
all we will need is a pure RL algorithm (as an arm in EXP-3-Transfer) and a way to evaluate policies
(to compute the dV distances). All our definitions, algorithms and results will then hold true in this
setting. This is because our algorithms EXP-3-Transfer, MHAV and Search-Clustering and distance
function dV treats the underlying MDPs and policies as black boxes with certain properties. The
discreteness of the MDP is never exploited or required in either the algorithms or their analysis.

Finally, we end by pointing out that the idea of clustering a set of tasks to obtain a representative
set is much more general. For instance, any other cost function derived under different assumptions
can be applied with the clustering approach. As another example, the clustering approach may also
be used in multi-agent systems to group together opponents according to whether the same policy of
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(a) LOW COMPLEXITY TRANSFER PROBLEM. (b) HIGH COMPLEXITY TRANSFER PROBLEM.

Figure 15: EFFECT OF THE T PARAMETER. These figures show the learning curve of EXP-3-
Transfer when run for different numbers of time steps (parameter T ). This affects both the clustering
and the arms chosen by EXP-3-Transfer. The parameters for each experiment are given in the
title of the respective figure. As shown, for shorter T , the EXP-3-Transfer run with the lowest
T = 1, 000 is optimal. For the intermediate duration, T = 5, 000 is optimal, and for the remaining
time T = 10, 000 is optimal. Figures 15a and 15b respectively give the curves for the lowest and
highest complexity task that was run. The shaded areas indicate one standard deviation.

ours is equally effective against opponents in the same group. It will also be interesting to implement
these methods and algorithms on scaled up, real version of the types of problems considered in this
paper. We plan to pursue these and other extensions to the above in future work.
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Appendix A. Proofs

Proof [Proof of Theorem 2] A direct application of Corollary 3.2 in (Auer et al., 2002b) is not
possible because our algorithm diverges from EXP-3 because the number of arms possibly decreases
across time steps. The proof of the first part, while structurally similar tp the proof of Theorem 3.1
of Auer et al. (2002b), is different in some crucial detail due to the removal of arms/policies. The
second part, where we deal with arms that were removed, is novel.

Recall that Ct is the set of policies not yet eliminated at the beginning of step t EXP-3-Transfer,
and let ct = |Ct|. Let Wt ,

∑
i∈Ct wi(t), and W̃t+1 ,

∑
i∈Ct wi(t + 1) (note the Ct, rather

than Ct+1 in the summation in W̃t+1). Then for all sequences of policies i1, i2, · · · , iT , drawn by
EXP-3-Transfer,

Wt+1

Wt

(1)

≤ W̃t+1

Wt

(2)
=
∑
i∈Ct

wi(t+ 1)

Wt

(3)
=
∑
i∈Ct

wi(t)∑
i∈Ct wi(t)

exp[βx̂i(t)/(c+ 1)]

(4)
=
∑
i∈Ct

pi(t)− β/ct
1− β

exp[βx̂i(t)/(c+ 1)]
(5)
=
∑
i∈Ct

pi(t)− β/ct
1− β

exp[βx̂i(t)/ct]

(6)

≤ 1 +
β/ct
1− β

xit(t) +
(e− 2)(β/ct)

2

1− β
∑
i∈Ct

x̂i(t) (27)

In the above, (1) follows because W̃t+1 ≥Wt+1 as |Ct| ≥ |Ct+1|, and because all the weights wt+1

are positive. (2) follows by the update equation for wi(t+1) in line 9 of EXP-3-Transfer. (3) follows
by definition of Wt. (4) follows by definition of pi(t) in line 4 of EXP-3-Transfer. (5) holds because
ct ≤ c + 1 and because the term in the exponential is positive. Finally, (6) follows by the identical
reasoning used to derive (8) in the proof of Theorem 3.1 (Auer et al., 2002a).

Now, we can proceed along similar lines as in Theorem 3.1. Using the fact that 1 +x ≤ exp(x)
gives us

ln
Wt+1

Wt
≤ β/ct

1− β
xit(t) +

(e− 2)(β/ct)
2

1− β
∑
i∈Ct

x̂i(t)

Now since ct is non-increasing, β/ct ≤ β/cT , and so

ln
Wt+1

Wt
≤ β/cT

1− β
xit(t) +

(e− 2)(β/cT )2

1− β
∑
i∈Ct

x̂i(t)

Summing over t telescopes and gives us

ln
WT

W1
≤ β/cT

1− β

T∑
t=1

xit(t) +
(e− 2)(β/cT )2

1− β

T∑
t=1

∑
i∈Ct

x̂i(t)

Now, going in the opposite direction, for each ρj ∈ CT we have

ln
WT

W1
≥ ln

wj(T )

c+ 1
=

β

cT

T∑
t=1

x̂j(t)− ln(c+ 1)
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Putting these together, we have for each ρj ∈ CT ,

T∑
t=1

xit(t) ≥ (1− β)
T∑
t=1

x̂j(t)−
cT ln(c+ 1)

β
− (e− 2)β

cT

T∑
t=1

∑
i∈Ct

x̂i(t) (28)

Rearranging, we get

T∑
t=1

x̂j(t)−
T∑
t=1

xit(t) ≤ β
T∑
t=1

x̂j(t) +
cT ln(c+ 1)

β
+

(e− 2)β

cT

T∑
t=1

∑
i∈Ct

x̂i(t) (29)

Taking expectation in terms of the randomization in the algorithm in both sides above, conditional
of ρj ∈ CT , we have

T∑
t=1

xj(t)− IEE3T [
T∑
t=1

xit(t)|ρj ∈ CT ] ≤ β
T∑
t=1

xj(t) +
cT ln(c+ 1)

β
+

(e− 2)β

cT

T∑
t=1

∑
i∈Ct

xi(t)

(30)
For the final term on the right hand side, we used the fact IE[x̂i(t)|i1, i2, · · · , it−1, ρj ∈ CT ] ≤

xi(t) for any i. To see this, note that there are two possibilities – either ρi ∈ Ct, or ρi 6∈ Ct. If ρi ∈
Ct then IE[x̂i(t)|i1, i2, · · · , it−1, ρj ∈ CT ] = xi(t) ≥ 0, and otherwise, IE[x̂i(t)|i1, i2, · · · , it−1, ρj ∈
CT ] = 0 as pi(t) = 0.

Now, using the fact that
∑T

t=1

∑
i∈CT xi(t) ≤ cTT (as xi(t) ∈ [0, 1]) and then rearranging, we

get for each ρj ∈ CT ,

T∑
t=1

xj(t)− IEE3T [
T∑
t=1

xit(t)|ρj ∈ CT ] ≤ β
T∑
t=1

xj(t) + cT ln(c+ 1) + (e− 2)βT

=
cT ln(c+ 1)

β
+ (e− 1)βT

Plugging in the value of β in the theorem statement we get

T∑
t=1

xj(t)− IEE3T [
T∑
t=1

xit(t)|ρj ∈ CT ] ≤
(
|CT |√
c+ 1

+
√
c+ 1

)√
(e− 1) ln(c+ 1)/T (31)

Now note that ∆R(1− γ)−1IEP,R[
∑T

t=1 xj(t)] = TV ρj , so taking expectation with respect to
P,R, dividing by T and multiplying by ∆R(1− γ)−1 we get from (31)

V ρj − 1

T
IEE3T [

T∑
t=1

x̄it(t)|ρj ∈ CT ] ≤ ∆R

1− γ

(
|CT |√
c+ 1

+
√
c+ 1

)√
(e− 1) ln(c+ 1)/T

This completes the proof of the first part.
To prove the second part, we need the Hoeffding bound (see, for instance, (Dubhashi and Pan-

conesi, 2009) for an exposition) which states that if y1:n , y1, y2, · · · , yn are i.i.d. draws of a
random variable Y , with Yi ∈ [a, b], and ȳn is the empirical mean of the yi, then

Pr[|ȳn − IE(Y )| > ε] ≤ exp[−2nε2/(b− a)2] (32)
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In the sequel, we will assume that b = 1, a = 0, and so the denominator in the exponent on the
left hand side of the equation is just 1. This bound then has the following simple and well known
consequence. Assume we have two i.i.d. samples y1:n and y′1:m, drawn from two random variables
Y and Y ′. Assume that ȳn − ȳ′m > ε, and n and m both satisfy exp[−2nε2/4] ≤ δ′/2 and
exp[−2mε2/4] ≤ δ′/2. Then, by (32)

Pr[|ȳn − IE(Y )| > ε/2] ≤ δ′/2, P r[|ȳ′n − IE(Y ′)| > ε/2] ≤ δ′/2 (33)

Then, by the triangle inequality and the union bound, with probability at least 1 − δ′, IE(Y ) >
IE(Y ′).

Now in line 13 of EXP-3-Transfer, we remove a source policy arm if ε = zj/nj − zk/nk,
we have ε/2 >

√
− ln(δ/2c)(2nj)−1 and ε/2 >

√
− ln(δ/2c)(2nk)−1. This implies, that with

probability > 1 − δ/c, V ρj > V ρk . Since there are c arms, this implies that if there is an arm that
was removed, by the union bound with probability at least > 1− δ, V ρj > V ρk for some arm j for
every arm k that is eventually removed.

For the next two proofs, we need to restate Lemma 1 in (Strehl and Littman, 2008).

Lemma 19 [Strehl, Li and Littman] Let the newMN+1 have transition and reward functionsRN+1

and TN+1. Let |Ri(s, a) − RN+1(s, a)| ≤ Ki and |Ti(.|s, a) − TN+1(.|s, a)| ≤ K ′i where Ri and
Ti are the reward and transition functions for MDPMi. Then, for any policy π and state s,

|V π
N+1(s)− V π

i (s)| ≤ K(i) (34)

where K(i) , Ki+γK
′
iRmax

(1−γ)2
(first defined in (10)). �

Now we can state our proof.
Proof [Proof of Lemma 5] Fix any previousMk and letMi be the centroid of the cluster Ai of A
such thatMk ∈ Ai. By definition, the optimal policy ofMi, used as an arm in EXP-3-Transfer, is
ρi and V π∗k

k −V
ρi
k ≤ εi. By Lemma 19, |V π∗k

N+1−V
π∗k
k | ≤ K(k) and |V ρi

N+1−V
ρi
k | ≤ K(k). Putting

the three inequalities together, we have |V π∗k
N+1−V

ρi
N+1| ≤ εi + 2K(k). By Theorem 2, if ρi was not

eliminated by EXP-3-Transfer, V ρi
N+1− IE[GE3T ]/T ≤ g(c), and therefore V π∗k

N+1− IE[GE3T ]/T ≤
g(c) + εi + 2K(k).

Now consider the case where the policy ρi was eliminated at some point. Then, by the second
part of Theorem 2, there exists a policy ρi′ for which with probability at least 1 − δ, V ρi ≤ V

ρi′
N+1.

From the relationship between ρi and π∗k established above, we get that with probability 1 − δ,

V
π∗k
N+1 ≤ V

ρi′
N+1 + εi + 2K(k).

Proof [Proof of Theorem 9] First, let |V | = M , and given any ordering of the elements of V ,
identify each vertex v ∈ V with its position in the ordering – so we can take V = {1, 2, · · · ,M}.
Let M1,M2, · · · ,MM be a set of MDPs defined on a state space S = {s}, and action space
A = {1, 2, · · · ,M}. The transition function for the MDPs in this case is trivial (all actions transition
with probability 1 from s to s). The reward function for MDP i defined as follows. Ri(s, ai) = 0; if
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(i, j) ∈ E thenRi(s, aj) = 0, otherwiseRi(s, aj) = −hMg(M) where h > 1 and g is the function
used in Definition 6 to define the cost function for clusters. In the following we will identify MDP
Mi with vertex i ∈ V and this way show that the optimal clustering for this corresponds to a
maximal clique under the mapping i→ vi and A→ Vi.

By construction, π∗i (s) = ai, V ∗i = 0, V
π∗j
i = V

aj
i = 0 iff (i, j) ∈ E, and V aj

i = −hMg(M)
otherwise. Hence, by the definition in (7),

dV (Mi,Mj) =

{
0 iff (i, j) ∈ E
hMg(M) otherwise

(35)

Now recall that costm , g(c) + ε̄m. Let an optimal clustering be A∗ and let A(Mi) denote
the cluster in A∗ that Mi belongs to. We now show that if Mi1 ,Mi1 , · · · ,Mil ∈ A ∈ A∗,
then i1, i2, · · · , il form a clique in G. In other words, we show that, if A(Mi) = A(Mj) then
(i, j) ∈ E, or equivalently (i, j) 6∈ E then A(Mi) 6= A(Mj). By way of contradiction, assume
that (i, j) 6∈ E but A(Mi) = A(Mj). Since i, j do not have an edge between them, by (35) the
diameter of A∗ is at least dV (Mi,Mj) = hMg(M)/M = hg(M). Which in turn implies that
costm(A∗) = g(|A∗|) + hg(M). Now consider the clustering A′ obtained by putting each MDP
Mi in its own cluster. This clustering has cost g(M) + 0 < g(|A∗|) + hg(M) – contradicting the
optimality of A∗. Hence, the clusters of A∗ has cost g(|A∗|) and corresponds to a collection of
cliques that partition V – denote this collection of cliques by J∗.

Now note that each collection of cliques V1, V2, · · ·Vj that partition V correspond to a clustering
A such that Mi,Mj ∈ A iff i, j ∈ Vl for some l; in this case j = |A|. Now assume that there
is a collection of cliques I such that |I| < |J∗| and let the corresponding clustering be AI . Then
we show that costm(AI) < costm(A∗), resulting in a contradiction. To see this note that each
Mi,Mj ∈ A ∈ AI then dV (Mi,Mj) = 0 by (35). Hence the diameter of AI = 0. So the cost of
AI is g(|AI |) + 0 < g(|A∗|) since by definition of AI , |AI | < |A∗|.

Because of the contradiction, J∗ is indeed a minimum clique cover, showing that the problem of
minimum clique cover can be reduced to the problem of finding the optimal clustering. To complete
the proof, we need to show that this reduction takes polynomial time. The only cost in computing a
Mi is setting the reward function, which takes time C|V | for some constant C.

Proof [Proof of Lemma 13] To show irreducibility we have to show that for any (λ, y) and (λ′, y′)
there exists a n such that P̄nMH[λ′, y′|λ, y] > 0. To see this, first note that φY was assumed to be
irreducible. So, there exists a n1 such that with φnY (y′|y) > 0. Now consider a particular path
y , yy1y2 · · · yn−1y

′ with probability > 0 under φY . From the definition in (21), the probability
under P̄MH of each transition yi → yi+1 is

βφ̄[λ, yi+1|λ, yi]Āccλ,yi [λ, yi+1] > βbφY [λ, yi+1|λ, yi]

where the inequality follows as Ācc·[·] > b by assumption in the Lemma statement. Hence, the
total probability of the path yy1y2 · · · yn−1y

′ under P̄MH is lower bounded by bnβnφY (y) (where
φ(y) =

∏n
i=0 φ(yi+1|yi)). Summing over all possible paths of length n going from y to y′ gives

that the probability of each (λ, y′) from (λ, y) is lower bounded by bnβnφnY (y′|y) > 0.
Now assume that λ = λk while λ′ = λk′ . If k < k′, we can bound the probability under P̄MH

of going from (λi, y
′) to (λi+1, y

′), where k ≤ i < k′, by zi , αα′ (1−α)
α (λi+1/λi)

−f(y) (this
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follows from definition of P̄MH and Ācc). Hence we reach (λ′, y′) from (λ, y′) with probability
z ,

∏k′−1
i=k zi. By a symmetric argument, if k′ < k, we reach λ′ from λ with probability at least

z′ ,
∏k′−1
i=k z′i, where z′i , α(1−α′) α

(1−α)(λi/λi+1)−f(y). Both z, z′ are positive by the finiteness
of f(y) and λis. Putting all the above together, we have that the probability of transitioning from
(λ, y) to (λ′, y′) is lower bounded by

bnβnφnY (y′|y) min{z, z′} > 0

which shows that P̄MH is irreducible.
To show that P̄MH is aperiodic, it is sufficient to note that α + β < 1. Then, with probability

1 − α − β, P̄MH returns to the same state in 1 step, which ensures that the g.c.d. of the set of time
steps where P̄MH returns to the same state is 1.

Proof [Proof of Theorem 14] φ̄ is irreducible by Lemma 13 and by construction of an MH chain,
P̄MH has Π̄ stationary distribution. Hence, by the first part of Theorem 11 P̄MH converges to Π̄ in
total variation. By the second part of the same theorem, if ||P̄ tMH(·|x0)− Π̄(·)||TV ≤ k, then for all
t′ > t, ||P̄ t′MH(·|x0)− Π̄(·)||TV ≤ k.

Proof [Proof of Theorem 15] As we mentioned above, this proof follows very closely the proof of
Theorem 4.9 in (Levin et al., 2009). To begin with, first we note that by irreducibility of P̄MH, the
diameter D (defined in (25)) is finite. Hence, by definition of δ in (26), for each x, x′ we have that
P̄MH(x′|x) ≥ δΠ̄(x′).

Let M̄MH denote the transition matrix for the kernel P̄MH so that M̄MH(x, x′) = P̄MH(x′|x) –
i.e. row i contains the distribution P̄MH(·|xi). Let Π̄ denote the transition matrix where each row is
Π̄. Then, setting η , (1− δ), we can write

M̄MH = (1− η)Π̄ + ηQ

where Q is another transition matrix. To see that Q is a valid transition matrix, note that row
i of Q is given by η−1[P̄MH(·|xi) − (1 − η)Π̄(·)]. Summing the elements of this row, we get∑

x′ P̄MH(x′|xi) − (1 − η)Π̄(x′) = η, whence each row of Q sums to 1. Furthermore, by the
definition that (1 − η) = δ, each entry is also positive, showing that Q is indeed a valid transition
matrix.

Now note that for any transition matrix M, MΠ̄ = Π̄. Additionally, since Π̄ is stationary for
P̄MH, Π̄M̄MH = Π̄. We will now use the above facts to show by induction on k that

M̄Dk
MH = (1− ηk)Π̄ + ηkQk (36)

which will imply the convergence we seek.
Clearly (36) is true for k = 0. Assume, as the inductive hypothesis, that it is true for k ≤ n.

Then, we have

M̄
D(n+1)
MH = M̄Dn

MHP̄
D
MH

= (1− ηn)Π̄ + ηnQnM̄D
MH

= (1− ηn)Π̄ + ηnQn[(1− η)Π̄ + ηQ]

= (1− ηn)Π̄− ηn+1Π̄ + ηnΠ̄ + ηn+1Qn+1

= (1− ηn+1)Π̄ + ηn+1Qn+1
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The first equality is just the definition of k-step transitions. The second equality is obtained by
applying the inductive hypothesis and because Π̄M̄MH = Π̄. The third and fourth equality follows
from applying the inductive hypothesis on M̄D

MH and the two facts about Π̄ established above. The
final equality is obtained by cancelling out the terms.

Now ηk → 0 as k →∞ , and so each row of M̄MH converges to Π̄. In other words for each x,
limt→∞

∑
x′ P̄

t
MH(x′|x) − Π̄(x′) = 0. This implies limt→∞ ||P̄ tMH(·|x) − Π̄(·)||1 = 0. Now since

||P̄ tMH(·|x)− Π̄(·)||TV = 1
2 ||P̄

t
MH(·|x)− Π̄(·)||1, this completes the proof.

Proof [Proof of Lemma 16] Fix any two (λ, y) and (λ′, y′) and let x , x0x1 · · ·xn be a path
with x0 = (λ, y) and xn = (λ′, y′). Assume that this path has positive probability under P̄MH

for certain value a, b, c, respectively of α′, α, β. Then, by definition (23) of P̄MH, the probability
of this path has the form Cak(1 − a)k2bk2ck3(1 − b − c)k4 where the ki are integers and C is a
constant. Then, under a difference set of values a′, b′, c′, the probability of this path has the form
Ca′k(1−a′)k2b′k2c′k3(1−b′−c′)k4 . Since α′, α, β ∈ (0, 1), this probability must also be non-zero.
Hence the set of paths of positive probability are invariant with respect to the values of α′, α and β.
Since D is the length of the shortest path of positive probability, this proves the lemma.

Proof [Proof of Lemma 18] We just need to show that, for any two clusterings A and A′, only
a finite number of re-arrangement steps is sufficient to obtain A′ from A. Let the clusters of A′,
in some order, be A′1, A

′
2, · · · , A′n. Assume that the points of A′i are spread across Ai1 , · · · , Aik

with n1, n2, · · · , nk points respectively. Then, with non-zero probability A′i will be created with n1

points from Ai1 (see Appendix C for the explicit computation). And from then on, with non-zero
probability (again, see the computations given) the points of A′i in Aij will be added to A′i. Hence
with non-zero probability A′i will be created. This holds for each A′i, and hence we have a non-zero
probability of constructing A′ from A.

Appendix B. Worst Case Quantification of the Cost Function

This appendix continues from Section 4.2 where we derived the case cost function for a clustering
by considering an average case scenario. We now derive a cost function in the worst case setting.
To begin, we define the following worst case measure of homogenity of the clustering.

ε = max
i
εi (37)

The main result is as follows.

Lemma 20 If EXP-3-Transfer is run with source policies derived from A using definition 4 with β
set as in Theorem 2, we have for each 1 ≤ i ≤ N ,

IE[V
π∗i
N+1]− IE[GE3T ]/T ≤ g(c) + ε+ max

i
2K(i)

Here the expectation is taken over the randomization of the task drawing process, randomization in
EXP-3-Transfer and PN+1 and RN+1 (same as in Theorem 2).
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Proof By the exact same steps as in the proof of Lemma 5, we have V π∗k
N+1 − IE[GE3T ]/T ≤

g(c) + εki + 2K(k). Taking the max over k yields

IE[V
π∗k
N+1]− IE[GE3T ]/T ≤ g(c) + ε+ max

i
2K(i)

which completes the proof.

We now discuss which of the two quantifications, worst or average case, is more appropri-
ate. If we have reason to strongly believe that the next MDP MN+1 is chosen by nature ad-
versarially with respect to our choice of cluster A – that is, nature chooses MN+1 to maximize
maxAj∈A maxMi∈Aj εj + K(i) – then clearly, the worst case quantification is the correct way to
evaluate a clustering. On the other hand, if we do not have any reason to believe this, then the
average case might be more appropriate. For instance a consider a clustering of 1000 MDPs that
contains all the MDPs in a 5 clusters, such that 4 of the clusters have diameter < 10 while the
5th one is sparse but wide (say 10 elements with diameter 100). For many domains, we would
consider this a good clustering and for this situation, the average case quantification would be
≤ 0.999 × 10 + 0.001 × 100 maxiK(i) ≤ 10 + maxiK(i), whereas the worst case quantifi-
cation would be 100 + maxiK(i). Intuitively this seems a little too pessimistic and indeed, we also
observed similar results for our experiments, in the sense that the worst case quantification failed to
uncover clusters that we would intuitively consider good. Hence, for the rest of the paper we use
the average case quantification to define our distance function.

Appendix C. Computations

Here we present the computation of the ratio φ[λ,A|λ′,A′]
φ[λ′,A′|λ,A] defined using (22) and constructed using

φ̄MY defined in Section 5.7. For this section, we set |A| = N . We have four cases to consider.

Case 1: With probability αα′, λ′ increased and A′ = A. In this case, we have φ[λ′,A|λ,A] = αα′,
φ[λ,A|λ′,A] = α(1− α′) and

φ[λ,A|λ′,A]

φ[λ′,A|λ,A]
=

1− α′

α′
.

Case 2: With probability α(1−α′), λ′ decreased and A′ = A. In this case we have φ[λ′,A|λ,A] =
α(1− α′), φ[λ,A)|λ′,A] = αα′,

φ[λ,A|λ′,A]

φ[λ′,A|λ,A]
=

α′

1− α′

Case 3: With probability 1−α−β, λ′ = λ and A = A′. φ[λ,A, λ′,A] = φ[λ′,A, λ,A] = 1−α−β

φ[λ,A|λ,A]

φ[λ,A|λ,A]
= 1

Case 4: With probability ββ′, λ′ = λ and is rearranged. Now the probability of moving ki points
from Ai to Aj is,

P (Ai, Aj ; ki) = N−2PE(ki; |Ai|, θ1)

(
|Ai|
ki

)−1
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The reverse probability now depends on what actually has been moved. We have 4 subcases:

Case 4.1: If ki points are moved between clusters Ai and Aj from clustering , with 0 < ki < |Ai|:

P (Aj , Ai; ki) = N−2PE(ki; |Aj |+ ki, θ1)

(
|Aj |+ ki

ki

)−1

Now, we have that φ[λ,A′|λ,A] = ββ′P (Ai, Aj ; ki) and φ[λ,A|λ,A′] = ββ′P (Aj , Ai; ki), so
that, we have:

φ[λ,A|λ,A′]
φ[λ,A′|λ,A]

=
PE(ki; |Aj |+ ki, θ1)

(|Ai|
ki

)
PE(ki; |Ai|, θ1)

(|Aj |+ki
ki

)
Case 4.2: If ki points are moved from cluster Ai to a new cluster A|A|+1, with 0 < ki < |Ai|:

P (AN+1, Ai; ki) = (N + 1)−2PE(ki; ki, θ1)

note that |AN+1| = ki. Now, we have that φ[λ,A′|λ,A] = ββ′P (Ai, AN+1; ki) and φ[λ,A|λ,A′] =
ββ′P (AN+1, Ai; ki). So the desired ratio is:

φ[λ,A|λ,A′]
φ[λ,A′|λ,A]

=
N2PE(ki; ki, θ1)

(|Ai|
ki

)
(N + 1)2PE(ki; |Ai|, θ1)

Case 4.3: If |Ai| points are moved from cluster Ai to existing cluster Aj , now we have one less
cluster so that,

P (Aj , Ai : |Ai|) = (N − 1)−2PE(|Ai|; |Aj |+ |Ai|, θ1)

(
|Ai|+ |Aj |
|Ai|

)−1

The φ values are: φ[λ,A′|λ,A] = ββ′P (Ai
|Ai|−−→ Aj) and φ[λ,A|λ,A′] = ββ′P (Aj

|Ai|−−→ Ai).
Together, this gives us the ratio:

φ[λ,A|λ,A′]
φ[λ,A′|λ,A]

=
N2PE(|Ai|; |Aj |+ |Ai|, θ1)

(N − 1)2PE(|Ai|; |Ai|, θ1)
(|Ai|+|Aj |
|Ai|

)
Case 4.4: If |Ai| points are moved from cluster Ai to a new cluster A|A|+1:

P (AN+1, Ai : |Ai|) = N−2PE(|Ai|; |Ai|, θ1)

The clustering A does not change in this case and the φ values are: φ[λ,A′|λ,A] = ββ′P (Ai, AN+1; |Ai|),
φ[λ,A|λ,A′] = ββ′P (AN+1, Ai; |Ai|), which gives us

φ[λ,A|λ,A′]
φ[λ,A′|λ,A]

= 1 (38)

Appendix D. Surveillance Domain Experiments: Algorithm Comparisons

In this section we give detailed cumulative reward curves for the 4 algorithms: E3T with clustering,
Policy-Reuse with clustering and Policy-Reuse with clustering. The results are given in Figures
16 to 18. The results more or less show what the summary graphs showed. In particular, when
the number of previous tasks and the complexity of task is low, Policy-Reuse is better than our
algorithm. However, as the complexity keeps increasing, our algorithm begins to dominate both
versions of Policy-Reuse, showing that clustering is beneficial.
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(a) (b)

Figure 16: ALGORITHM COMPARISONS. These figures compares the performance of EXP-3-
Transfer with clustering, Policy-Reuse with and without clustering, and Q-learning for various set-
tings of the task (see the figure title). These are the detailed plots of the summary results presented
in Section 7.3.1.

(a) (b)

Figure 17: ALGORITHM COMPARISONS CONTINUED. These figures compares the performance
of EXP-3-Transfer with clustering, Policy-Reuse with and without clustering, and Q-learning for
various settings of the task (see the figure title). These are the detailed plots of the summary results
presented in Section 7.3.1.
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(a) (b)

Figure 18: ALGORITHM COMPARISONS CONTINUED. These figures compares the performance
of EXP-3-Transfer with clustering, Policy-Reuse with and without clustering, and Q-learning for
various settings of the task (see the figure title). These are the detailed plots of the summary results
presented in Section 7.3.1.
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D.1 Surveillance Domain: Clustering Comparisons

In this section in figures 19 to 21 we present the learning curves summarized in figure 13. The
general trend follows what was observed in Section 7.3.2.

(a) (b)

Figure 19: CLUSTERING COMPARISIONS EXTENDED RESULTS. These figures show the results
that are summarized in Figure 13. The title of the graphs describe the experiment setup.

(a) (b)

Figure 20: CLUSTERING COMPARISIONS EXTENDED RESULTS CONTINUED. These figures show
the results that are summarized in Figure 13. The title of the graphs describe the experiment setup.

D.2 Time Comparisons

Figures 22 to 24 gives the time comparison results for transfer problems not described in Figure 15.
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Figure 21: CLUSTERING COMPARISIONS EXTENDED RESULTS CONTINUED. These figures show
the results that are summarized in Figure 13. The title of the graphs describe the experiment setup.

(a) (b)

Figure 22: TIME COMPARISIONS EXTENDED RESULTS. These figures show time comparsion re-
sults for transfer tasks in addition to Figure 15. The title of the graphs show the experiment setup.
The shaded areas give the standard deviation for the learning curves.
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(a) (b)

Figure 23: TIME COMPARISIONS EXTENDED CONTINUED. These figures show time comparsion
results for transfer tasks in addition to Figure 15. The title of the graphs show the experiment setup.
The shaded areas give the standard deviation for the learning curves.

Figure 24: TIME COMPARISIONS EXTENDED CONTINUED. These figures show time comparsion
results for transfer tasks in addition to Figure 15. The title of the graphs show the experiment setup.
The shaded areas give the standard deviation for the learning curves.
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