780 research outputs found

    Making Laplacians commute

    Full text link
    In this paper, we construct multimodal spectral geometry by finding a pair of closest commuting operators (CCO) to a given pair of Laplacians. The CCOs are jointly diagonalizable and hence have the same eigenbasis. Our construction naturally extends classical data analysis tools based on spectral geometry, such as diffusion maps and spectral clustering. We provide several synthetic and real examples of applications in dimensionality reduction, shape analysis, and clustering, demonstrating that our method better captures the inherent structure of multi-modal data

    Multidimensional Scaling on Multiple Input Distance Matrices

    Full text link
    Multidimensional Scaling (MDS) is a classic technique that seeks vectorial representations for data points, given the pairwise distances between them. However, in recent years, data are usually collected from diverse sources or have multiple heterogeneous representations. How to do multidimensional scaling on multiple input distance matrices is still unsolved to our best knowledge. In this paper, we first define this new task formally. Then, we propose a new algorithm called Multi-View Multidimensional Scaling (MVMDS) by considering each input distance matrix as one view. Our algorithm is able to learn the weights of views (i.e., distance matrices) automatically by exploring the consensus information and complementary nature of views. Experimental results on synthetic as well as real datasets demonstrate the effectiveness of MVMDS. We hope that our work encourages a wider consideration in many domains where MDS is needed

    Self-correction of 3D reconstruction from multi-view stereo images

    Get PDF
    We present a self-correction approach to improving the 3D reconstruction of a multi-view 3D photogrammetry system. The self-correction approach has been able to repair the reconstructed 3D surface damaged by depth discontinuities. Due to self-occlusion, multi-view range images have to be acquired and integrated into a watertight nonredundant mesh model in order to cover the extended surface of an imaged object. The integrated surface often suffers from “dent” artifacts produced by depth discontinuities in the multi-view range images. In this paper we propose a novel approach to correcting the 3D integrated surface such that the dent artifacts can be repaired automatically. We show examples of 3D reconstruction to demonstrate the improvement that can be achieved by the self-correction approach. This self-correction approach can be extended to integrate range images obtained from alternative range capture devices
    corecore