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ABSTRACT

The problem of distortion allocation varying with wavelength in lossy compression of hyperspectral imagery is investi-
gated. Distortion is generally measured either as maximum absolute deviation (MAD) for near-lossless methods, e.g.
differential pulse code modulation (DPCM), or as mean square error (MSE) for lossy methods (e.g. spectral decorrelation
followed by JPEG 2000). Also the absolute angular error, or spectral angle mapper (SAM), is used to quantify spectral
distortion. A band add-on (BAO) technique was recently introduced to calculate a modified version of SAM. Spectral
bands are iteratively selected in order to increase the angular separation between two pixel spectra by exploiting a
mathematical decomposition of SAM. As a consequence, only a subset of the original hyperspectral bands contributes
to the new distance metrics, referred to as BAO-SAM, whose operational definition guarantees its monotonicity as the
number of bands increases. Two strategies of inter-band distortion allocation are compared: given a target average bit
rate, distortion, either MAD or MSE, may be set to be constant varying with wavelength. Otherwise it may be allocated
proportionally to the noise level on each band, according to the virtually-lossless protocol. Thus, a different quantization
step size depending on the estimated standard deviation of the noise, is used to quantize either prediction residuals
(DPCM) or wavelet coefficients (JPEG 2000) of each spectral band, thereby determining band-varying MAD/MSE
values. Comparisons with the uncompressed originals show that the average spectral angle mapper (SAM) is minimized
by constant distortion allocation. Conversely, the average BAO-SAM is minimized by the noise-adjusted variable spectral
distortion allocation according to the virtually lossless protocol.

INTRODUCTION

Technological advances in imaging spectrometry have lead to acquisition of data that exhibit extremely high spatial,
spectral, and radiometric resolution. In particular, the increment in spectral resolution has motivated the extension of
vector signal/image processing techniques to hyperspectral data, for both data analysis and compression [1]. As a matter
of fact, a challenge of satellite hyperspectral imaging is data compression for dissemination to users and especially
for transmission to ground station from the orbiting platform. Data compression often performs a decorrelation of the
correlated information source, before entropy coding is carried out. To meet the quality issues of hyperspectral image
analysis, differential pulse code modulation (DPCM) is usually employed for lossless/near-lossless compression, i.e.
the decompressed data have a user-defined maximum absolute error, being zero in the lossless case. DPCM basically
consists of a prediction followed by entropy coding of quantized differences between original and predicted values. A
unit quantization step size allows reversible compression as a limit case. Several variants exist in DPCM prediction
schemes, the most sophisticated being adaptive [2, 3, 4, 5, 6].

When hyperspectral remote sensing acquisition systems, with the instrument on-board a satellite platform, data compres-
sion is crucial. If strictly lossless techniques are not employed, a certain amount of information of the data will be lost. In
the literature, there are several established distortion measurements, some of which are usually employed also for quality
assessment of decompressed data. The problem is that they measure the distortion introduced in the data, but cannot
measure the consequence of such distortion; in other words, how the information loss would affect the outcome of an
analysis performed on such data. For example, the quantitative evaluation of compression algorithms, and more generally
of the results of all methods that process hyperspectral data, is often based on distance metrics that compare two pixel
spectra and return a scalar value [7]. The Euclidean minimum distance (EMD) and the spectral angle mapper (SAM) are
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distance metrics usually adopted for this task and possess distinct mathematical and physical properties; but SAM suffers
of some limitation: it is not monotonic and tends to exhibit an asymptotic constant value as the number of bands increases
[8]. In a recent paper [9] the characteristics of both metrics are examined and a band add-on (BAO) technique is derived
that iteratively selects bands in order to increase the angular separation between two spectra by exploiting a mathematical
decomposition of SAM. As a consequence of BAO, only a subset of the original hyperspectral bands contributes to the
new distance metric, referred to as BAO-SAM hereafter, whose operational definition guarantees its monotonicity. Thus,
BAO-SAM is potentially more useful than SAM for classification, as well as for the evaluation of distortions between
pixel spectra, since SAM tends to exhibit an asymptotic constant value when the number of bands increases [8].

Such distortion metrics as Mean Square Error (MSE), Maximum Absolute Deviation (MAD), i.e. peak error, average and
maximum SAM, and spectral information divergence (SID) [10], are usually adopted to verify the efficiency of compres-
sion algorithms. As the number of bands increases, SAM partially loses discrimination capability, as it tends to saturate.
The BAO approach could be adopted to overcome this problem with two main objectives. Providing a deeper insight
in the spectral distortion affecting hyperspectral data. Assessing the feasibility of BAO-SAM bounded compression
algorithms. In fact, a data compression method of general validity should not be specialized to a specific application, e.g.
spectral anomaly detection [11], land-cover classification, or spectral unmixing [12] and material detection [13]. That is,
a compression method should not be optimised and assessed on a single application. Rather, one should try to optimise
a hyperspectral data compression method in terms of a distortion metrics, e.g. MAD, as it happens with ”near-lossless”
compression methods, but also SAM. Then one should demonstrate how the detection/classification/unmixing accuracy
depends on the distortion metrics, for which the compression algorithm is optimised.

A distortion measurement derived from the BAO approach and called BAO-SAM has been applied for quality evaluation
of compressed hyperspectral data. Compression with different MAD values and comparisons with the undistorted origi-
nals show that BAO-SAM is useful for characterizing the spectral distortion of compressed hyperspectral data. Although
a compression algorithm capable of producing reconstructed vectors with upper-bounded user-defined BAO-SAM is
unfeasible, it is possible toindirectly reduce the BAO-SAM by allocating more distortion to those bands that are less rel-
evant, on an average, for its computation. This is implicitly achieved by adopting a virtually-lossless compression strategy.

BAO-BOUNDED COMPRESSION

In a recent paper [9], the characteristics of both EMD and SAM are examined and a band add-on (BAO) technique
is derived that iteratively selects bands in order to increase the angular separation between two spectra by exploiting
a mathematical decomposition of SAM. As a consequence of BAO, only a subset of the original hyperspectral bands
contributes to the new distance metric, referred to as BAO-SAM hereafter, whose operational definition guarantees its
monotonicity.

BAO-SAM is potentially more useful than SAM for classification, as well as for the evaluation of distortions between
pixel spectra, and an interesting characteristic is that BAO-SAM can be used both for quality assessment of compressed
data and for operatively discriminating materials.

In particular we can see that compression algorithm runs on board, where data are available in radiance units. After being
transmitted on ground, they are converted into reflectance units, by means of the subsequent formula:

ρ(λ) =
R(λ) · π

I(λ) · T (λ)
(1)

whereρ(λ) is the reflectance of the pixel being acquired,I(λ) is the solar irradiance on ground,T (λ) is the atmospheric
transmittance, and finallyR(λ) is at-sensor radiance: all these quantities are function of the wavelengthλ. It is clear that
a distortion introduced on radiance data would be amplified or attenuated depending on the values that are assumed by
the productI(λ) · T (λ).

The initial idea was of developing a BAO-bounded compression algorithm, but this approach is not practicable. What
is possible is to allocate distortion among bands, in such a way that the BAO-SAM originated from compression is as
small as possible, so that the BAO-SAM deriving from spectral differences is mostly preserved, even when the data are
converted to reflectance units.
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Band Add-On Spectral Angle Mapper

SAM measures the angleθ(x, y), wherex and y are N -dimensional spectral vectors having real-valued nonnegative
components,{xi}N

i=1 and{yi}N
i=1, respectively,

θ(x, y) = arccos
( 〈x, y〉
‖x‖‖y‖

)
, 0 ≤ θ ≤ π

2
. (2)

in which 〈x, y〉 is the scalar product betweenx andy

〈x, y〉 ,
N∑

i=1

xi · yi (3)

and‖ · ‖ represents the Euclidean norm, i.e.‖x‖2 = 〈x, x〉.

SAM is anonadditivedistance metrics [14], which means that, if the components ofx andy are partitioned asx = [xa, xb]
andy = [ya, yb], wherexa, ya ∈ R+a andxb, yb ∈ R+b, with a + b = N , thenθ(x, y) 6= θ(xa, ya) + θ(xb, yb).

According with [9], we can rewrite (2) in terms of the angle betweenxa andya, namelyθa,

θa(x, y) , θ(xa, ya) = arccos
( 〈xa, ya〉
‖xa‖‖ya‖

)
(4)

in such a way that

cos(θ) =
〈xa, ya〉+ 〈xb, yb〉√

||xa‖2 + ‖xb‖2
√
||ya‖2 + ‖yb‖2

= cos(θa) ·
1 +

〈xb, yb〉
〈xa, ya〉√

1 +
||xb‖2
‖xa‖2

√
1 +

||yb‖2
‖ya‖2

. (5)

The mathematical decomposition of SAM reported in (5) has been used to derive a novel angular distance between two
vectors that has the desirable property of being monotonic as the number of vector components increases, unlike SAM
[15]. To this purpose, an algorithm, denoted as band add-on (BAO), has been developed in [9] and consists of starting with
a = 2 and iteratively adding one vector component at a time in such a way that the overall spanned angle is maximized.
The couple of startup components are usually chosen to maximizecos(θ2), among all possibleN(N−1)/2 combinations.
This choice simplifies the following procedure without significantly degrading the optimality of the results [16]. Starting
from (5), let us note that the second factor of the product on right side, which will be referred to asβ in the following, can
be either≥ 1 or < 1. Thus, ifβ ≥ 1, thenθ ≤ θa; if β < 1, thenθ > θa. Upon these premises, the BAO algorithm works
as follows:

1. Select a couple of starting components, e.g. such that the spanned “subangle”is maximized. Seta = 2.

2. Calculateβ for each of the remainingN − a components.

3. Find the component yielding the lowestβ, provided thatβ < 1, and add it to the set of the selected components. If
no component yieldsβ < 1, end; otherwise seta = a + 1 and go to step 2).

In this way, given the two spectrax andy, one finds the subset of components, whose number isa, such thatθ(xa, ya) is
maximum.

Our interest in exploiting the measure given by BAO-SAM was raised from the property of BAO-SAM of being
monotonic, while SAM usually decreases, as the number of bands increases.
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Figure 1: (a) measured noise standard deviation and (b) quantization step size for virtually lossless compression varying
with band number.

VIRTUALLY LOSSLESS COMPRESSION

The termvirtually-losslessindicates that the distortion introduced by compression should appear as an additional amount
of noise, being uncorrelated and having space-invariant first order statistics such that the overall probability density
function (PDF) of the noise corrupting the decompressed data, i.e. intrinsic noise plus compression-induced noise, closely
matches the noise PDF of the original data. This requirement is trivially fulfilled if compression is lossless, but may also
hold if the difference between uncompressed and decompressed data exhibits a peaked and narrow PDF without tails, as
it happens for near-lossless techniques, whenever the user defined MAD is sufficiently smaller than the standard deviation
σn of the background noise. Both MAD andσn are intended to be expressed in either physical units, for calibrated data,
or as digital counts otherwise. Therefore, noise modeling and estimation from the uncompressed data becomes a major
task to accomplish a virtually-lossless compression [3]. The underlying assumption is that the dependence of the noise
on the signal is null, or weak. However, signal independence of the noise may not strictly hold for hyperspectral images,
especially for a data set which is not definitely raw, namely postprocessed. This further uncertainty in the noise model
may be overcome by imposing a margin on the relationship between target MAD and RMS value of background noise.

Quality evaluation of compressed remote sensing images, and specifically of hyperspectral data, cannot rely on PSNR
distortion measurements only. For example we can notice that the wavelet-based JPEG2000 algorithm achieves the
effect of progressively “denoising” an image as the target compression ratio increases. This fact is not surprising, since
it has been demonstrated that suppression of small wavelet coefficients, which happens because of quantization, yields a
powerful method for image denoising, established also in the field of astrophysical image processing [17]. Therefore, the
data may become little useful once they have been compressed by means of an otherwise advancedL2-bounded method
like JPEG2000.

On the contrary, near-lossless methods, like JPEG-LS and RLPE seem to be more suitable than JPEG2000 for locally
preserving even small areas of variable coarseness. The main reason of that is thequantization noise-shapingeffect
achieved byL∞-bounded image encoders, like those based on DPCM.

The rationale of virtually-lossless compression can be summarized by the following protocol: measure the noise RMS,
σn; if σn < 1, lossless compression is mandatory. Otherwise, if1 ≤ σn < 3, near-lossless compression with MAD=1
(hence,∆ = 3) might be attempted. For3 ≤ σn < 5, compression with MAD=1 is recommended, to avoid wasting bits
encoding the noise. In the general case, the relationship between MAD andσn, also including a margin of approximately
one dB, is:

MAD = bmax{0, (σn − 1)/2}c (6)

In the case of scientific data, the signal may have been previously quantized based on different requirement; afterwards
a check on the noise is made to decide whether lossless compression is really necessary, or near-lossless compression
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Figure 2: Spectral (angular) distortion between original and compressed spectra varying with bit rate for both near-
lossless (MAD constant with wavelength) and virtually-lossless (MAD varying with wavelength) compression strategies:
(a) BAO-SAM; (b) SAM.

could be used instead without penalty, being “de facto”virtually-lossless. Depending on the application context and the
type of data, the relationship (6) may also be relaxed, e.g. by imposing that the ratio MSE(noise)/MSE(compression) is
greater than, say, 3 dB, instead of the 10÷11 dB, given by (6).

The key to achieve a compression preserving the scientific quality of the data for remote-sensing is represented by the
following twofold recommendation:

1. Absence oftails in the PDF of the error between uncompressed and decompressed image, in order to maximize the
ratio

√
MSE/MAD, i.e. RMSE/MAD, or equivalently to minimize MAD for a given RMSE.

2. MSE lower by one order of magnitude than the variance of background noiseσ2
n.

Near-lossless methods are capable to fulfill such requirements, provided that the quantization step size∆ is chosen as an
odd integer such that∆ ≈ σn. If the data are intrinsically little noisy, the protocol may lead to the direct use of lossless
compression, i.e.∆ = 1, to obtain what has been denoted asvirtually-losslesscompression.

CODING RESULTS

The data set used for carrying out the experiments is composed of a sequence collected in 1997 by theAirborne Visible
InfraRed Imaging Spectrometer(AVIRIS), operated by NASA/JPL onCuprite Mine, NV test site.

The hyperspectral data have been compressed by means of the SRLP algorithm [18], which is a MAD-bounded
near-lossless algorithm. The noise standard deviationσn of the test sequenceCuprite Mine, was measured by means
of the scatterplot-based method [19]. We can observe in Fig. 1(a) that, for some bands, near-lossless compression with
MAD = δ = 1 (i.e. quantization step size∆ = 2δ + 1 = 3) would yield an RMS distortionε =

√
2/3 ≈ 0.82, slightly

greater than the noise RMS value of such bands, which would have the effect of increasing by a factor greater than
√

2,
after decompression. Equivalently, the intrinsic SNR of the uncompressed image would be decremented by 3 dB after
compression/decompression. In this specific case,virtually-losslesscompression should better coincide withlossless
compression. Near-lossless compression of such bands with MAD equal to one is unable to retain the quality of the data,
because the compression-induced MSE is not one order of magnitude lower thanσ2

n, as it would be recommended for
virtually-lossless compression.

To vary the compression ratio, a scale factorq is introduced, such that

∆n = round[q · σn]. (7)
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Figure 3: Spectral (angular) distortion between original and compressed spectra varying with bit rate for compression
with MSE constant and varying with wavelength: (a) BAO-SAM; (b) SAM.

If q ≤ 1 a strictly virtually-lossless compression is achieved, since the compression-induced distortion is over 10%
lower than the intrinsic noisiness of the data. Otherwise, ifq > 1, compression is loosely virtually-lossless, even though
distortion is properly allocated among the spectral bands. Fig. 1(b) shows quantization step sizes for three different values
of q. To compare virtually-lossless compression with near-lossless compression (a unique quantization step size for the
whole data cube), the equivalent step size yielding approximately the same compression ratio is the integer roundoff of
the geometric mean of the step sizes (7).

Fig. 2 shows that for a given bit rate, or compression ratio, the virtually-lossless compression yields far lower BAO-SAM
than the near-lossless one does. Conversely, the near-lossless compression strategy is favored in terms of SAM (average
and maximum). Therefore if one aims at minimizing the BAO-SAM between original and lossy compressed spectra, the
virtually-lossless strategy is undoubtedly preferable.

An analogous experiment has been performed using JPEG2000. To achieve a 3D decorrelation also for JPEG2000,
a spectral decorrelation (a single spectral predictor with 3 coefficients, adaptively calculated for each band) has been
adopted prior to JPEG2000. This strategy allows a significant bit-rate reduction to be achieved in the lossless case.
JPEG2000 has been run by setting therate parameter for every band equal to the rate obtained by SRLP on the same
band. That is equivalent to obtain a (roughly)constantMSE on every band, and an MSEvariable from band to band.
The results are reported in Fig. 3.

If we compare Fig. 3(a) with Fig. 2(a) it is apparent that the tailed error distribution originated by JPEG2000 heavily
affects the BAO-SAM measure, especially the maximum. For JPEG2000 compression, the maximum BAO-SAM is
2◦ higher for constant MSE than for constant MAD allocation and4◦ higher for variable MSE than for variable MAD
allocation. It is worth noting that for BAO-SAM the variable MAD case was more favorable than constant MAD. Also
the BAO-SAM average values are slightly higher for JPEG2000. Generally, the BAO-SAM distortion of data compressed
by means of JPEG2000 follows the same trends highlighted by DPCM compression: the BAO-SAM is lower if distortion
is allocated band by band following the noise variance, but in the JPEG2000 case BAO-SAM is always higher at the same
bit-rates. Also for SAM the trends are similar in the two cases (Fig. 3(b) and Fig. 2(b)). The sole difference is that the
SAM originated from a variable MSE distortion allocation is lower for JPEG2000 than for SRLP, even if SAM is always
lower with a constant distortion allocation.

CONCLUDING REMARKS

This work has shown that the BAO-SAM measure can be useful in the evaluation of the distortion introduced by
near-lossless compression. BAO-SAM is more sensitive than SAM with the further advantage that it is monotonic
with the number of bands. These properties may be valuable for quality assessment of hyperspectral data as they are
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reconstructed after lossy compression. Although a compression algorithm capable of producing reconstructed vectors
with upper-bounded user-defined BAO-SAM is unfeasible, it is possible toindirectly reduce the BAO-SAM by allocating
more distortion in those bands that are less relevant, on an average, for its computation.
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