1,226 research outputs found

    Ultra Dense Networks Deployment for beyond 2020 Technologies

    Full text link
    A new communication paradigm is foreseen for beyond 2020 society, due to the emergence of new broadband services and the Internet of Things era. The set of requirements imposed by these new applications is large and diverse, aiming to provide a ubiquitous broadband connectivity. Research community has been working in the last decade towards the definition of the 5G mobile wireless networks that will provide the proper mechanisms to reach these challenging requirements. In this framework, three key research directions have been identified for the improvement of capacity in 5G: the increase of the spectral efficiency by means of, for example, the use of massive MIMO technology, the use of larger amounts of spectrum by utilizing the millimeter wave band, and the network densification by deploying more base stations per unit area. This dissertation addresses densification as the main enabler for the broadband and massive connectivity required in future 5G networks. To this aim, this Thesis focuses on the study of the UDN. In particular, a set of technology enablers that can lead UDN to achieve their maximum efficiency and performance are investigated, namely, the use of higher frequency bands for the benefit of larger bandwidths, the use of massive MIMO with distributed antenna systems, and the use of distributed radio resource management techniques for the inter-cell interference coordination. Firstly, this Thesis analyzes whether there exists a fundamental performance limit related with densification in cellular networks. To this end, the UDN performance is evaluated by means of an analytical model consisting of a 1-dimensional network deployment with equally spaced BS. The inter-BS distance is decreased until reaching the limit of densification when this distance approaches 0. The achievable rates in networks with different inter-BS distances are analyzed for several levels of transmission power availability, and for various types of cooperation among cells. Moreover, UDN performance is studied in conjunction with the use of a massive number of antennas and larger amounts of spectrum. In particular, the performance of hybrid beamforming and precoding MIMO schemes are assessed in both indoor and outdoor scenarios with multiple cells and users, working in the mmW frequency band. On the one hand, beamforming schemes using the full-connected hybrid architecture are analyzed in BS with limited number of RF chains, identifying the strengths and weaknesses of these schemes in a dense-urban scenario. On the other hand, the performance of different indoor deployment strategies using HP in the mmW band is evaluated, focusing on the use of DAS. More specifically, a DHP suitable for DAS is proposed, comparing its performance with that of HP in other indoor deployment strategies. Lastly, the presence of practical limitations and hardware impairments in the use of hybrid architectures is also investigated. Finally, the investigation of UDN is completed with the study of their main limitation, which is the increasing inter-cell interference in the network. In order to tackle this problem, an eICIC scheduling algorithm based on resource partitioning techniques is proposed. Its performance is evaluated and compared to other scheduling algorithms under several degrees of network densification. After the completion of this study, the potential of UDN to reach the capacity requirements of 5G networks is confirmed. Nevertheless, without the use of larger portions of spectrum, a proper interference management and the use of a massive number of antennas, densification could turn into a serious problem for mobile operators. Performance evaluation results show large system capacity gains with the use of massive MIMO techniques in UDN, and even greater when the antennas are distributed. Furthermore, the application of ICIC techniques reveals that, besides the increase in system capacity, it brings significant energy savings to UDNs.A partir del año 2020 se prevé que un nuevo paradigma de comunicación surja en la sociedad, debido a la aparición de nuevos servicios y la era del Internet de las cosas. El conjunto de requisitos impuesto por estas nuevas aplicaciones es muy amplio y diverso, y tiene como principal objetivo proporcionar conectividad de banda ancha y universal. En las últimas décadas, la comunidad científica ha estado trabajando en la definición de la 5G de redes móviles que brindará los mecanismos necesarios para garantizar estos requisitos. En este marco, se han identificado tres mecanismos clave para conseguir el necesario incremento de capacidad de la red: el aumento de la eficiencia espectral a través de, por ejemplo, el uso de tecnologías MIMO masivas, la utilización de mayores porciones del espectro en frecuencia y la densificación de la red mediante el despliegue de más estaciones base por área. Esta Tesis doctoral aborda la densificación como el principal mecanismo que permitirá la conectividad de banda ancha y universal requerida en la 5G, centrándose en el estudio de las Redes Ultra Densas o UDNs. En concreto, se analiza el conjunto de tecnologías habilitantes que pueden llevar a las UDNs a obtener su máxima eficiencia y prestaciones, incluyendo el uso de altas frecuencias para el aprovechamiento de mayores anchos de banda, la utilización de MIMO masivo con sistemas de antenas distribuidas y el uso de técnicas de reparto de recursos distribuidas para la coordinación de interferencias. En primer lugar, se analiza si existe un límite fundamental en la mejora de las prestaciones en relación a la densificación. Con este fin, las prestaciones de las UDNs se evalúan utilizando un modelo analítico de red unidimensional con BSs equiespaciadas, en el que la distancia entre BSs se disminuye hasta alcanzar el límite de densificación cuando ésta se aproxima a 0. Las tasas alcanzables en redes con distintas distancias entre BSs son analizadas, considerando distintos niveles de potencia disponible en la red y varios grados de cooperación entre celdas. Además, el comportamiento de las UDNs se estudia junto al uso masivo de antenas y la utilización de anchos de banda mayores. Más concretamente, las prestaciones de ciertas técnicas híbridas MIMO de precodificación y beamforming se examinan en la banda milimétrica. Por una parte, se analizan esquemas de beamforming en BSs con arquitectura híbrida en función de la disponibilidad de cadenas de radiofrecuencia en escenarios exteriores. Por otra parte, se evalúan las prestaciones de ciertos esquemas de precodificación híbrida en escenarios interiores, utilizando distintos despliegues y centrando la atención en los sistemas de antenas distribuidos o DAS. Además, se propone un algoritmo de precodificación híbrida específico para DAS, y se evalúan y comparan sus prestaciones con las de otros algoritmos de precodificación utilizados. Por último, se investiga el impacto en las prestaciones de ciertas limitaciones prácticas y deficiencias introducidas por el uso de dispositivos no ideales. Finalmente, el estudio de las UDNs se completa con el análisis de su principal limitación, el nivel creciente de interferencia en la red. Para ello, se propone un algoritmo de control de interferencias basado en la partición de recursos. Sus prestaciones son evaluadas y comparadas con las de otras técnicas de asignación de recursos. Tras este estudio, se puede afirmar que las UDNs tienen gran potencial para la consecución de los requisitos de la 5G. Sin embargo, sin el uso conjunto de mayores porciones del espectro, adecuadas técnicas de control de la interferencia y el uso masivo de antenas, las UDNs pueden convertirse en serios obstáculos para los operadores móviles. Los resultados de la evaluación de prestaciones de estas tecnologías confirman el gran aumento de la capacidad de las redes mediante el uso masivo de antenas y la introducción de mecanismos de IA partir de l'any 2020 es preveu un nou paradigma de comunicació en la societat, degut a l'aparició de nous serveis i la era de la Internet de les coses. El conjunt de requeriments imposat per aquestes noves aplicacions és ampli i divers, i té com a principal objectiu proporcionar connectivitat universal i de banda ampla. En les últimes dècades, la comunitat científica ha estat treballant en la definició de la 5G, que proveirà els mecanismes necessaris per a garantir aquests exigents requeriments. En aquest marc, s'han identificat tres mecanismes claus per a aconseguir l'increment necessari en la capacitat: l'augment de l'eficiència espectral a través de, per exemple, l'ús de tecnologies MIMO massives, la utilització de majors porcions de l'espectre i la densificació mitjançant el desplegament de més estacions base per àrea. Aquesta Tesi aborda la densificació com a principal mecanisme que permetrà la connectivitat de banda ampla i universal requerida en la 5G, centrant-se en l' estudi de les xarxes ultra denses (UDNs). Concretament, el conjunt de tecnologies que poden dur a les UDNs a la seua màxima eficiència i prestacions és analitzat, incloent l'ús d'altes freqüències per a l'aprofitament de majors amplàries de banda, la utilització de MIMO massiu amb sistemes d'antenes distribuïdes i l'ús de tècniques distribuïdes de repartiment de recursos per a la coordinació de la interferència. En primer lloc, aquesta Tesi analitza si existeix un límit fonamental en les prestacions en relació a la densificació. Per això, les prestacions de les UDNs s'avaluen utilitzant un model analític unidimensional amb estacions base equidistants, en les quals la distància entre estacions base es redueix fins assolir el límit de densificació quan aquesta distància s'aproxima a 0. Les taxes assolibles en xarxes amb diferents distàncies entre estacions base s'analitzen considerant diferents nivells de potència i varis graus de cooperació entre cel·les. A més, el comportament de les UDNs s'estudia conjuntament amb l'ús massiu d'antenes i la utilització de majors amplàries de banda. Més concretament, les prestacions de certes tècniques híbrides MIMO de precodificació i beamforming s'examinen en la banda mil·limètrica. D'una banda, els esquemes de beamforming aplicats a estacions base amb arquitectures híbrides és analitzat amb disponibilitat limitada de cadenes de radiofreqüència a un escenari urbà dens. D'altra banda, s'avaluen les prestacions de certs esquemes de precodificació híbrida en escenaris d'interior, utilitzant diferents estratègies de desplegament i centrant l'atenció en els sistemes d' antenes distribuïdes (DAS). A més, es proposa un algoritme de precodificació híbrida distribuïda per a DAS, i s'avaluen i comparen les seues prestacions amb les de altres algoritmes. Per últim, s'investiga l'impacte de les limitacions pràctiques i altres deficiències introduïdes per l'ús de dispositius no ideals en les prestacions de tots els esquemes anteriors. Finalment, l' estudi de les UDNs es completa amb l'anàlisi de la seua principal limitació, el nivell creixent d'interferència entre cel·les. Per tractar aquest problema, es proposa un algoritme de control d'interferències basat en la partició de recursos. Les prestacions de l'algoritme proposat s'avaluen i comparen amb les d'altres tècniques d'assignació de recursos. Una vegada completat aquest estudi, es pot afirmar que les UDNs tenen un gran potencial per aconseguir els ambiciosos requeriments plantejats per a la 5G. Tanmateix, sense l'ús conjunt de majors amplàries de banda, apropiades tècniques de control de la interferència i l'ús massiu d'antenes, les UDNs poden convertir-se en seriosos obstacles per als operadors mòbils. Els resultats de l'avaluació de prestacions d' aquestes tecnologies confirmen el gran augment de la capacitat de les xarxes obtingut mitjançant l'ús massiu d'antenes i la introducciGiménez Colás, S. (2017). Ultra Dense Networks Deployment for beyond 2020 Technologies [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/86204TESI

    Towards 5G Cellular: Understanding 3D In-Building Single Band and Multi-band Small Cells with Control/User-plane Coupled and Separation Architectures with a Novel Resource Reuse Approach

    Get PDF
    In this paper, we present numerous small cell base station, i.e. femtocell base station (FCBS), with control-/user-plane coupled and separation architectures based on the number of transceivers and operating frequency bands to serve control-/user-plane traffic. A single transceiver enabled FCBS can operate at either a co-channel microwave of the overlaid macrocell or a millimeter wave band. For multiple transceivers, dual transceivers are considered operating at both bands. FCBSs are deployed in a number of buildings with each floor modeled as 5×5 square-grid apartments. The co-channel interference with FCBSs is avoided using enhanced intercell interference coordination techniques. We propose a static frequency reuse approach and develop an algorithm by avoiding adjacent channel interferences from reusing frequencies in FCBSs. We also develop a resource scheduling algorithm for FCBSs with CUCA and CUSA to evaluate system level performances with a multi-tier network. It is found that a single transceiver co-channel microwave enabled FCBS with CUCA provides the worse, whereas a single or dual transceivers millimeter wave enabled FCBS with CUSA provides the best overall system capacity and FCBSs’ energy efficiency performances. Besides, we show the outperformances of the proposed resource reuse approach over an existing approach in literature in terms of system capacity and fairness among FCBSs with CUCA. Finally, we point out the applicability of a multi-band enabled FCBS and several features and issues of FCBSs with CUCA and CUSA.In this paper, we present numerous small cell base station, i.e. femtocell base station (FCBS), with control-/user-plane coupled and separation architectures based on the number of transceivers and operating frequency bands to serve control-/user-plane traffic. A single transceiver enabled FCBS can operate at either a co-channel microwave of the overlaid macrocell or a millimeter wave band. For multiple transceivers, dual transceivers are considered operating at both bands. FCBSs are deployed in a number of buildings with each floor modeled as 5 by 5 square-grid apartments. The co-channel interference with FCBSs is avoided using enhanced intercell interference coordination techniques. We propose a static frequency reuse approach and develop an algorithm by avoiding adjacent channel interferences from reusing frequencies in FCBSs. We also develop a resource scheduling algorithm for FCBSs with CUCA and CUSA to evaluate system level performances with a multi-tier network. It is found that a single transceiver co-channel microwave enabled FCBS with CUCA provides the worse, whereas a single or dual transceivers millimeter wave enabled FCBS with CUSA provides the best overall system capacity and FCBSs' energy efficiency performances. Besides, we show the outperformances of the proposed resource reuse approach over an existing approach in literature in terms of system capacity and fairness among FCBSs with CUCA. Finally, we point out the applicability of a multi-band enabled FCBS and several features and issues of FCBSs with CUCA and CUSA

    A Sequence Frequency Reuse Scheme for Coordinated Multi-Point Transmission in LTE-A

    Get PDF
    [[abstract]]OFDMA communication technology becomes for the next generation mobile communication systems (4G)standards. Decreasing Inter-Cell Interference (ICI) is one of important issues in OFDMA. A new technology of LTE-A (Lone Term Evolution-Advanced) is CoMP(Coordinate Multi-Point, CoMP) transmission, which purpose is to solve low performance and poor quality of transmission due to interference cause by. Even through there are many LTE research papers are presented to explore the use of frequency reuse mechanism to solve the ICI, but they are inappropriate for CoMP technology. In this paper, we propose an efficiently Sequence Frequency Reuse (SeFR) scheme to improve low performance that cause by ICI, and making restrict in ICI seriously region to work smoothly on CoMP. According to the results of simulation, the proposed mechanism makes the CoMP transmission to achieve higher efficiency in the use of, and improves the SINR value of CEU (Cell Edge Users).[[abstract]]OFDMA communication technology becomes for the next generation mobile communication systems (4G) standards. Decreasing Inter-Cell Interference (ICI) is one of important issues in OFDMA. A new technology of LTE-A (Lone Term Evolution-Advanced) is CoMP(Coordinate Multi-Point, CoMP) transmission, which purpose is to solve low performance and poor quality of transmission due to interference cause by. Even through there are many LTE research papers are presented to explore the use of frequency reuse mechanism to solve the ICI, but they are inappropriate for CoMP technology. In this paper, we propose an efficiently Sequence Frequency Reuse (SeFR) scheme to improve low performance that cause by ICI, and making restrict in ICI seriously region to work smoothly on CoMP. According to the results of simulation, the proposed mechanism makes the CoMP transmission to achieve higher efficiency in the use of, and improves the SINR value of CEU (Cell Edge Users).[[sponsorship]]World Academy of Science[[conferencetype]]國際[[conferencedate]]20130722~20130725[[booktype]]紙本[[iscallforpapers]]Y[[conferencelocation]]Las Vegas, Nevada, US

    Recent advances in radio resource management for heterogeneous LTE/LTE-A networks

    Get PDF
    As heterogeneous networks (HetNets) emerge as one of the most promising developments toward realizing the target specifications of Long Term Evolution (LTE) and LTE-Advanced (LTE-A) networks, radio resource management (RRM) research for such networks has, in recent times, been intensively pursued. Clearly, recent research mainly concentrates on the aspect of interference mitigation. Other RRM aspects, such as radio resource utilization, fairness, complexity, and QoS, have not been given much attention. In this paper, we aim to provide an overview of the key challenges arising from HetNets and highlight their importance. Subsequently, we present a comprehensive survey of the RRM schemes that have been studied in recent years for LTE/LTE-A HetNets, with a particular focus on those for femtocells and relay nodes. Furthermore, we classify these RRM schemes according to their underlying approaches. In addition, these RRM schemes are qualitatively analyzed and compared to each other. We also identify a number of potential research directions for future RRM development. Finally, we discuss the lack of current RRM research and the importance of multi-objective RRM studies

    Hierarchical Radio Resource Optimization for Heterogeneous Networks with Enhanced Inter-cell Interference Coordination (eICIC)

    Full text link
    Interference is a major performance bottleneck in Heterogeneous Network (HetNet) due to its multi-tier topological structure. We propose almost blank resource block (ABRB) for interference control in HetNet. When an ABRB is scheduled in a macro BS, a resource block (RB) with blank payload is transmitted and this eliminates the interference from this macro BS to the pico BSs. We study a two timescale hierarchical radio resource management (RRM) scheme for HetNet with dynamic ABRB control. The long term controls, such as dynamic ABRB, are adaptive to the large scale fading at a RRM server for co-Tier and cross-Tier interference control. The short term control (user scheduling) is adaptive to the local channel state information within each BS to exploit the multi-user diversity. The two timescale optimization problem is challenging due to the exponentially large solution space. We exploit the sparsity in the interference graph of the HetNet topology and derive structural properties for the optimal ABRB control. Based on that, we propose a two timescale alternative optimization solution for the user scheduling and ABRB control. The solution has low complexity and is asymptotically optimal at high SNR. Simulations show that the proposed solution has significant gain over various baselines.Comment: 14 pages, 8 figure

    A survey of machine learning techniques applied to self organizing cellular networks

    Get PDF
    In this paper, a survey of the literature of the past fifteen years involving Machine Learning (ML) algorithms applied to self organizing cellular networks is performed. In order for future networks to overcome the current limitations and address the issues of current cellular systems, it is clear that more intelligence needs to be deployed, so that a fully autonomous and flexible network can be enabled. This paper focuses on the learning perspective of Self Organizing Networks (SON) solutions and provides, not only an overview of the most common ML techniques encountered in cellular networks, but also manages to classify each paper in terms of its learning solution, while also giving some examples. The authors also classify each paper in terms of its self-organizing use-case and discuss how each proposed solution performed. In addition, a comparison between the most commonly found ML algorithms in terms of certain SON metrics is performed and general guidelines on when to choose each ML algorithm for each SON function are proposed. Lastly, this work also provides future research directions and new paradigms that the use of more robust and intelligent algorithms, together with data gathered by operators, can bring to the cellular networks domain and fully enable the concept of SON in the near future

    Practical large-scale coordinated scheduling in LTE-Advanced networks

    Get PDF
    In LTE-Advanced, the same spectrum can be re-used in neighboring cells, hence coordinated scheduling is employed to improve the overall network performance (cell throughput, fairness, and energy efficiency) by reducing inter-cell interference. In this paper, we advocate that large-scale coordination can be obtained through a layered solution: a cluster of few (i.e., three) cells is coordinated at the first level, and clusters of coordinated cells are then coordinated at a larger scale (e.g., tens of cells). We model both small-scale coordination and large-scale coordination as optimization problems, show that solving them at optimality is prohibitive, and propose two efficient heuristics that achieve good results, and yet are simple enough to be run at every Transmission Time Interval (TTI). Detailed packet-level simulations show that our layered approach outperforms the existing ones, both static and dynamic

    Random access improvement for M2M communication in LTE-A using femtocell

    Get PDF
    When an area is highly populated with Machine-to-Machine devices and all these devices attempt to access the Random Access Network Simultaneously, congestion is created on the network which degrades the performance of the network to other users. In this paper, the researchers are seeking to improve network accessibility by deploying more Femtocell into the network. They engaged the use of Extended Access Barring to restrict the M2M devices from accessing the network via macrocell eNB when a minimum load threshold is attained, thereby preventing the macrocell eNB from being congested. Deploying these Femtocells underneath the macrocell eNB comes with the issue of Inter-Cell Interference which nullifies any gains made by this deployment. The researchers employed Fractional Frequency Reuse and Complete Frequency Reuse schemes to mitigate the negative effects of ICI to augment the throughput of the network, improve the system capacity and enhanced the user experience within the network

    Leveraging intelligence from network CDR data for interference aware energy consumption minimization

    Get PDF
    Cell densification is being perceived as the panacea for the imminent capacity crunch. However, high aggregated energy consumption and increased inter-cell interference (ICI) caused by densification, remain the two long-standing problems. We propose a novel network orchestration solution for simultaneously minimizing energy consumption and ICI in ultra-dense 5G networks. The proposed solution builds on a big data analysis of over 10 million CDRs from a real network that shows there exists strong spatio-temporal predictability in real network traffic patterns. Leveraging this we develop a novel scheme to pro-actively schedule radio resources and small cell sleep cycles yielding substantial energy savings and reduced ICI, without compromising the users QoS. This scheme is derived by formulating a joint Energy Consumption and ICI minimization problem and solving it through a combination of linear binary integer programming, and progressive analysis based heuristic algorithm. Evaluations using: 1) a HetNet deployment designed for Milan city where big data analytics are used on real CDRs data from the Telecom Italia network to model traffic patterns, 2) NS-3 based Monte-Carlo simulations with synthetic Poisson traffic show that, compared to full frequency reuse and always on approach, in best case, proposed scheme can reduce energy consumption in HetNets to 1/8th while providing same or better Qo
    corecore