57,907 research outputs found

    Cluster ensembles, quantization and the dilogarithm

    Get PDF
    Cluster ensemble is a pair of positive spaces (X, A) related by a map p: A -> X. It generalizes cluster algebras of Fomin and Zelevinsky, which are related to the A-space. We develope general properties of cluster ensembles, including its group of symmetries - the cluster modular group, and a relation with the motivic dilogarithm. We define a q-deformation of the X-space. Formulate general duality conjectures regarding canonical bases in the cluster ensemble context. We support them by constructing the canonical pairing in the finite type case. Interesting examples of cluster ensembles are provided the higher Teichmuller theory, that is by the pair of moduli spaces corresponding to a split reductive group G and a surface S defined in math.AG/0311149. We suggest that cluster ensembles provide a natural framework for higher quantum Teichmuller theory.Comment: Version 7: Final version. To appear in Ann. Sci. Ecole Normale. Sup. New material in Section 5. 58 pages, 11 picture

    Weight Distribution for Non-binary Cluster LDPC Code Ensemble

    Get PDF
    In this paper, we derive the average weight distributions for the irregular non-binary cluster low-density parity-check (LDPC) code ensembles. Moreover, we give the exponential growth rate of the average weight distribution in the limit of large code length. We show that there exist (2,dc)(2,d_c)-regular non-binary cluster LDPC code ensembles whose normalized typical minimum distances are strictly positive.Comment: 12pages, 6 figures, To be presented in ISIT2013, Submitted to IEICE Trans. Fundamental

    A CLUE for CLUster Ensembles

    Get PDF
    Cluster ensembles are collections of individual solutions to a given clustering problem which are useful or necessary to consider in a wide range of applications. The R package clue provides an extensible computational environment for creating and analyzing cluster ensembles, with basic data structures for representing partitions and hierarchies, and facilities for computing on these, including methods for measuring proximity and obtaining consensus and "secondary" clusterings.

    Generation of pure continuous-variable entangled cluster states of four separate atomic ensembles in a ring cavity

    Get PDF
    A practical scheme is proposed for creation of continuous variable entangled cluster states of four distinct atomic ensembles located inside a high-finesse ring cavity. The scheme does not require a set of external input squeezed fields, a network of beam splitters and measurements. It is based on nothing else than the dispersive interaction between the atomic ensembles and the cavity mode and a sequential application of laser pulses of a suitably adjusted amplitudes and phases. We show that the sequential laser pulses drive the atomic "field modes" into pure squeezed vacuum states. The state is then examined against the requirement to belong to the class of cluster states. We illustrate the method on three examples of the entangled cluster states, the so-called continuous variable linear, square and T-type cluster states.Comment: 9 pages, 3 figure

    Storage and retrieval of continuous-variable polarization-entangled cluster states in atomic ensembles

    Full text link
    We present a proposal for storing and retrieving a continuous-variable quadripartite polarization-entangled cluster state, using macroscopic atomic ensembles in a magnetic field. The Larmor precession of the atomic spins leads to a symmetry between the atomic canonical operators. In this scheme, each of the four spatially separated pulses passes twice through the respective ensemble in order to map the polarization-entangled cluster state onto the long-lived atomic ensembles. The stored state can then be retrieved by another four read-out pulses, each crossing the respective ensemble twice. By calculating the variances, we analyzed the fidelities of the storage and retrieval, and our scheme is feasible under realistic experimental conditions.Comment: 6 pages, 4 figure
    corecore