3,949 research outputs found

    Analyzing Hidden Representations in End-to-End Automatic Speech Recognition Systems

    Full text link
    Neural models have become ubiquitous in automatic speech recognition systems. While neural networks are typically used as acoustic models in more complex systems, recent studies have explored end-to-end speech recognition systems based on neural networks, which can be trained to directly predict text from input acoustic features. Although such systems are conceptually elegant and simpler than traditional systems, it is less obvious how to interpret the trained models. In this work, we analyze the speech representations learned by a deep end-to-end model that is based on convolutional and recurrent layers, and trained with a connectionist temporal classification (CTC) loss. We use a pre-trained model to generate frame-level features which are given to a classifier that is trained on frame classification into phones. We evaluate representations from different layers of the deep model and compare their quality for predicting phone labels. Our experiments shed light on important aspects of the end-to-end model such as layer depth, model complexity, and other design choices.Comment: NIPS 201

    Byte-based Language Identification with Deep Convolutional Networks

    Full text link
    We report on our system for the shared task on discriminating between similar languages (DSL 2016). The system uses only byte representations in a deep residual network (ResNet). The system, named ResIdent, is trained only on the data released with the task (closed training). We obtain 84.88% accuracy on subtask A, 68.80% accuracy on subtask B1, and 69.80% accuracy on subtask B2. A large difference in accuracy on development data can be observed with relatively minor changes in our network's architecture and hyperparameters. We therefore expect fine-tuning of these parameters to yield higher accuracies.Comment: 7 pages. Adapted reviewer comments. arXiv admin note: text overlap with arXiv:1609.0705

    Compositional coding capsule network with k-means routing for text classification

    Full text link
    Text classification is a challenging problem which aims to identify the category of texts. Recently, Capsule Networks (CapsNets) are proposed for image classification. It has been shown that CapsNets have several advantages over Convolutional Neural Networks (CNNs), while, their validity in the domain of text has less been explored. An effective method named deep compositional code learning has been proposed lately. This method can save many parameters about word embeddings without any significant sacrifices in performance. In this paper, we introduce the Compositional Coding (CC) mechanism between capsules, and we propose a new routing algorithm, which is based on k-means clustering theory. Experiments conducted on eight challenging text classification datasets show the proposed method achieves competitive accuracy compared to the state-of-the-art approach with significantly fewer parameters
    • …
    corecore