39 research outputs found

    Information-theoretic assessment of on-board near-lossless compression of hyperspectral data

    Get PDF
    A rate-distortion model to measure the impact of near-lossless compression of raw data, that is, compression with user-defined maximum absolute error, on the information avail- able once the compressed data have been received and decompressed is proposed. Such a model requires the original uncompressed raw data and their measured noise variances. Advanced near- lossless methods are exploited only to measure the entropy of the datasets but are not required for on-board compression. In substance, the acquired raw data are regarded as a noisy realization of a noise-free spectral information source. The useful spectral information at the decoder is the mutual information between the unknown ideal source and the decoded source, which is affected by both instrument noise and compression-induced distortion. Experiments on simulated noisy images, in which the noise-free source and the noise realization are exactly known, show the trend of spectral information versus compression distortion, which in turn is related to the coded bit rate or equivalently to the compression ratio through the rate-distortion characteristic of the encoder used on satellite. Preliminary experiments on airborne visible infrared imaging spec- trometer (AVIRIS) 2006 Yellowstone sequences match the trends of the simulations. The main conclusion that can be drawn is that the noisier the dataset, the lower the CR that can be tolerated, in order to save a prefixed amount of spectral information. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. (DOI: 10.1117/1.JRS.

    Adaptive multispectral GPU accelerated architecture for Earth Observation satellites

    Get PDF
    In recent years the growth in quantity, diversity and capability of Earth Observation (EO) satellites, has enabled increase’s in the achievable payload data dimensionality and volume. However, the lack of equivalent advancement in downlink technology has resulted in the development of an onboard data bottleneck. This bottleneck must be alleviated in order for EO satellites to continue to efficiently provide high quality and increasing quantities of payload data. This research explores the selection and implementation of state-of-the-art multidimensional image compression algorithms and proposes a new onboard data processing architecture, to help alleviate the bottleneck and increase the data throughput of the platform. The proposed new system is based upon a backplane architecture to provide scalability with different satellite platform sizes and varying mission’s objectives. The heterogeneous nature of the architecture allows benefits of both Field Programmable Gate Array (FPGA) and Graphical Processing Unit (GPU) hardware to be leveraged for maximised data processing throughput

    Virtually Lossless Compression of Astrophysical Images

    Get PDF
    We describe an image compression strategy potentially capable of preserving the scientific quality of astrophysical data, simultaneously allowing a consistent bandwidth reduction to be achieved. Unlike strictly lossless techniques, by which moderate compression ratios are attainable, and conventional lossy techniques, in which the mean square error of the decoded data is globally controlled by users, near-lossless methods are capable of locally constraining the maximum absolute error, based on user's requirements. An advanced lossless/near-lossless differential pulse code modulation (DPCM) scheme, recently introduced by the authors and relying on a causal spatial prediction, is adjusted to the specific characteristics of astrophysical image data (high radiometric resolution, generally low noise, etc.). The background noise is preliminarily estimated to drive the quantization stage for high quality, which is the primary concern in most of astrophysical applications. Extensive experimental results of lossless, near-lossless, and lossy compression of astrophysical images acquired by the Hubble space telescope show the advantages of the proposed method compared to standard techniques like JPEG-LS and JPEG2000. Eventually, the rationale of virtually lossless compression, that is, a noise-adjusted lossles/near-lossless compression, is highlighted and found to be in accordance with concepts well established for the astronomers' community

    Hyperspectral Image Compression Using Prediction-based Band Reordering Technique

    Get PDF
    The hyperspectral image represents various spectral properties Because it consists of broad spectral information of ground materials that can be used for various applications, These images are collected as large amounts of data that must be processed and transmitted to the ground station. These acquired images contain redundant spectral information that has to be reduced in order to reduce transmission and storage capacity. This work focuses on preserving their quality while compressing them using band reordering techniques and prediction coding. This can be accomplished by preprocessing in which sub-bands are decomposed and bands are reordered into unsequenced compression can be accomplished through using the technique of linear prediction. The report discusses the Pavia University hyperspectral image data cube, which was acquired via a sensor known as a reflected optics system imaging spectrometer (ROSIS-3) over the city of Pavia, Italy
    corecore