93 research outputs found

    A novel architecture for tamper proof electronic health record management system using blockchain wrapper

    Get PDF
    In this paper, we present a novel architecture of blockchain-based tamper-proof electronic health record (EHR) management system. Recording electronic health data in cloud-based storage systems always pose a threat to information security. Intruders can delete or tamper EHR of patients, giving benefits to insurance companies or hiding medical malpractices (e.g. misdiagnosis and delayed diagnosis). A tamper-proof EHR management system is required that would essentially solve such issues. The blockchain is an emerging technology that can be adapted to develop a tamper-proof data management system. However, establishing a new blockchain based system replacing the existing system is expensive. In our proposed architecture, we introduce a wrapper layer integration mechanism, named as the blockchain handshaker, between the existing cloud-based EHR management system and public blockchain network to develop a tamper-proof health record management system. We implement a prototype to provide evidence on the feasibility of the proposed concept. - 2019 Association for Computing Machinery.Scopu

    A Framework for Securing Health Information Using Blockchain in Cloud Hosted Cyber Physical Systems

    Full text link
    Electronic Health Records (EHRs) have undergone numerous technical improvements in recent years, including the incorporation of mobile devices with the cloud computing technologies to facilitate medical data exchanges between patients and the healthcare professionals. This cutting-edge architecture enables cyber physical systems housed in the cloud to provide healthcare services with minimal operational costs, high flexibility, security, and EHR accessibility. If patient health information is stored in the hospital database, there will always be a risk of intrusion, i.e., unauthorized file access and information modification by attackers. To address this concern, we propose a decentralized EHR system based on Blockchain technology. To facilitate secure EHR exchange across various patients and medical providers, we develop a reliable access control method based on smart contracts. We incorporate Cryptocurrency, specifically Ethereum, in the suggested system to protect sensitive health information from potential attackers. In our suggested approach, both physicians and patients are required to be authenticated. Patients can register, and a block with a unique hash value will be generated. Once the patient discusses the disease with the physician, the physician can check the patient's condition and offer drugs. For experimental findings, we employ the public Block chain Ganache and solidity remix-based smart contracts to protect privacy. Ethers are used as the crypto currencies

    Is Blockchain for Internet of Medical Things a Panacea for COVID-19 Pandemic?

    Full text link
    The outbreak of the COVID-19 pandemic has deeply influenced the lifestyle of the general public and the healthcare system of the society. As a promising approach to address the emerging challenges caused by the epidemic of infectious diseases like COVID-19, Internet of Medical Things (IoMT) deployed in hospitals, clinics, and healthcare centers can save the diagnosis time and improve the efficiency of medical resources though privacy and security concerns of IoMT stall the wide adoption. In order to tackle the privacy, security, and interoperability issues of IoMT, we propose a framework of blockchain-enabled IoMT by introducing blockchain to incumbent IoMT systems. In this paper, we review the benefits of this architecture and illustrate the opportunities brought by blockchain-enabled IoMT. We also provide use cases of blockchain-enabled IoMT on fighting against the COVID-19 pandemic, including the prevention of infectious diseases, location sharing and contact tracing, and the supply chain of injectable medicines. We also outline future work in this area.Comment: 15 pages, 8 figure

    Blockchain inspired secure and reliable data exchange architecture for cyber-physical healthcare system 4.0

    Get PDF
    A cyber-physical system is considered to be a collection of strongly coupled communication systems and devices that poses numerous security trials in various industrial applications including healthcare. The security and privacy of patient data is still a big concern because healthcare data is sensitive and valuable, and it is most targeted over the internet. Moreover, from the industrial perspective, the cyber-physical system plays a crucial role in the exchange of data remotely using sensor nodes in distributed environments. In the healthcare industry, Blockchain technology offers a promising solution to resolve most securities-related issues due to its decentralized, immutability, and transparency properties. In this paper, a blockchain-inspired secure and reliable data exchange architecture is proposed in the cyber-physical healthcare industry 4.0. The proposed system uses the BigchainDB, Tendermint, Inter-Planetary-File-System (IPFS), MongoDB, and AES encryption algorithms to improve Healthcare 4.0. Furthermore, blockchain-enabled secure healthcare architecture for accessing and managing the records between Doctors and Patients is introduced. The development of a blockchain-based Electronic Healthcare Record (EHR) exchange system is purely patient-centric, which means the entire control of data is in the owner's hand which is backed by blockchain for security and privacy. Our experimental results reveal that the proposed architecture is robust to handle more security attacks and can recover the data if 2/3 of nodes are failed. The proposed model is patient-centric, and control of data is in the patient's hand to enhance security and privacy, even system administrators can't access data without user permission

    Advancing Healthcare Security: A Cutting-Edge Zero-Trust Blockchain Solution for Protecting Electronic Health Records

    Get PDF
    The effective management of electronic health records (EHRs) is vital in healthcare. However, traditional systems often need help handling data inconsistently, providing limited access, and coordinating poorly across facilities. This study aims to tackle these issues using blockchain technology to improve EHR systems' data security, privacy, and interoperability. By thoroughly analyzing blockchain's applications in healthcare, we propose an innovative solution that leverages blockchain's decentralized and immutable nature, combined with advanced encryption techniques such as the Advanced Encryption Standard and Zero Knowledge Proof Protocol, to fortify EHR systems. Our research demonstrates that blockchain can effectively overcome significant EHR challenges, including fragmented data and interoperability problems, by facilitating secure and transparent data exchange, leading to enhanced coordination, care quality, and cost-efficiency across healthcare facilities. This study offers practical guidelines for implementing blockchain technology in healthcare, emphasizing a balanced approach to interoperability, privacy, and security. It represents a significant advancement over traditional EHR systems, boosting security and affording patients greater control over their health records. Doi: 10.28991/HIJ-2023-04-03-012 Full Text: PD

    Decision model to design a blockchain-based system for storing sensitive health data

    Get PDF
    The storage and sharing of sensitive health data in Blockchain-based systems implicates data protection issues that must be addressed when designing such systems. Those issues can be traced back to the properties of decentralized systems. A blessing but also a curse in the context of health data is the transparency of the Blockchain, because it allows the stored data to be viewed by all participants of the network. In addition, the property of immutability is in contrast to the possibility to delete the personal data upon request according to the European General Data Protection Regulation (GDPR). Accordingly, approaches to tackle these issues have recently been discussed in research and industry, e.g. by storing sensitive data encrypted On-Chain or Off-Chain on own servers connected to a Blockchain. These approaches deal with how the confidentiality and integrity of stored data can be guaranteed and how data can be deleted. By reviewing the proposed approaches, we develop a taxonomy to summarize their specific technical characteristics and create a decision model that will allow the selection of a suitable approach for the design of future Blockchain-based systems for the storage of sensitive health data. Afterwards, we demonstrate the utility of the decision model based on a use case for storing test results from a digital dementia screening application. The paper concludes with a discussion of the results and suggestions for future research

    Enhancing Confidentiality and Privacy Preservation in e-Health to Enhanced Security

    Get PDF
    Electronic health (e-health) system use is growing, which has improved healthcare services significantly but has created questions about the privacy and security of sensitive medical data. This research suggests a novel strategy to overcome these difficulties and strengthen the security of e-health systems while maintaining the privacy and confidentiality of patient data by utilising machine learning techniques. The security layers of e-health systems are strengthened by the comprehensive framework we propose in this paper, which incorporates cutting-edge machine learning algorithms. The suggested framework includes data encryption, access control, and anomaly detection as its three main elements. First, to prevent unauthorised access during transmission and storage, patient data is secured using cutting-edge encryption technologies. Second, to make sure that only authorised staff can access sensitive medical records, access control mechanisms are strengthened using machine learning models that examine user behaviour patterns. This research's inclusion of machine learning-based anomaly detection is its most inventive feature. The technology may identify variations from typical data access and usage patterns, thereby quickly spotting potential security breaches or unauthorised activity, by training models on past e-health data. This proactive strategy improves the system's capacity to successfully address new threats. Extensive experiments were carried out employing a broad dataset made up of real-world e-health scenarios to verify the efficacy of the suggested approach. The findings showed a marked improvement in the protection of confidentiality and privacy, along with a considerable decline in security breaches and unauthorised access events

    IEEE Access Special Section Editorial: Security and Privacy in Emerging Decentralized Communication Environments

    Full text link
    • …
    corecore