26,698 research outputs found

    Responsive Multi-objective Load Balancing Transformation Using Particle Swarm Optimization in Cloud Environment

    Get PDF
    Cloud computing is an emerging computing paradigm with a large collection of heterogeneous autonomous systems with flexible computational architecture which provides the customers with computing resources as a service over a network on their demand. A multi-objective nature is inherent in cloud resource scheduling, as the objectives of cloud providers, cloud users, and other stakeholders can be independent. Resource allocation among multiple clients has to be ensured as per service level agreements. Several techniques have been invented and tested by research community for generation of optimal schedules in cloud computing. To accomplish these goals and achieve high performance, it is important to design and develop a Responsive multi-objective load balancing Transformation algorithm (RMOLBT) based on abstraction in multi cloud environment. It is most challenging to schedule the tasks along with satisfying the user’s Quality of Service requirements. This paper proposes a  wide variety of task scheduling and resource utilization using Particle swarm Optimization (PSO) in cloud environment. The result obtained by RMOLBT was simulated by an open source cloudsim configured with test case specification. Finally, the results  demonstrate the suitability of the proposed scheme that will increase throughput, reduce waiting time, reduction in missed process considerably and balances load among the physical machines in a Data centre in multi cloud environment

    Comparative Analysis of Privacy Preservation Mechanism: Assessing Trustworthy Cloud Services with a Hybrid Framework and Swarm Intelligence

    Get PDF
    Cloud computing has emerged as a prominent field in modern computational technology, offering diverse services and resources. However, it has also raised pressing concerns regarding data privacy and the trustworthiness of cloud service providers. Previous works have grappled with these challenges, but many have fallen short in providing comprehensive solutions. In this context, this research proposes a novel framework designed to address the issues of maintaining data privacy and fostering trust in cloud computing services. The primary objective of this work is to develop a robust and integrated solution that safeguards sensitive data and enhances trust in cloud service providers. The proposed architecture encompasses a series of key components, including data collection and preprocessing with k-anonymity, trust generation using the Firefly Algorithm, Ant Colony Optimization for task scheduling and resource allocation, hybrid framework integration, and privacy-preserving computation. The scientific contribution of this work lies in the integration of multiple optimization techniques, such as the Firefly Algorithm and Ant Colony Optimization, to select reliable cloud service providers while considering trust factors and task/resource allocation. Furthermore, the proposed framework ensures data privacy through k-anonymity compliance, dynamic resource allocation, and privacy-preserving computation techniques such as differential privacy and homomorphic encryption. The outcomes of this research provide a comprehensive solution to the complex challenges of data privacy and trust in cloud computing services. By combining these techniques into a hybrid framework, this work contributes to the advancement of secure and effective cloud-based operations, offering a substantial step forward in addressing the critical issues faced by organizations and individuals in an increasingly interconnected digital landscape

    Block Chain Technology Assisted Privacy Preserving Resource Allocation Scheme for Internet of Things Based Cloud Computing

    Get PDF
    Resource scheduling in cloud environments is a complex task, as it involves allocating suitable resources based on Quality of Service (QoS) requirements. Existing resource allocation policies face challenges due to resource dispersion, heterogeneity, and uncertainty. In this research, the authors propose a novel approach called Quasi-Oppositional Artificial Jellyfish Optimization Algorithm (QO-AJFOA) for resource scheduling in cloud computing (CC) environments. The QO-AJFOA model aims to optimize the allocation of computing power and bandwidth resources in servers, with the goal of maximizing long-term utility. The technique combines quasi-oppositional based learning (QOBL) with traditional AJFOA. Additionally, a blockchain-assisted Smart Contract protocol is used to distribute resource allocation, ensuring agreement on wireless channel utilization. Experimental validation of the QO-AJFOA technique demonstrates its promising performance compared to recent models, as tested with varying numbers of tasks and iterations. The proposed approach addresses the challenges of resource scheduling in cloud environments and contributes to the existing literature on resource allocation policies

    Cloud computing resource scheduling and a survey of its evolutionary approaches

    Get PDF
    A disruptive technology fundamentally transforming the way that computing services are delivered, cloud computing offers information and communication technology users a new dimension of convenience of resources, as services via the Internet. Because cloud provides a finite pool of virtualized on-demand resources, optimally scheduling them has become an essential and rewarding topic, where a trend of using Evolutionary Computation (EC) algorithms is emerging rapidly. Through analyzing the cloud computing architecture, this survey first presents taxonomy at two levels of scheduling cloud resources. It then paints a landscape of the scheduling problem and solutions. According to the taxonomy, a comprehensive survey of state-of-the-art approaches is presented systematically. Looking forward, challenges and potential future research directions are investigated and invited, including real-time scheduling, adaptive dynamic scheduling, large-scale scheduling, multiobjective scheduling, and distributed and parallel scheduling. At the dawn of Industry 4.0, cloud computing scheduling for cyber-physical integration with the presence of big data is also discussed. Research in this area is only in its infancy, but with the rapid fusion of information and data technology, more exciting and agenda-setting topics are likely to emerge on the horizon

    A Survey on Load Balancing Algorithms for VM Placement in Cloud Computing

    Get PDF
    The emergence of cloud computing based on virtualization technologies brings huge opportunities to host virtual resource at low cost without the need of owning any infrastructure. Virtualization technologies enable users to acquire, configure and be charged on pay-per-use basis. However, Cloud data centers mostly comprise heterogeneous commodity servers hosting multiple virtual machines (VMs) with potential various specifications and fluctuating resource usages, which may cause imbalanced resource utilization within servers that may lead to performance degradation and service level agreements (SLAs) violations. To achieve efficient scheduling, these challenges should be addressed and solved by using load balancing strategies, which have been proved to be NP-hard problem. From multiple perspectives, this work identifies the challenges and analyzes existing algorithms for allocating VMs to PMs in infrastructure Clouds, especially focuses on load balancing. A detailed classification targeting load balancing algorithms for VM placement in cloud data centers is investigated and the surveyed algorithms are classified according to the classification. The goal of this paper is to provide a comprehensive and comparative understanding of existing literature and aid researchers by providing an insight for potential future enhancements.Comment: 22 Pages, 4 Figures, 4 Tables, in pres

    Joint Computation Offloading and Prioritized Scheduling in Mobile Edge Computing

    Get PDF
    With the rapid development of smart phones, enormous amounts of data are generated and usually require intensive and real-time computation. Nevertheless, quality of service (QoS) is hardly to be met due to the tension between resourcelimited (battery, CPU power) devices and computation-intensive applications. Mobileedge computing (MEC) emerging as a promising technique can be used to copy with stringent requirements from mobile applications. By offloading computationally intensive workloads to edge server and applying efficient task scheduling, energy cost of mobiles could be significantly reduced and therefore greatly improve QoS, e.g., latency. This paper proposes a joint computation offloading and prioritized task scheduling scheme in a multi-user mobile-edge computing system. We investigate an energy minimizing task offloading strategy in mobile devices and develop an effective priority-based task scheduling algorithm with edge server. The execution time, energy consumption, execution cost, and bonus score against both the task data sizes and latency requirement is adopted as the performance metric. Performance evaluation results show that, the proposed algorithm significantly reduce task completion time, edge server VM usage cost, and improve QoS in terms of bonus score. Moreover, dynamic prioritized task scheduling is also discussed herein, results show dynamic thresholds setting realizes the optimal task scheduling. We believe that this work is significant to the emerging mobile-edge computing paradigm, and can be applied to other Internet of Things (IoT)-Edge applications
    • …
    corecore