148 research outputs found

    A Comparative Study of Wireless Sensor Networks and Their Routing Protocols

    Get PDF
    Recent developments in the area of micro-sensor devices have accelerated advances in the sensor networks field leading to many new protocols specifically designed for wireless sensor networks (WSNs). Wireless sensor networks with hundreds to thousands of sensor nodes can gather information from an unattended location and transmit the gathered data to a particular user, depending on the application. These sensor nodes have some constraints due to their limited energy, storage capacity and computing power. Data are routed from one node to other using different routing protocols. There are a number of routing protocols for wireless sensor networks. In this review article, we discuss the architecture of wireless sensor networks. Further, we categorize the routing protocols according to some key factors and summarize their mode of operation. Finally, we provide a comparative study on these various protocols

    A reliable and resource aware framework for data dissemination in wireless sensor networks

    Full text link
    Distinctive from traditional wireless ad hoc networks, wireless sensor networks (WSN) comprise a large number of low-cost miniaturized nodes each acting autonomously and equipped with short-range wireless communication mechanism, limited memory, processing power, and a physical sensing capability. Since sensor networks are resource constrained in terms of power, bandwidth and computational capability, an optimal system design radically changes the performance of the sensor network. Here, a comprehensive information dissemination scheme for wireless sensor networks is performed. Two main research issues are considered: (1) a collaborative flow of information packet/s from the source to sink and (2) energy efficiency of the sensor nodes and the entire system. For the first issue, we designed and evaluated a reactive and on-demand routing paradigm for distributed sensing applications. We name this scheme as IDLF-Information Dissemination via Label ForwarDing IDLF incorporates point to point data transmission where the source initiates the routing scheme and disseminates the information toward the sink (destination) node. Prior to transmission of actual data packet/s, a data tunnel is formed followed by the source node issuing small label information to its neighbors locally. These labels are in turn disseminated in the network. By using small size labels, IDLF avoids generation of unnecessary network traffic and transmission of duplicate packets to nodes. To study the impact of node failures and to improve the reliability of the network, we developed another scheme which is an extension to IDLF. This new scheme, RM-IDLF - Reliable Multipath Information dissemination by Label Forwarding, employ an alternate disjoint path. This alternate path scheme (RM-IDLF) may have a higher path cost in terms of energy consumption, but is more reliable in terms of data packet delivery to sink than the single path scheme (IDLF). In the latter scheme, the protocol establishes multiple (alternate) disjoint path/s from source to destination with negligible control overhead to balance load due to heavy data traffic among intermediate nodes from source to the destination. Another point of interest in this framework is the study of trade-offs between the achieved routing reliability using multiple disjoint path routing and extra energy consumption due to the use of additional path/s. Also, the effect of the failed nodes on the network performance is evaluated within the sensor system; Performance of the label dissemination scheme is evaluated and compared with the classic flooding and SPIN. (Abstract shortened by UMI.)

    Energy Efficient Wireless Sensor Activities in Computer Networks

    Get PDF
    A Wireless Sensor Network (WSN) can be described as a sophisticated ensemble of interconnected devices that collaborate to relay information collected from a designated observation area. This network architecture enables the transmission of data across various nodes, ultimately converging at a gateway that integrates the data into larger networks, such as wireless Ethernet. Essentially, a WSN consists of base stations and numerous nodes equipped with wireless sensors. Modern iterations of these networks support bi-directional communication, not only facilitating the collection of sensor data but also allowing for the remote control and adjustment of sensor operations. Initially spurred by military needs for comprehensive battlefield surveillance, the utility of wireless sensor networks has expanded significantly. Today, they are integral to a variety of both industrial and consumer contexts, ranging from monitoring and controlling industrial processes to assessing the condition of machinery in real time

    A Survey on Wireless Sensor Network Security

    Full text link
    Wireless sensor networks (WSNs) have recently attracted a lot of interest in the research community due their wide range of applications. Due to distributed nature of these networks and their deployment in remote areas, these networks are vulnerable to numerous security threats that can adversely affect their proper functioning. This problem is more critical if the network is deployed for some mission-critical applications such as in a tactical battlefield. Random failure of nodes is also very likely in real-life deployment scenarios. Due to resource constraints in the sensor nodes, traditional security mechanisms with large overhead of computation and communication are infeasible in WSNs. Security in sensor networks is, therefore, a particularly challenging task. This paper discusses the current state of the art in security mechanisms for WSNs. Various types of attacks are discussed and their countermeasures presented. A brief discussion on the future direction of research in WSN security is also included.Comment: 24 pages, 4 figures, 2 table

    EAGP: An energy-aware gossip protocol for wireless sensor networks

    Get PDF
    In Wireless Sensor Networks (WSN), typically composed of nodes with resource constraints, leveraging efficient processes is crucial to enhance the network lifetime and, consequently, the sustainability in ultra-dense and heterogeneous environments, such as smart cities. Particularly, balancing the energy required to transport data efficiently across such dynamic environments poses significant challenges to routing protocol design and operation, being the trade-off of reducing data redundancy while achieving an acceptable delivery rate a fundamental research topic. In this way, this work proposes a new energy-aware epidemic protocol that uses the current state of the network energy to create a dynamic distribution topology by self-adjusting each node forwarding behavior as eager or lazy according to the local residual battery. Simulated evaluations demonstrate its efficiency in energy consumption, delivery rate, and reduced computational burden when compared with classical gossip protocols as well as with a directional protocol.FCT -Fundação para a Ciência e a Tecnologia(UIDB/50014/2020

    Developing a New Wireless Sensor Network Platform and Its Application in Precision Agriculture

    Get PDF
    Wireless sensor networks are gaining greater attention from the research community and industrial professionals because these small pieces of “smart dust” offer great advantages due to their small size, low power consumption, easy integration and support for “green” applications. Green applications are considered a hot topic in intelligent environments, ubiquitous and pervasive computing. This work evaluates a new wireless sensor network platform and its application in precision agriculture, including its embedded operating system and its routing algorithm. To validate the technological platform and the embedded operating system, two different routing strategies were compared: hierarchical and flat. Both of these routing algorithms were tested in a small-scale network applied to a watermelon field. However, we strongly believe that this technological platform can be also applied to precision agriculture because it incorporates a modified version of LORA-CBF, a wireless location-based routing algorithm that uses cluster-based flooding. Cluster-based flooding addresses the scalability concerns of wireless sensor networks, while the modified LORA-CBF routing algorithm includes a metric to monitor residual battery energy. Furthermore, results show that the modified version of LORA-CBF functions well with both the flat and hierarchical algorithms, although it functions better with the flat algorithm in a small-scale agricultural network

    A Comprehensive Study Of Energy Efficient Routing In Wsn Towards Qos

    Get PDF
    The Wireless Sensor Network (WSN) is an emerging field of wireless network comprising of few to many autonomous tiny sensors nodes, with limited processing, limited memory, limited battery power, limited bandwidth and limited wireless transmission capabilities. The life time of the sensor node depends upon the battery power. WSN are commonly used to monitor environmental conditions like temperature, sound and pressure etc. WSN is an application of MANET. Wireless sensor node collects data and sends back to the sink or Base Station (BS). Data transmission is normally multi-hop among sensor nodes that enable these nodes to transmit data from hop to hop towards the sink or BS. Wireless sensor network requires robust and energy efficient communication protocols to minimize the energy consumption as much as possible.  Main penalty area of researchers is to design the energy efficient routing protocol. Routing protocols should be energy efficient, scalable and prolong the network lifetime.But Quality of Service QoS is also a challenge for energy efficient routing protocols for researchers. QoSneeds a multi-layerlinespanning using the different layer protocol architecture. In this paper, we enlighten the energy efficient routing towards QoS in WSNs and proposes a solutionfor the QoS layer in energy efficient routing techniques in WSNs and finally, highlight some open problems and future direction of research for given that QoS in WSNs
    • …
    corecore