2,591 research outputs found

    HPC Cloud for Scientific and Business Applications: Taxonomy, Vision, and Research Challenges

    Full text link
    High Performance Computing (HPC) clouds are becoming an alternative to on-premise clusters for executing scientific applications and business analytics services. Most research efforts in HPC cloud aim to understand the cost-benefit of moving resource-intensive applications from on-premise environments to public cloud platforms. Industry trends show hybrid environments are the natural path to get the best of the on-premise and cloud resources---steady (and sensitive) workloads can run on on-premise resources and peak demand can leverage remote resources in a pay-as-you-go manner. Nevertheless, there are plenty of questions to be answered in HPC cloud, which range from how to extract the best performance of an unknown underlying platform to what services are essential to make its usage easier. Moreover, the discussion on the right pricing and contractual models to fit small and large users is relevant for the sustainability of HPC clouds. This paper brings a survey and taxonomy of efforts in HPC cloud and a vision on what we believe is ahead of us, including a set of research challenges that, once tackled, can help advance businesses and scientific discoveries. This becomes particularly relevant due to the fast increasing wave of new HPC applications coming from big data and artificial intelligence.Comment: 29 pages, 5 figures, Published in ACM Computing Surveys (CSUR

    ACTiCLOUD: Enabling the Next Generation of Cloud Applications

    Get PDF
    Despite their proliferation as a dominant computing paradigm, cloud computing systems lack effective mechanisms to manage their vast amounts of resources efficiently. Resources are stranded and fragmented, ultimately limiting cloud systems' applicability to large classes of critical applications that pose non-moderate resource demands. Eliminating current technological barriers of actual fluidity and scalability of cloud resources is essential to strengthen cloud computing's role as a critical cornerstone for the digital economy. ACTiCLOUD proposes a novel cloud architecture that breaks the existing scale-up and share-nothing barriers and enables the holistic management of physical resources both at the local cloud site and at distributed levels. Specifically, it makes advancements in the cloud resource management stacks by extending state-of-the-art hypervisor technology beyond the physical server boundary and localized cloud management system to provide a holistic resource management within a rack, within a site, and across distributed cloud sites. On top of this, ACTiCLOUD will adapt and optimize system libraries and runtimes (e.g., JVM) as well as ACTiCLOUD-native applications, which are extremely demanding, and critical classes of applications that currently face severe difficulties in matching their resource requirements to state-of-the-art cloud offerings

    An IoT-based solution for monitoring a fleet of educational buildings focusing on energy efficiency

    Get PDF
    Raising awareness among young people and changing their behaviour and habits concerning energy usage iskey to achieving sustained energy saving. Additionally, young people are very sensitive to environmental protection so raising awareness among children is much easier than with any other group of citizens. This work examinesways to create an innovative Information & Communication Technologies (ICT) ecosystem (including web-based, mobile, social and sensing elements) tailored specifically for school environments, taking into account both theusers (faculty, staff, students, parents) and school buildings, thus motivating and supporting young citizenĹ› behavioural change to achieve greater energy efficiency. A mixture of open-source IoT hardware and proprietary platforms on the infrastructure level, are currently being utilized for monitoring a fleet of 18 educational buildings across 3 countries, comprising over 700 IoT monitoring points. Hereon presented is the system's high-level architecture, as well as several aspects of its implementation, related to the application domain of educational building monitoring and energy efficiency. The system is developed based on open-source technologies andservices in order to make it capable of providing open IT-infrastructure and support from different commercial hardware/sensor vendors as well as open-source solutions. The system presented can be used to develop and offer newapp-based solutions that can be used either for educational purposes or for managing the energy efficiency ofthebuilding. The system is replicable and adaptable to settings that may be different than the scenarios envisionedhere (e.g., targeting different climate zones), different IT infrastructures and can be easily extended to accommodate integration with other systems. The overall performance of the system is evaluated in real-world environment in terms of scalability, responsiveness and simplicity

    Data management techniques

    Get PDF
    Today, it is projected that data storage and management is becoming one of the key challenges in order to achieve ultrascale computing for several reasons. First, data is expected to grow exponentially in the coming years and this progression will imply that disruptive technologies will be needed to store large amounts of data and more importantly to access it in a timely manner. Second, the improvement of computing elements and their scalability are shifting application execution from CPU bound to I/O bound. This creates additional challenges for significantly improving the access to data to keep with computation time and thus avoid high-performance computing (HPC) from being underutilized due to large periods of I/O activity. Third, the two initially separate worlds of HPC that mainly consisted on one hand of simulations that are CPU bound and on the other hand of analytics that mainly perform huge data scans to discover information and are I/O bound are blurring. Now, simulations and analytics need to work cooperatively and share the same I/O infrastructure

    Edge Computing for Extreme Reliability and Scalability

    Get PDF
    The massive number of Internet of Things (IoT) devices and their continuous data collection will lead to a rapid increase in the scale of collected data. Processing all these collected data at the central cloud server is inefficient, and even is unfeasible or unnecessary. Hence, the task of processing the data is pushed to the network edges introducing the concept of Edge Computing. Processing the information closer to the source of data (e.g., on gateways and on edge micro-servers) not only reduces the huge workload of central cloud, also decreases the latency for real-time applications by avoiding the unreliable and unpredictable network latency to communicate with the central cloud

    Algorithms for advance bandwidth reservation in media production networks

    Get PDF
    Media production generally requires many geographically distributed actors (e.g., production houses, broadcasters, advertisers) to exchange huge amounts of raw video and audio data. Traditional distribution techniques, such as dedicated point-to-point optical links, are highly inefficient in terms of installation time and cost. To improve efficiency, shared media production networks that connect all involved actors over a large geographical area, are currently being deployed. The traffic in such networks is often predictable, as the timing and bandwidth requirements of data transfers are generally known hours or even days in advance. As such, the use of advance bandwidth reservation (AR) can greatly increase resource utilization and cost efficiency. In this paper, we propose an Integer Linear Programming formulation of the bandwidth scheduling problem, which takes into account the specific characteristics of media production networks, is presented. Two novel optimization algorithms based on this model are thoroughly evaluated and compared by means of in-depth simulation results
    • …
    corecore